


### SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION

#### **KENOSHA COUNTY**

#### Anita M. Faraone Adelene Greene Robert W. Pitts

#### **RACINE COUNTY**

Susan S. Greenfield Mary A. Kacmarcik Michael J. Miklasevich

#### MILWAUKEE COUNTY

#### William R. Drew, Treasurer Lee Holloway

#### WALWORTH COUNTY

Richard A. Hansen, Vice-Chairman Gregory L. Holden Allen L. Morrison

#### **OZAUKEE COUNTY**

#### Thomas H. Buestrin, Chairman William E. Johnson Gustav W. Wirth, Jr., Secretary

#### **WASHINGTON COUNTY**

Charlene S. Brady Daniel S. Schmidt David L. Stroik

#### **WAUKESHA COUNTY**

James T. Dwyer Anselmo Villareal Paul G. Vrakas

## SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION STAFF

| Philip C. Evenson, AICP  | Executive Director                       |
|--------------------------|------------------------------------------|
| Kenneth R. Yunker, PE    | Deputy Director                          |
| Nancy M. Anderson, AICP  | Chief Community Assistance Planner       |
| Christopher T. Hiebert   | Chief Transportation Engineer            |
| Elizabeth A. Larsen      | Business Manager                         |
| John G. McDougall        | . Geographic Information Systems Manager |
| John R. Meland           | Chief Economic Development Planner       |
| Dr. Donald M. Reed       | Chief Biologist                          |
| Kenneth J. Schlager, PE  | Chief Telecommunications Engineer        |
| Donald P. Simon, RLS     | Chief Planning Illustrator               |
| William J. Stauber, AICP | Chief Land Use Planner                   |

#### **ENVIRONMENTAL PLANNING DIVISION STAFF**

| Michael G. Hahn, PE, PH      | Chief Environmental Engineer     |
|------------------------------|----------------------------------|
| Robert P. Biebel, PE, PH     | Special Projects Engineer        |
| Joseph E. Boxhorn            | Senior Planner                   |
| Patricia M. Kokan            | Secretary                        |
| Aaron W. Owens               | Research Analyst                 |
| Ronald J. Printz, PE         | Principal Engineer               |
| Edward J. Schmidt            | GIS Planning Specialist          |
| Thomas M. Slawski            | Principal Planner                |
| Sara W. Teske                | Research Analyst                 |
| Jeffrey A. Thornton, CLM, PH | Principal Planner                |
| Daniel R. Treloar Land ar    | nd Water Conservation Specialist |
| Catherine D. West            | Planner                          |
|                              |                                  |

#### GEOGRAPHIC INFORMATION SYSTEMS DIVISION STAFF

Michael B. Scott ......GIS Application Specialist

#### LAND USE PLANNING DIVISION STAFF

| David A. Schilling  | Principal Planner |
|---------------------|-------------------|
| Kathryn E. Sobottke | Senior Specialist |

#### **UNIVERSITY OF WISCOSNIN-EXTENSION**

Gary K. Korb.....Regional Planning Educator

#### ADVISORY COMMITTEE ON REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

| Daniel S. Schmidt, Chairn                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                            | nanSEWRPC Commissioner<br>ryChief Environmental Engineer,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Michael G. Hahn, Secreta                                                                                                                   | ry Chief Environmental Engineer,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | Southeastern Wisconsin Regional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                            | Planning Commission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Julie A. Anderson                                                                                                                          | Director, Racine County Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | of Planning and Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Michael J. Ballweg                                                                                                                         | Crops and Soils Agent, University of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                            | Wisconsin-Extension, Sheboygan County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                            | Commissioner-Secretary, Silver Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                            | Protection and Rehabilitation District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| John M. Bennett                                                                                                                            | City Engineer, City of Franklin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thomas J. Bunker                                                                                                                           | Retired General Manager, City of Racine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                            | Water and Wastewater Utility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Lisa Conley                                                                                                                                | Representative, Town and Country Resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                            | Conservation and Development, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Joyce A. Fiacco                                                                                                                            | Conservation and Development, Inc Director, Dodge County Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Shawn Graff                                                                                                                                | Resources and Parks DepartmentExecutive Director, The Ozaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            | Washington Land Trust Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Andrew A. Holschbach                                                                                                                       | Director, Ozaukee County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                            | Planning, Resources, and Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            | Management Department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| William J. Hoppe                                                                                                                           | City Engineer, City of Mequon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| William A. Kappel                                                                                                                          | Director of Public Works, City of Wauwatosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Steve Keith                                                                                                                                | Acting Director of Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | Services, Milwaukee County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kristine M. Krause                                                                                                                         | Vice-President, Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            | Department, We Energies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| James F. Lubner                                                                                                                            | Sea Grant Advisory Services Specialist,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                            | University of Wisconsin Sea Grant Institute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Jeffrey J. Mantes                                                                                                                          | Commissioner of Public Works,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            | City of Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lynn Mathias                                                                                                                               | County Land Conservationist,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                                                                                                                                          | Fond du Lac County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| James L. McNelly                                                                                                                           | Regional Water Leader, Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ŕ                                                                                                                                          | Department of Natural Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Charles S. Melching                                                                                                                        | Associate Professor, Civil & Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · ·                                                                                                                                        | Engineering, Marquette University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Matthew Moroney                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                            | Executive Director, Metropolitan Builders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                            | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Paul E. Mueller                                                                                                                            | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patrick A. Murphy                                                                                                                          | Association of Greater MilwaukeeAdministrator, Washington County Planning and Parks DepartmentState Resource Conservationist,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim                                                                                      | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Uillage of Menomonee Falls                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim  Judith A. Neu                                                                       | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim  Judith A. Neu                                                                       | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim  Judith A. Neu  Charles A. Peters                                                    | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim  Judith A. Neu  Charles A. Peters                                                    | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Director of Utilities, Village of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center,                                                                                                                                                                                                                                                                                                                                         |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim  Judith A. Neu  Charles A. Peters  Kevin L. Shafer                                   | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Uillage of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District                                                                                                                                                                                                                                                                            |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim  Judith A. Neu  Charles A. Peters  Kevin L. Shafer                                   | Association of Greater Milwaukee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Director of Utilities, Village of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks and Land Use Department                                                                                                                                                                                             |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Uillage of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks                                                                                                                                                                                                                                            |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim  Judith A. Neu  Charles A. Peters  Kevin L. Shafer  Dale R. Shaver  Peter G. Swenson | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Director of Utilities, Village of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks and Land Use Department Branch Chief, NPDES Programs Branch,                                                                                                                                                        |
| Patrick A. Murphy  Cheryl Nenn  Jeffrey S. Nettesheim  Judith A. Neu  Charles A. Peters  Kevin L. Shafer  Dale R. Shaver  Peter G. Swenson | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Director of Utilities, Village of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks and Land Use Department Branch Chief, NPDES Programs Branch,                                                                                                                                                        |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Director of Utilities, Village of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks and Land Use Department Branch Chief, NPDES Programs Branch, U.S. Environmental Protection Agency Director of Planning and Parks, Fond du Lac County                                                                |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Uillage of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks and Land Use Department U.S. Environmental Protection Agency Director of Planning and Parks,                                                                                                                                               |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Uillage of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks and Land Use Department U.S. Environmental Protection Agency Director of Planning and Parks, Fond du Lac County Messources Department Shebovgan County                                                                                     |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Uillage of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks and Land Use Department U.S. Environmental Protection Agency Director of Planning and Parks, Fond du Lac County Assistant Planning Director, Planning and Resources Department, Sheboygan County Director of Engineering and Public Works, |
| Patrick A. Murphy                                                                                                                          | Association of Greater Milwaukee Administrator, Washington County Planning and Parks Department State Resource Conservationist, Natural Resources Conservation Service Riverkeeper/Project Director, Friends of Milwaukee's Rivers Director of Utilities, Village of Menomonee Falls City Engineer, City of West Bend Director, Wisconsin Water Science Center, U.S. Geological Survey Executive Director, Milwaukee Metropolitan Sewerage District Director, Waukesha County Parks and Land Use Department Branch Chief, NPDES Programs Branch, U.S. Environmental Protection Agency Director of Planning and Parks, Fond du Lac County Massistant Planning Director, Planning and                     |

Special acknowledgement is due Mr. Martin A. Aquino, Environmental Manager, City of Milwaukee Department of Public Works; Mr. Mark Baran, former Interim District Conservationist for Ozaukee County; Ms. Marsha B. Burzynski, Program and Planning Analyst, Wisconsin Department of Natural Resources; Mr. David E. Carpenter, retired Director of Planning and Development for Dodge County; Ms. Diane M. Georgetta, former Coordinator, Town and Country Resource Conservation and Development, Inc.; Ms. Elizabeth L. Gillen, Acting District Conservationist for Ozaukee County; Ms. Shannon K. Haydin, former Director, Sheboygan County Department of Planning and Resources; Ms. Judy Jooss, Representative, Town and Country Resource Conservation and Development, Inc.; Mr. Charles J. Krohn, former Regional Water Leader for the Wisconsin Department of Natural Resources; Mr. David Lynch, retired Ozaukee County Conservationist; Mr. Gary A. Mick, retired Director Milwaukee County Environmental Services; Mr. Stephen Poloncsik, Senior Staff Engineer, U.S. Environmental Protection Agency; and Ms. Gretchen Sawtelle, Executive Director, USDA Farm Services Agency, all of whom served on the Committee during much of the planning process.

#### PLANNING REPORT NUMBER 50

# A REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

Part Two of Two Parts Appendices

#### Prepared by the

Southeastern Wisconsin Regional Planning Commission
In Cooperation with the
Milwaukee Metropolitan Sewerage District,
Wisconsin Department of Natural Resources,
and the
U.S. Geological Survey

The preparation of this report was financed in part by the Milwaukee Metropolitan Sewerage District and by the Wisconsin Department of Natural Resources and the U.S. Environmental Protection Agency under the continuing water quality management planning program conducted cooperatively by the Department and the Regional Planning Commission.

December 2007

Amended May, 2013

(This page intentionally left blank)

#### Appendix A

# PUBLIC INVOLVEMENT PROGRAM SUMMARY: REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

#### BACKGROUND AND INTRODUCTION

This document summarizes the public involvement efforts during the preparation of the Southeastern Wisconsin Regional Planning Commission (SEWRPC) regional water quality management plan update for the greater Milwaukee watersheds.

The water quality planning public involvement program and its activities were designed to be consistent with the SEWRPC Staff Memorandum entitled, "Public Participation Plan for Transportation Planning Conducted by the Southeastern Wisconsin Regional Planning Commission," 2004, and as amended in 2007. That memorandum serves as a general guide for Commission public participation programs. In this respect, policy statements from the memorandum regarding public notification and access, obtaining public input, incorporation of public input, evaluation of the public involvement process, engaging minority and low income populations, and compliance with the Americans with Disabilities Act are not repeated herein. However, they are considered to apply in like spirit as public involvement in water quality planning attempted to be open, ongoing, valued by participants, and valuable to the planning process.

The Commission's public involvement goal during the course of the study was to ensure early and continuous public notification about regional water quality planning activities, provide meaningful information concerning such work, and obtain participation in, and input to, regional water quality planning efforts. In short, public involvement was considered essential to the conduct of the plan update.

The public involvement activities, which were carried out in collaboration with the University of Wisconsin-Extension, were focused through the use of advisory committees, cooperative actions with other related ongoing public involvement, and complementary public involvement with respect to separate planning efforts and watershed educational programming. An important consideration was to carefully coordinate and integrate the public involvement activities for the regional water quality management plan update with similar activities that were undertaken as part of the Milwaukee Metropolitan Sewerage District (MMSD) facilities planning program and the Wisconsin Department of Natural Resources (WDNR) basin partnership ongoing programs.

MMSD and the Commission developed and conducted a joint public involvement program for a number of key purposes, including joint activity planning and public events, several shared committees, and preparation of

informational and educational materials that both programs could utilize. Examples of the latter included "State of the Watershed" booklets and pictorial tour maps, as well as newsletters, produced by MMSD and maps for public display and informational purposes produced by SEWRPC, all under what became known as the Water Quality Initiative. Such materials were very well received and clearly benefited both planning programs in the interagency effort.

The roles of each agency in the cooperative watershed approach to water quality and facilities planning were described in a Memorandum of Understanding which supported the public involvement program. A methodology for coordinating the public involvement programs was initially set forth, largely in parallel fashion to the components described herein. Approaches were evaluated as the planning programs unfolded and public involvement activities were conducted, in an attempt to be responsive as the programs evolved.

#### ADVISORY COMMITTEE STRUCTURE

Broadly-based and representative advisory committees formed a fundamental type of public involvement. Three types of advisory bodies guided the regional water quality management plan update, one of a technical nature, one to provide intergovernmental coordination and policy advice and assistance, and one citizen-based. In addition, ongoing participation in an oversight committee for the coordinated regional water quality management update planning program and the MMSD facilities planning program—involving the WDNR, MMSD, SEWRPC, and the MMSD consultant project manager—as well as public involvement staff coordination and ad hoc committees for event planning were considered important adjuncts to public involvement activity. An example of the latter was the committee assembled to plan the annual "Clean Rivers, Clean Lakes" conferences described in a following section.

The MMSD also established an advisory body to help guide preparation of the 2020 Facilities Plan, known as the Technical Advisory Team. Commission staff frequently attended and regularly made presentations to this additional public body, as listed in Appendix A-1, along with many other presentations pertaining to the public involvement components described below.

#### **Technical Advisory Committee**

The SEWRPC Technical Advisory Committee (TAC) was an integral part of the organization of the study. The composition of this Committee included broad representation, including technical staffs, academia, business, agriculture, and community and environmental organizations, among others. The Committee was designed to represent the entire study area and functioned in a manner similar to the technical advisory committee which guided the preparation of the initial 1979 regional water quality management plan. Included in its purview was a review of the draft planning report preparation and related technical work at important milestones, as well as review of the draft technical report. The Committee also was asked to review and provide advice on important technical matters and decisions. Included were review and updates at key junctures of public involvement program activities. It was important that the TAC had overlapping membership, as appropriate, with the concurrent MMSD Technical Advisory Team.

The TAC met continually during the course of the study, conducting a total of 21 meetings. The committee's membership is shown on the inside front cover of this report, and official minutes are kept on file at the Commission offices.

The TAC had a parallel modeling subcommittee constituted to review the scope of work for both the watercourse and the harbor and nearshore modeling project elements, as well as important model development and operational milestones. Due to the technical complexity and level of detail, this subcommittee focused on water resources modeling issues. The members of the modeling subcommittee are listed in Appendix A-2.

<sup>&</sup>lt;sup>1</sup>SEWRPC Technical Report No. 39, Water Quality Conditions and Sources of Pollution in the Greater Milwaukee Watersheds. November 2007.

#### **Watershed Officials Forum**

In addition to the Technical Advisory Committee, a Watershed Officials Forum was organized to be periodically briefed by Commission staff and to provide feedback and input from the units and agencies of government on a watershedwide basis. This forum was one of the shared advisory bodies utilized by both the Commission and MMSD. The invited membership included the chief elected official from every county, city, village, and town within the watershed area, plus their designees (often planning or engineering staff or an alternate official). Also included were County Board Chairs and County Administrators, where applicable.

The Watershed Officials Forum (WOF) was designed to be called together for briefings by the MMSD 2020 team regarding facilities planning or by SEWRPC regarding regional water quality planning, or for both purposes. As meetings were scheduled, the subject matter was described so that the invitees could effectively participate in their areas of concern and interest. Thus, meetings selectively focused on the MMSD service area, the entire watershed areas, selected watersheds, or a broad spectrum. This allowed the invitees to target their involvement if they so chose. The WOF began its involvement in the planning process with multiple meetings during June and September 2004. Selected materials pertaining to the recruitment of watershed officials, and the initial Forum meetings are shown in Appendix A-3.

During the initial WOF meetings, attendees expressed the concern that comprehensive, or "smart growth," planning efforts were beginning to tax the time of local officials, while recognizing that comprehensive plans needed to address issues germane to the interagency water quality planning. As a result, the officials requested that water quality planning input and updates occur in the context of county comprehensive plan meetings and correspondence and through coordination with local staff. Thereafter, the Commission provided periodic updates to local officials during county comprehensive plan meetings (see Appendix A-1). This coordination with "smart growth" planning had the additional advantage of becoming an opportunity for interested citizens and local officials to provide input on the regional water quality management plan update. It was seen to be mutually beneficial in relieving inadvertent competition for participant time in multiple meetings, when water quality management planning updates could be included on comprehensive planning committee agendas. In addition, targeted correspondence was sent to watershed officials, for example, during the development of plan objectives and to encourage attendance at major public events during the planning program.

#### **Citizens Advisory Council**

Another shared advisory body, the Citizens Advisory Council (CAC), was formed in cooperation with the MMSD 2020 facilities planning program to actively involve private citizens, businesses, special interest groups, and industry representatives in the development of the planning studies. The Council functioned as a representative body of concerned and diverse citizens. The members of the WOF were asked to help recruit the CAC members, including business and neighborhood or community representatives.

The CAC primarily met at the MMSD headquarters in Milwaukee. However, members were also invited to participate at other meeting locations, based upon watershed areas, particularly during the solicitation of ideas for development of plan objectives. During this process, members could choose to attend at one or more of the locations. Opportunities to discuss all of the watersheds (Kinnickinnic, Lake Michigan Direct Drainage Area, Milwaukee, Menomonee, Oak Creek, and Root) were provided in most meetings, and attendees freely commented on regional or watershedwide issues. However, even meetings designed to specifically elicit more localized watershed comments largely generated broader comments. The public involvement program iteratively adapted to this phenomenon in the formulation of planning objectives as described below.

The CAC met a total of 28 times during the study, with minutes and other records on file at MMSD headquarters. Commission staff presentations to the CAC are listed in Appendix A-1.

# ADDITIONAL COOPERATIVE ACTIONS AND RELATED ONGOING PUBLIC INVOLVEMENT ACTIVITIES

As noted initially, and explained in regard to advisory committees, it was important to carefully coordinate the public involvement activities of the regional water quality management plan update with related activities of the MMSD facilities plan and the WDNR basin partnerships. The following subsections provide examples.

#### **Supplemental Advisory Bodies**

The MMSD provided regular updates to its Intergovernmental Cooperation Council (ICC) particularly with respect to facilities planning, but also on the regional water quality management plan update. This council is comprised of representatives from the District's member or contract communities. While updates were given by primarily MMSD staff, Commission staff also presented material in ICC meetings, as indicated in Appendix A-1.

Though not a formal part of the study's committee structure, input was also sought from the Milwaukee River Basin Partnership. Members of that Partnership serve on the Technical Advisory Committee, and Commission/UW-Extension staff periodically appeared on the agenda of Basin Partnership meetings to provide information and solicit input on the areawide plan.

At several junctures during the study, agricultural interests in the Greater Milwaukee Watersheds were convened, with the assistance of the WDNR staff, largely for technical purposes in plan preparation, but also as part of the public involvement program. Invited to an initial group meeting in June 2005 were county conservationists, NRCS District Conservationists, UW-Extension agricultural educators/agents, Farm Service Agency executive directors, county planning directors, and oversight agency staff, some of whom served on the TAC. Thereafter, smaller and specific county efforts continued. The effort was designed to share the status of the water quality plan update, discuss the availability of rural data, project a stage of implementation of agricultural nonpoint source management water quality standards (Chapter NR 151 of the *Wisconsin Administrative Code*) for modeling of future conditions, and to consult on plan recommendations related to agricultural interests. Attendees were also invited to relay any suggestions of persons having upstream rural interests who might participate in WOF or CAC meetings, with the intent of broadening involvement in the nonurban portion of the Greater Milwaukee Watersheds.

#### **Development of Plan Objectives**

The development of objectives provides a good example of coordination and cooperative actions to achieve multiple needs. The Citizens Advisory Council provided to the joint planning programs a list of many hundreds of comments, issues, actions and measures considered important to the future of water resources in the Region. The Commission then matched these items, and subsequent feedback, with the objectives developed in comprehensive watershed management and land use planning programs that had been reviewed by advisory committees in the past. In addition, WDNR watershed and basin planning objectives, as well as those from other relevant studies, were reviewed. Objectives were added based upon this process, then revised and refined based upon further review by the CAC, watershed officials, and the public. Meanwhile, MMSD used the common advisory bodies, meetings, and input, to prepare a parallel set of objectives which were complementary to the Commission's and which served the needs of that agency's facilities planning. The process of formulating objectives is described more fully in Chapter VII, and the principles, objectives, and standards that guided the planning process are set forth in Appendix G of this planning report.

#### KEY PUBLIC INVOLVEMENT ACTIVITIES AND EVENTS

Other major public involvement activities were developed and employed as the regional water quality management plan update proceeded.

#### Website

The Commission's website was augmented in 2004 to contain detailed information about the ongoing water quality management planning effort. That information included an overview and details regarding the planning

effort, background information, orientation maps, a public involvement summary, plan chapters, TAC meeting materials, committee roster, notices of conferences and other public events, helpful links, and means of commenting/specific contacts. A link to MMSD's website and Water Quality Initiative (WQI) events and materials was quite important during the course of the study. There, additional background, watershed booklets, newsletters, Citizens Advisory Council materials, and conference presentations were maintained and made available. The Commission website's link to the District's thus became a key example of complementary rather than duplicative efforts. Excerpts from the SEWRPC website are shown in Appendix A-4.

#### **Conferences**

Major water quality planning conferences were conducted in 2004, 2005, 2006, and 2007 to meet multiple public involvement needs. Called "Clean Rivers, Clean Lakes," these events drew between 270 and 420 total participants each year, and they tracked plan progress from a major public "kick-off" through presentation of the recommended plan. As mentioned above, additional agency and organization sponsors were brought into the conference planning, and the event also helped fulfill a multi-regional, multi-state initiative called the Lake Michigan Watershed Academy sponsored by the U.S. Environmental Protection Agency during 2004 and 2006. Conference presentations were typically posted on the Water Quality Initiative page of the MMSD website, linked to the SEWRPC website. Registration brochures containing agendas for the four watershed planning conferences are shown in Appendix A-5.

#### **Public Informational Meetings and Hearings**

At three major junctures during the study, the public was invited to at multiple locations for informational meetings with comment opportunities. The first two series of public meetings were conducted in conjunction with MMSD under the Water Quality Initiative; and the third series of meetings, which was scheduled and held by the Commission, also contained a formal public hearing for the regional water quality management plan update for the greater Milwaukee watersheds. Staff representing MMSD and SEWRPC were present at each of the meetings. All of the meetings contained an open house component with display materials so that attendees could speak individually with staff, comment or have their questions answered individually, and come and go as convenient. Appendix A-6 outlines the meetings by series, date, and location.

The first series of public informational meetings was held in September 2004 to seek public input early in the planning process relative to initial inventory findings and draft goals and objectives. The meetings locations were Bayside Middle School in Bayside, the United Community Center and Washington Park Library in Milwaukee, and Longfellow Middle School in Wauwatosa.

The second series of meetings was held in March and April 2006 to get feedback on the preliminary alternative plans. The meeting locations were the Italian Community Center, United Community Center, and Mother Kathryn Daniels Conference Center, all in Milwaukee, Longfellow Middle School in Wauwatosa, and the North Shore Library in Glendale.

The third set of meetings, also containing a public hearing on the Commission's recommended plan, was held in October 2007. These meetings additionally contained a formal presentation related to the draft plan and an opportunity to dictate a comment to a court reporter. The meeting locations were Gateway Technical College in Racine, the Downtown Transit Center in Milwaukee, and Riveredge Nature Center near Newburg. Distribution of the notice of public informational meetings/hearings occurred to all chief elected officials and clerks in the 9 counties and 88 municipalities in the study area; the Wisconsin Farm Bureau Federation office in each respective county, the Milwaukee River Basin Partnership, and the Root-Pike Watershed Initiative Network; the MMSD Technical Advisory Team; the MMSD/SEWRPC Citizens Advisory Council; and the SEWRPC Technical Advisory Committee and Modeling Subcommittee. Appendix W contains the announcement of these meetings/hearings and provides further details and documentation of comments received. The meeting announcement was published in the following newspapers: El Conquistador (Milwaukee area), The Reporter (Fond du Lac), The Insider News (Racine area), the Milwaukee Courier, the Milwaukee Journal Sentinel, the News Graphic (Ozaukee County), The Journal Times (Racine), The Sheboygan Press, The Freeman (Waukesha), and the Daily News (West Bend).

#### **Other Public Forums**

Beyond the presentations and information exchanged in the aforementioned committee meetings, conferences, public informational meetings, and other events, other forums were utilized to ensure that all citizens had an opportunity to be informed about the water quality planning program, and to offer comments.

#### Testing the Waters Tours and Workshops

Testing the Waters is an inter-organizational consortium which is designed to educate high school students and their teachers about integrated water quality issues. Coordinated by the Riveredge Nature Center, which is located centrally in the Milwaukee River Watershed, and partially funded by MMSD and other grantors, the multi-year effort serves interested schools throughout the Milwaukee River basin. During a day-long workshop each September from 2004 through 2007, from 50 to more than 100 students and their teachers were provided with a bus tour by Commission/UW-Extension staff working cooperatively with the Washington County Land Conservation Department. The tour contained plan-related, developmental, environmental, and agricultural features in Washington and Ozaukee Counties, and included stops at two dairy farms of different sizes utilizing a variety of conservation practices designed to protect nearby waters. Two of the training years also included teacher workshops addressing the regional water quality management plan update for the greater Milwaukee watersheds.

#### Farm Technology Days Exhibit

In 2006, the Farm Technology Days exhibition provided a unique opportunity for the public involvement program to approach the agricultural community particularly in the northern part of the Greater Milwaukee Watersheds. The July 11-13 event represented the largest agricultural exhibition in the State. It was hosted in the Town of Lima, Sheboygan County, several miles east of the Milwaukee River watershed boundary, and occurred at a point in the study during which additional rural/agricultural involvement was being sought. An exhibit was thus placed in UW-Extension's tent pavilion, and staffed during the course of the event. This offered an opportunity for thousands of attendees to view plan-related display materials, and for staff to discuss relevant issues with hundreds of interested parties.

#### Comprehensive Planning Meeting Updates

As indicated in Appendix A-1, comprehensive plan-related updates were provided during regular planning meetings in Ozaukee, Racine, Washington, and Waukesha Counties. Objectives of providing water quality plan updates in Ozaukee, Racine, and Washington Counties included obtaining greater public involvement in areas outside the MMSD planning area and to offer the opportunity for those from the out-of-Region counties (Dodge, Fond du Lac, and Sheboygan) to learn about the plan. The Racine County meeting was expanded to include invitations to local officials, organizations, and interested citizens. Presentations regarding key comprehensive planning meetings are included in Appendix A-1.

#### Updates for Additional Events and Organizations

During the course of the study, the Commission staff provided numerous brief updates and input opportunities, beyond the items specifically referenced above in this appendix. The events and organization meetings involved were typically occurring for broader purposes; nevertheless, the inclusion of the water quality planning topic and the effect of this additional outreach were collectively important.

Examples include meeting updates for the Southeast Area Land & Water Conservation Association, and notably a summer 2007 bus tour in Milwaukee and Ozaukee Counties held in conjunction with the Soil and Water Conservation Society – Wisconsin Chapter. Updates were also given as part of presentations to additional professional association programs, college and university classes, UW-Milwaukee's Smart Growth Lecture Series, meetings of the Great Lakes Nonpoint Abatement Coalition, and the Public Policy Forum, among others. Meeting updates also pertained to environmental justice and the Commission's efforts to engage minority and low-income populations. Though the content of meetings with such group representatives more often was related to transportation and land use, the ongoing water quality planning was also noted as appropriate. The prospect of cleaner water and enhanced recreational activities in, and near, Milwaukee's central city, for instance, is a recognized asset by a number of organization leaders. The SEWRPC *Annual Report* in years corresponding to the

regional water quality management plan update briefly identified the range of events and organizations potentially reached by these additional means.

#### Other Informational and Educational Products

A number of other informational and educational products were also utilized during the interagency planning process, some of which have been mentioned in general terms. Many of these were prepared under the Water Quality Initiative by MMSD and/or consultant staff, with contributions by, or information from, the Commission. All fit under the category of complementary use while avoiding duplicative efforts.

Nine issues of the WQI newsletter, *The Water Resource*, were published by MMSD during the study. These discussed the Commission's regional plan update as well as the District's 2020 facility plan, and included articles by Commission staff. That publication benefited the joint planning program, and, thus, general understanding of water quality issues by the public. In one case, an entire issue was dedicated to a SEWRPC-MMSD "Clean Rivers, Clean Lakes" conference.

Six watershed booklets were published by MMSD and made available at many of the public meetings described above. Separate booklets, using inventory information in part developed by the Commission, describe the resources, demographics, and water quality conditions existing within the Kinnickinnic River, Lake Michigan Direct Drainage Area, Menomonee River, Milwaukee River, Oak Creek, and Root River watersheds.

Periodic mass WQI e-mailings were distributed by MMSD. These included references to the joint planning which was taking place, notices of major events, and newly available publications, among other items.

A series of public informational documents was made available in coordination with the University of Wisconsin-Extension Service to inform and advise interested parties. For example, "Environmental Corridors – Lifelines of the Natural Resource Base," in the "Plan on It!" fact sheet series was revised and reprinted to help benefit the public involvement program. It was widely utilized in public informational meetings and posted with a direct link on the Commission's website. Also, the complementary "Yard Care and the Environment" fact sheets were made available through website link. That is a UW-Extension fact sheet series produced in part with assistance by the Commission to provide practical water quality advice through describing management alternatives for homeowners.

#### Appendix A-1

# SEWRPC STAFF PRESENTATIONS ON THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

#### MMSD TECHNICAL ADVISORY TEAM MEETINGS<sup>a</sup>

| Meeting Date       | SEWRPC Staff Presentation                                                                                                                            |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| October 17, 2002   |                                                                                                                                                      |  |
| December 12, 2002  |                                                                                                                                                      |  |
| March 13, 2003     |                                                                                                                                                      |  |
| June 19, 2003      |                                                                                                                                                      |  |
| August 21, 2003    | Regional Water Quality Management in the Greater Milwaukee Area: A Historical Perspective and the Next Steps                                         |  |
| October 16, 2003   |                                                                                                                                                      |  |
| October 31, 2003   |                                                                                                                                                      |  |
| December 18, 2003  |                                                                                                                                                      |  |
| January 15, 2004   |                                                                                                                                                      |  |
| February 19, 2004  |                                                                                                                                                      |  |
| March 25, 2004     |                                                                                                                                                      |  |
| April 15, 2004     |                                                                                                                                                      |  |
| April 29, 2004     |                                                                                                                                                      |  |
| May 17, 2004       |                                                                                                                                                      |  |
| June 17, 2004      |                                                                                                                                                      |  |
| July 15, 2004      |                                                                                                                                                      |  |
| August 26, 2004    |                                                                                                                                                      |  |
| September 16, 2004 |                                                                                                                                                      |  |
| October 26, 2004   |                                                                                                                                                      |  |
| November 30, 2004  |                                                                                                                                                      |  |
| December 16, 2004  |                                                                                                                                                      |  |
| January 20, 2005   |                                                                                                                                                      |  |
| February 17, 2005  |                                                                                                                                                      |  |
| March 17, 2005     |                                                                                                                                                      |  |
| April 21, 2005     |                                                                                                                                                      |  |
| May 26, 2005       |                                                                                                                                                      |  |
| June 16, 2005      |                                                                                                                                                      |  |
| July 21, 2005      |                                                                                                                                                      |  |
| August 24, 2005    |                                                                                                                                                      |  |
| September 15, 2005 | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan: Representing NR 151 and MMSD Chapter 13 Requirements in the LSPC Models |  |
| October 20, 2005   | 2020 Population and Land Use Projections                                                                                                             |  |
| November 10, 2005  | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan: Population and Land Use Considerations and Planning Strategy            |  |
| December 15, 2005  |                                                                                                                                                      |  |

#### MMSD TECHNICAL ADVISORY TEAM MEETINGS<sup>a</sup> (continued)

| Meeting Date       | SEWRPC Staff Presentation                                                                                                        |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| January 19, 2006   |                                                                                                                                  |  |
| February 16, 2006  |                                                                                                                                  |  |
| March 16, 2006     | Revised Population/Land Use                                                                                                      |  |
| April 20, 2006     |                                                                                                                                  |  |
| May 25, 2006       |                                                                                                                                  |  |
| June 15, 2006      |                                                                                                                                  |  |
| July 20, 2006      |                                                                                                                                  |  |
| August 15, 2006    |                                                                                                                                  |  |
| September 28, 2006 |                                                                                                                                  |  |
| October 19, 2006   | Regional Water Quality Management Plan Update (208 Plan)                                                                         |  |
| November 16, 2006  | Regional Water Quality Management Plan Update Status Report                                                                      |  |
| December 21, 2006  | Regional Water Quality Management Plan Update Status Report                                                                      |  |
| January 18, 2007   | Regional Water Quality Management Plan Update Status Report                                                                      |  |
| February 15, 2007  | Regional Water Quality Management Plan Update (208 Plan)                                                                         |  |
| March 22, 2007     | Regional Water Quality Management Plan Update Status Report                                                                      |  |
| April 19, 2007     | Regional Water Quality Management Plan Update (208 Plan) Update on Recommended Plan and Introduction to Implementation Component |  |
| May 24, 2007       | Regional Water Quality Management Plan Update Status Report                                                                      |  |
| June 21, 2007      | Regional Water Quality Management Plan Update Status Report                                                                      |  |
| August 23, 2007    | Regional Water Quality Management Plan Update Status Report                                                                      |  |
| October 18, 2007   | Regional Water Quality Management Plan Update Status Report                                                                      |  |
| December 12, 2007  | Regional Water Quality Management Plan Update Status Report                                                                      |  |

<sup>&</sup>lt;sup>a</sup>The MMSD 2020 Facilities Plan and/or the SEWRPC Regional Water Quality Management Plan Update were discussed at each of these meetings.

Source: SEWRPC.

#### PRESENTATIONS TO OTHER ORGANIZATIONS

| Presentation Date    | Title                                                                                                                                                                                   | Audience                                                                                                |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| July 15, 2003        | Water Quality Management in the Greater Milwaukee Area: A Historical Perspective and the Next Steps                                                                                     | USEPA, WDNR, MMSD                                                                                       |
| July 21, 2003        | Regional Water Quality Management in the Greater Milwaukee Area: A Historical Perspective and the Next Steps                                                                            | MMSD Water Quality Initiative<br>Citizens Advisory Council                                              |
| August 21, 2003      | Regional Water Quality Management in the Greater Milwaukee<br>Area: A Historical Perspective and the Next Steps                                                                         | MMSD Water Quality Initiative<br>Technical Advisory Team                                                |
| November 6, 2003     | Regional Water Quality Management in the Greater Milwaukee Watersheds: A Historical Perspective and the Next Steps                                                                      | Milwaukee River Basin Partnership                                                                       |
| November 13, 2003    | Regional Water Quality Management in the Greater Milwaukee Watersheds: A Historical Perspective and the Next Steps                                                                      | Midwest Natural Resources Group                                                                         |
| January 21, 2004     | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Planning for the Greater Milwaukee Watersheds: Basic Study Area Characteristics, Land Use, and Pollution Sources | Citizens Advisory Council                                                                               |
| February 10, 2004    | A Once in a Generation Opportunity: Regional Water Quality Management Plan Update                                                                                                       | Clean Rivers, Clean Lakes<br>Watershed Planning Conference                                              |
| June 8 and 14, 2004  | Regional Water Quality Management Plan Update:<br>Background and Preliminary Objectives                                                                                                 | Watershed Officials Forum                                                                               |
| June 10, 2004        | Regional Water Quality Management Plan Update/MMSD 2020 Facilities Plan: Population and Land Use                                                                                        | MMSD Workshop                                                                                           |
| June 10, 2004        | Regional Water Quality Management Plan Update/MMSD 2020 Facilities Plan: Water Use Objectives, Classification, and Standards                                                            | MMSD Workshop                                                                                           |
| June 10, 2004        | Regional Water Quality Management Plan Update/MMSD 2020 Facilities Plan: Future Scenarios                                                                                               | MMSD Workshop                                                                                           |
| June 10, 2004        | Regional Water Quality Management Plan Update/MMSD 2020 Facilities Plan: Water Use Objectives, Classification, and Standards                                                            | Citizens Advisory Council                                                                               |
| June 10, 2004        | Regional Water Quality Management Plan Update Preliminary Objectives                                                                                                                    | Citizens Advisory Council                                                                               |
| July 12, 2004        | Regional Water Quality Management Plan Update/MMSD 2020 Facilities Plan: Background and Changes in Water Quality Conditions: 1975-2000                                                  | MMSD Operations Committee                                                                               |
| July 12 and 13, 2004 | Regional Water Quality Management Plan/MMSD 2020 Facilities Plan: Water Use Objectives, Classification, and Standards                                                                   | Citizens Advisory Council                                                                               |
| September 2, 2004    | Regional Water Quality Management Plan Update/MMSD 2020 Facilities Plan: Water Use Objectives, Designated Uses, and Criteria                                                            | MMSD Commissioners                                                                                      |
| September 2, 2004    | Regional Water Quality Management Plan Update/MMSD 2020 Facilities Plan: Population and Land Use                                                                                        | MMSD Commissioners                                                                                      |
| September 13, 2004   | Regional Water Quality Management Plan Update/MMSD 2020 Facilities Plan: Water Use Objectives, Designated Uses, and Criteria                                                            | Watershed Officials Forum                                                                               |
| September 24, 2004   | Regional Water Quality Management Plan: A Historical Perspective and the Next Steps for Selected Watershed Areas                                                                        | Presentation for Reporting Critical<br>Issues of Suburban and City<br>Growth: A Seminar for Journalists |
| November 12, 2004    | Regional Water Quality Management Plant Update and MMSD Facilities Planning Program: Cooperative Intergovernmental Watershed-Based Planning Program                                     | Wisconsin Rural Leadership Program                                                                      |

#### PRESENTATIONS TO OTHER ORGANIZATIONS (continued)

| Presentation Date | Title                                                                                                                                                                                                                            | Audience                                                                                                                   |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| January 19, 2005  | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Planning Program: Existing Conditions, Future Conditions and Scenarios, and Alternative Futures to be Evaluated                                           | Citizens Advisory Council                                                                                                  |
| February 23, 2005 | Status of Regional Water Quality Management Plan Update:<br>Cooperative Intergovernmental Watershed-Based Planning<br>Program                                                                                                    | Clean Rivers, Clean Lakes II, 2nd<br>Annual Watershed Planning<br>Conference                                               |
| June 23, 2005     | Regional Water Quality Management Planning For Discussion<br>Purposes to Explore Potential Relationships to<br>Comprehensive Planning                                                                                            | Waukesha County Comprehensive<br>Development Plan Agricultural,<br>Natural, and Cultural Resources<br>Element Subcommittee |
| June 28, 2005     | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan                                                                                                                                                      | Representatives of Agricultural Interests                                                                                  |
| October 10, 2005  | SEWRPC Technical Report 39, Water Quality Conditions and Sources of Pollution in the Greater Milwaukee Watersheds: Chapter VI – Surface Water Quality Conditions and Sources of Pollution in the Menomonee River Watershed       | Executive Council of the MMSD Intergovernmental Cooperation Council of Milwaukee County                                    |
| October 25, 2005  | SEWRPC Technical Report No. 39, Water Quality Conditions and Sources of Pollution in the Greater Milwaukee Watersheds, Chapter V – Surface Water Quality Conditions and Sources of Pollution in the Kinnickinnic River Watershed | Citizens Advisory Council                                                                                                  |
| January 10, 2006  | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan: Population and Land Use Considerations and Planning Strategy                                                                                        | MMSD Facilities Plan Policy<br>Committee Meeting                                                                           |
| March 2, 2006     | SEWRPC Regional Water Quality Management Plan Update<br>and MMSD 2020 Facilities Plan: Existing Water Quality<br>Conditions and Sources of Pollution in the Greater<br>Milwaukee Watersheds                                      | Clean Rivers, Clean Lakes III, 3rd<br>Annual Watershed Planning<br>Conference                                              |
| April 11, 2006    | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan: Revised 2020 Population and Land Use Estimates                                                                                                      | Citizens Advisory Council                                                                                                  |
| May 3, 2006       | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan                                                                                                                                                      | Washington County Comprehensive Plan Advisory Committee                                                                    |
| May 3, 2006       | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan                                                                                                                                                      | County Land Conservationists and WDNR                                                                                      |
| June 21, 2006     | SEWRPC Regional Water Quality Management Plan Update<br>and MMSD 2020 Facilities Plan: Existing Water Quality<br>Conditions and Sources of Pollution in the Greater<br>Milwaukee Watersheds                                      | USEPA Region V and WDNR                                                                                                    |
| July 13, 2006     | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan                                                                                                                                                      | Racine County Comprehensive Plan<br>Advisory Committee and<br>RWQMPU/2020 Facilities Plan<br>Watershed Officials Forum     |
| October 9, 2006   | Regional Water Quality Management Plan Update (208 Plan)                                                                                                                                                                         | MMSD Commissioners                                                                                                         |
| December 5, 2006  | Regional Water Quality Management Plan Update and MMSD 2020 Facilities Plan                                                                                                                                                      | Ozaukee County Comprehensive<br>Plan Citizen Advisory Committee                                                            |
| February 12, 2007 | Regional Water Quality Management Plan Update (208 Plan)                                                                                                                                                                         | Executive Council of the<br>Intergovernmental Cooperation<br>Council of Milwaukee County                                   |
| February 12, 2007 | Regional Water Quality Management Plan Update (208 Plan)                                                                                                                                                                         | MMSD Commission                                                                                                            |
| February 13, 2007 | Regional Water Quality Management Plan Update (208 Plan)                                                                                                                                                                         | Citizens Advisory Council                                                                                                  |
| February 27, 2007 | Regional Water Quality Management Plan Update (208 Plan)                                                                                                                                                                         | MMSD Virtual Team                                                                                                          |

#### PRESENTATIONS TO OTHER ORGANIZATIONS (continued)

| Presentation Date        | Title                                                                                                                                                       | Audience                                                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| March 7, 2007            | Regional Water Quality Management Plan Update (208 Plan)                                                                                                    | Water Quality Initiative – Integrated<br>Watershed Implementation Plan<br>Analysis Workshop                           |
| April 18, 2007           | Regional Water Quality Management Plan Update (208 Plan) Update on Recommended Plan and Introduction to Implementation Component                            | Citizen Advisory Council                                                                                              |
| April 24, 2007           | SEWRPC Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds: The Unveiling – Water Quality Plans for Action, Recommended Plan | Clean Rivers, Clean Lakes IV, Fourth<br>Annual Watershed Planning<br>Conference                                       |
| May 9, 2007              | Overview of SEWRPC Regional Water Quality Management Plan Update – 2007                                                                                     | MMSD Service Area Public Officials                                                                                    |
| May 15, 2007             | SEWRPC Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds: Recommended Plan                                                 | Ozaukee County Comprehensive<br>Plan Citizen Advisory Committee –<br>Agricultural and Natural Resources<br>Work Group |
| June 27, 2007            | SEWRPC Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds: Recommended Plan                                                 | Washington County Comprehensive<br>Plan Advisory Committee                                                            |
| July 17, 2007            | SEWRPC Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds: Recommended Plan                                                 | Ozaukee County Multi-Jurisdictional<br>Comprehensive Planning Process,<br>Regional Water Issues Program               |
| October 15, 16, 23, 2007 | SEWRPC Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds                                                                   | Public Information Meetings/Public<br>Hearings                                                                        |

Source: SEWRPC.

#### Appendix A-2

#### WATER QUALITY MODELING SUBCOMMITTEE

| Marsha B. Burzynski | Wisconsin Department of Natural Resources, Milwaukee                         |
|---------------------|------------------------------------------------------------------------------|
|                     | Senior Project Manager, Milwaukee Metropolitan Sewerage District             |
|                     |                                                                              |
| Ç                   | Science Center, U.S. Geological Survey                                       |
| Sandra L. McLellan  |                                                                              |
|                     | Associate Professor, Civil & Environmental Engineering, Marquette University |
|                     | Consultant, CH2M Hill                                                        |
|                     | Branch Chief, NPDES Programs Branch, U.S. Environmental Protection Agency    |
|                     | Wisconsin Department of Natural Resources, Madison                           |

#### Appendix A-3

# SELECTED MATERIALS PERTAINING TO THE RECRUITMENT OF WATERSHED OFFICIALS AND THE INITIAL FORUM MEETINGS

COPY



February 20, 2004

Mr. Allen J. Buechel Fond du Lac County Executive Fond du Lac County Administration Center 160 S. Macy street Fond du Lac, WI 54935

Dear Mr. Buechel:

The Southeastern Wisconsin Regional Planning Commission (SEWRPC) and the Milwaukee Metropolitan Sewerage District (MMSD) have embarked on a long-range planning process to examine how we can best meet the water quality needs for an important area, and we would very much appreciate your participation. The area involved includes all of the watersheds shown on the map attached hereto, namely, the Kinnickinnic River, Menomonee River, Milwaukee River, Root River, and Oak Creek watersheds; the Milwaukee Harbor estuary; and the adjacent nearshore Lake Michigan areas. We are using the U.S. Environmental Protection Agency (USEPA)'s recommended watershed approach to update the Regional Water Quality Management Plan and to develop the MMSD's 2020 Facilities Plan.

As part of this collaborative planning process, SEWRPC and MMSD are convening two groups to provide input and feedback on the plans as they are being developed. One of the groups is the Watershed Officials Forum. This Forum will provide a way for officials representing the various levels, units, and agencies of government to meet periodically to be briefed on project progress and to provide feedback and input on the planning program, including goals, alternatives, and the recommended plans. The membership of the Forum will include the chief elected officials or their designees from every county, city, village and town within the watershed area. The invitees to the Forum meetings will include the entire membership and each member may also designate a staff person to attend. The Watershed Officials Forum meetings are expected to be held about quarterly, beginning in April or May of this year, through 2006.

We are asking you to join the Watershed Officials Forum and help us to plan for improved water quality in our region.

Collaboration using the *watershed approach* will produce separate plans, but coordinated efforts. One planning program is the SEWRPC Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds and the other is the MMSD 2020 Facilities Plan. The *watershed approach* uses nature's boundaries instead of jurisdictional limits, it recommends decisions based on science and engineering and requires strong partnerships and public involvement with people, interest groups, and agencies.



Milwaukee Metropolitan Sewerage District 260 W. Seeboth Street, Milwaukee, WI 53204-1446 414-272-5100 www.mmsd.com



W239 N1812 Rockwood Drive P.O. BOX 1607 WAUKESHA, WISCONSIN 53187-1607 PHONE: (262) 547-6721

PHONE: (262) 547-6721 FAX: (262) 547-1103 EMAIL: sewrpc@sewrpc.org

WOF 04-005

Mr. Allen J. Buechel February 20, 2004 Page 2

Please contact either Gary Korb at SEWRPC (262-547-6721, extension 234, gkorb@sewrpc.org) or Karen Sands at MMSD (414-225-2123, ksands@mmsd.com) if you would like to be part of the Forum or would like additional information. Prior to all Forum meetings we will send notices and agendas to the entire invited membership.

We are also asking that you contact us with any recommendations you may have for membership on the Citizens Advisory Council, or CAC. The CAC is the second group where we are engaging citizen, business, environmental, and community representatives with interests related to water quality planning to join us in this planning effort. This group has been meeting since June 2003, but we are expanding it and asking for additional members, particularly in the outer watershed areas. If you wish, please provide nominations to one of the above contacts, if possible by March 5, 2004.

Thank you for your interest in improving water quality in our area, the Greater Milwaukee Watersheds.

Rhilig C- Evenson

Southeastern Wisconsin Regional Planning Commission

Philip C. Evenson, AICP

**Executive Director** 

Sincerely,

Kevin L. Shafer, P.E. Executive Director

Milwaukee Metropolitan Sewerage District

KLS/PCE/pk #91693 V1 - RWQMP UPDATE WQI LTR 1

Enclosure

# rum

# Region-Wide **Upcoming** Meeting

On June 8 and 14, the Watershed Officials Forum will consider draft watershed issues identified by the Citizens Advisory Council for the Greater Milwaukee Watersheds.

Please join us for this opportunity to discuss the future of water quality in the Greater Milwaukee Watersheds. The meetings will be held over two days to accommodate schedules; please attend just one meeting.

The meeting dates are:

June 8. 2004 Riveredge Nature Center, Newburg 5:30 - 7:15 p.m.

> June 14, 2004 City of Greenfield Common Council Chambers 12:30 - 2:15 p.m.

> > Please RSVP meeting choice by May 25 to

262-547-6721 or Gary Korb gkorb@sewrpc.org

Karen Sands 414-225-2123 or ksands@mmsd.com

Water Quality INITIATIVE



Southeastern Wisconsin Regional Planning Commission

Note: Light refreshments will be served.



May 28, 2004

#### TO: Watershed Officials Forum (WOF) Members

Thank you for your ongoing commitment to helping the Milwaukee Metropolitan Sewerage District (MMSD) and Southeastern Wisconsin Regional Planning Commission (SEWRPC) shape water resource plans for the Greater Milwaukee Watersheds.

This is a reminder that the first meeting for the WOF will be held on June 8 at Riveredge Nature Center in Newburg and June 14 at Greenfield City Hall in Greenfield. The intention is that you select one meeting, based on your availability and convenience. Meeting times and an agenda are provided on the enclosed reminder notice. There will be an opportunity following the meeting to discuss recent MMSD weather-related events, interest permitting. We will share SEWRPC's proposed preliminary objectives and MMSD's issues that will become goals and objectives for the respective studies of each agency, with the goal of seeking your advice and comment.

Therefore, enclosed in this mailing are the following:

- SEWRPC summary of goals and objectives
- SEWRPC comment form
- MMSD summary of Citizens Advisory Council process and results
- MMSD comment form
- List of issues raised at the Citizens Advisory Council meeting that relates to both SEWRPC's and MMSD's summaries

These pieces can be used together to help evaluate the input received thus far, and the progress toward establishing goals and objectives that will affect important waters from southern Fond du Lac and Sheboygan Counties to Racine County for years to come. If you are unable to attend either meeting, your governmental unit is still welcome to comment using the enclosed forms which accompany the SEWRPC and MMSD summaries. The long list of Citizens Advisory Council ideas is provided merely for your reference.

It is still anticipated that watershed and regional goals and objectives will be refined throughout the upcoming months, culminating in public open house meetings in the fall.

Please feel free to contact Karen Sands at MMSD (414.225.2123) or Gary Korb at SEWRPC (262.547.6721) for additional information.



Milwaukee Metropolitan Sewerage District 260 W. Seeboth Street, Milwaukee, WI 53204-1446 414-272-5100 www.mmsd.com

Southeastern Wisconsin Regional Planning Commission

W239 N1812 Rockwood Drive P.O. BOX 1607 WAUKESHA, WISCONSIN 53187-1607 PHONE: (262) 547-6721

FAX: (262) 547-1103

EMAIL: sewrpc@sewrpc.org

WQI 04-005

#### Appendix A-4

#### EXCERPTS FROM THE SEWRPC WEBSITE



Overview

Planning Background

The Current Effort

Schedule

Public Involvement Approach

**Study Meetings** 

**Advisory Committees** 

Plan Chapters

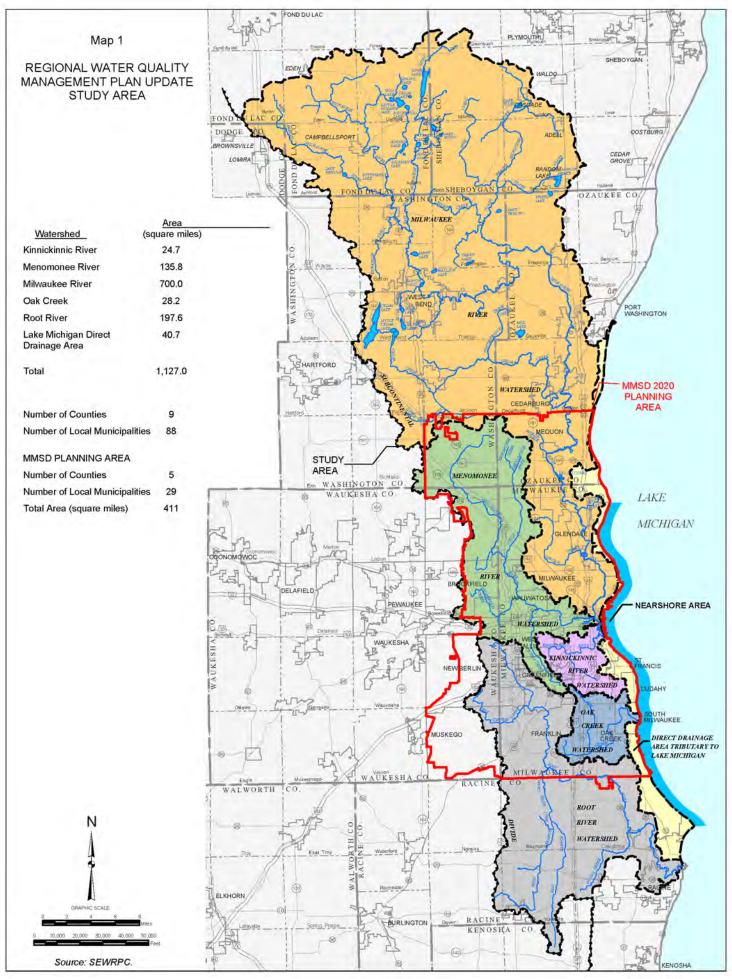
Environmental Corridors, Yard Care, and Related Fact Sheets

Links

Contact Us

#### Regional Water Quality Management Plan Update

#### Overview


The Commission has embarked on a long-range planning process to examine how to best meet the water quality needs for an important area, working in concert with the Milwaukee Metropolitan Sewerage District (MMSD). The area involved includes all of the watersheds shown on Map 1, namely, the Kinnickinnic River, Menomonee River, Milwaukee River, Root River, and Oak Creek watersheds; the Milwaukee Harbor estuary; and the adjacent nearshore areas draining to Lake Michigan.

The interagency effort is using the U.S. Environmental Protection Agency's recommended watershed approach to update the Regional Water Quality Management Plan and to develop the MMSD's 2020 Facilities Plan for the study area, called the Greater Milwaukee Watersheds. The watershed approach uses nature's boundaries instead of jurisdictional limits, it recommends decisions based on science and engineering, and requires strong partnerships and public involvement with people, interest groups, and agencies. Also helping to coordinate the effort is the Wisconsin Department of Natural Resources (WDNR).

This may be regarded as a once-in-a-generation opportunity to examine and plan comprehensively for water quality on a multi-watershed basis. When completed, the plan will recommend the control of both point and nonpoint pollution sources, and provide the basis for decisions on community, industrial, and private waste disposal systems—all with ties to smart growth and sustained quality of life.

You are invited to:

- <u>Learn more</u> about this important regional planning effort
- Follow one of the links for obtaining <u>related information and</u> <u>materials</u> on water resource management
- View presentations given at the March 2, 2006, watershed planning conference "Clean Rivers, Clean Lakes III"
- Contact us with questions and comments
- Attend upcoming Water Quality Initiative Open Houses





Overview

Planning Background

The Current Effort

Schedule

Public Involvement Approach

**Study Meetings** 

**Advisory Committees** 

Plan Chapters

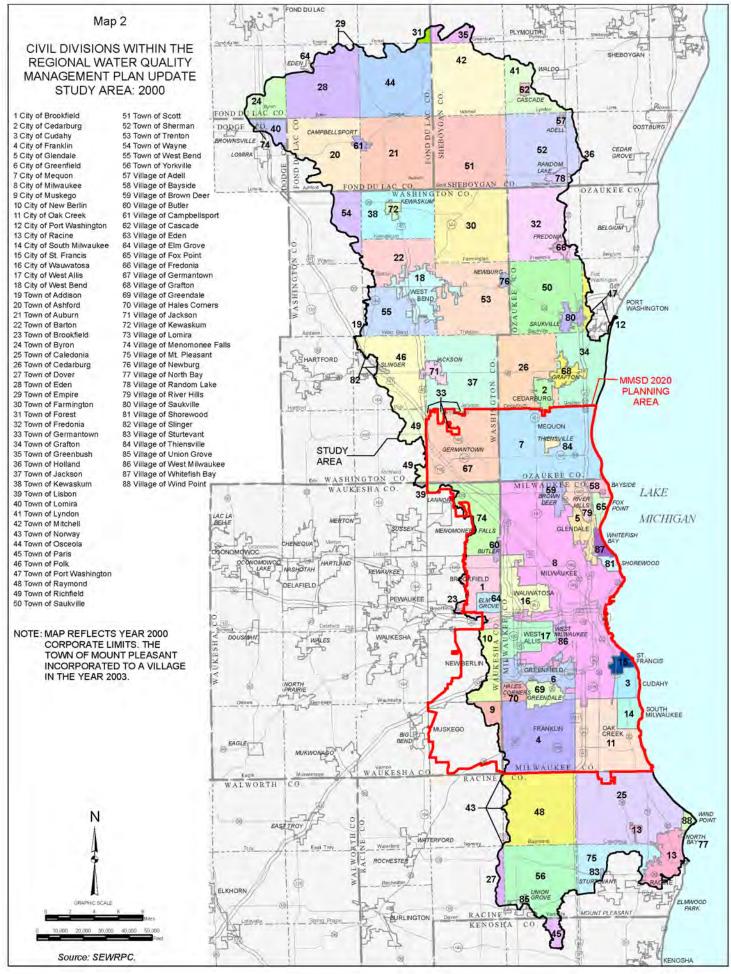
Environmental Corridors, Yard Care, and Related Fact Sheets

Links

Contact Us

#### Regional Water Quality Management Plan Update

#### The Current Effort


During the last quarter of 2003, the Commission initiated work on an update of the regional water quality management plan for the Greater Milwaukee Watersheds. Map 2 illustrates the civil divisions within the study area, and the accompanying table outlines the areal extent of these communities, by respective county.

The effort is being coordinated with a parallel sewerage facilities planning program being carried out by the MMSD and has been designed to utilize the watershed approach consistent with evolving U.S. Environmental Protection Agency policies. Such an approach represents good public planning and administration, as well as being consistent with the requirements of Section 208 of the Federal Clean Water Act.

The approach to carrying out the regional water quality management plan update and the MMSD facilities planning program in a coordinated manner was developed cooperatively by the WDNR, MMSD, and SEWRPC, and has been conceptually formalized under a Memorandum of Understanding.

The regional water quality management plan update will result in the reevaluation and, as necessary, revision of the three major elements comprising the original plan—the land use element, the point source pollution abatement element, and the nonpoint source pollution abatement element. In addition, a groundwater element will be added based largely upon companion work programs.

- Get a brief historic context via the planning background
- Look ahead to see the schedule and planning process steps





Overview

Planning Background

The Current Effort

Schedule

Public Involvement Approach

**Study Meetings** 

**Advisory Committees** 

Plan Chapters

Environmental Corridors, Yard Care, and Related Fact Sheets

Links

Contact Us

#### Regional Water Quality Management Plan Update

#### Planning Background

In 1979, the Commission completed and adopted a regional water quality management plan. The plan was designed, in part, to meet the Congressional mandate that the waters of the United States be made "fishable and swimmable" to the extent practical. It is set forth in SEWRPC Planning Report No. 30, A Regional Water Quality Management Plan for Southeastern Wisconsin: 2000, Volume One, Inventory Findings, September 1978; Volume Two, Alternative Plans, February 1979; and Volume Three, Recommended Plan, June 1979.

The regional water quality management plan, as well as the update currently under preparation, provides recommendations for the control of water pollution from such point sources as sewage treatment plants, points of separate and combined sewer overflow, and industrial waste outfalls. It also recommends controlling such nonpoint sources as urban and rural stormwater runoff. In addition to clear and concise recommendations for the control of water pollution, the plan provides the basis for:

- Continued eligibility of local units of government for Federal and State loans and grants in partial support of sewerage system development and redevelopment;
- Issuance of waste discharge permits by the Wisconsin Department of Natural Resources (WDNR);
- Review and approval of public sanitary sewer extensions by the WDNR; and
- Review and approval of private sanitary sewer extensions and large onsite sewage disposal systems and holding tanks by the Wisconsin Department of Commerce.

Subsequently, the Commission completed a report documenting the updated content and implementation status of the regional water quality management plan as amended over approximately its first 15 years: SEWRPC Memorandum Report No. 93, A Regional Water Quality Management Plan for Southeastern Wisconsin: An Update and Status Report, March 1995. This status report also documents the extent of progress which had been made toward meeting the water use objectives and supporting water quality standards set forth in the regional plan.



Overview

Planning Background

The Current Effort

Schedule

Public Involvement Approach

**Study Meetings** 

**Advisory Committees** 

Plan Chapters

Environmental Corridors, Yard Care, and Related Fact Sheets

Links

Contact Us

#### Regional Water Quality Management Plan Update

#### **Schedule**

In order to complete the regional plan updating in a time frame which is consistent with the Milwaukee Metropolitan Sewerage District commitments for the completion of a new facilities plan, the updating process is being accomplished primarily with existing data. This will allow the plan update to be largely completed in approximately 30 months, extending to the end of 2006. Selected elements may be completed earlier as required by the MMSD facilities planning schedule. Plan documentation, continuing public involvement, and ongoing support for the MMSD facilities planning will be carried out in early 2007.

- View interagency <u>planning process steps</u>, including joint public involvement, from the plan Introduction and Background
- Read the full regional <u>plan chapters</u> as they are posted throughout this study



Overview

Planning Background

The Current Effort

Schedule

Public Involvement Approach

**Study Meetings** 

**Advisory Committees** 

Plan Chapters

Environmental Corridors, Yard Care, and Related Fact Sheets

Links

Contact Us

Regional Water Quality Management Plan Update

**Plan Chapters** 

Planning Report No. 50

- List of Chapters
- Chapter I Introduction and Background
- Chapter II Description of the Study Area
- Chapter III Existing and Historical Surface Water and Groundwater Conditions
- Chapter IV Sources of Water Pollution
- Chapter V Water Resource Simulation Models and Analytic Methods
- <u>Chapter VI Legal Structures Affecting the Regional Water</u>
   <u>Quality Management Plan Update</u>
- Chapter VII Planning Objectives, Principles, and Standards
- <u>Chapter VIII Future Situation: Anticipated Growth and Change</u>
- Chapter IX Development Of Alternative Plans: Description And Evaluation
- Chapter X Recommended Water Quality Management Plan
- Chapter XI Plan Implementation
- Chapter XII Summary
- Appendix VII-1 Objectives, Principles, and Standards -Preliminary Draft
- Appendix M Water Quality Summary Statistics for the Recommended Plan - Preliminary Draft
- Appendix N Criteria and Guidelines for Stream Crossings to Allow Fish Passage and Maintain Stream Stability within the Regional Water Quality Management Plan Update Study Area - Preliminary Draft
- Appendix O Recommended Inland Lake Management Measures - Preliminary Draft
- Appendix Q Public Sector Costs for Components of the Recommended Regional Water Quality Management Plan Update by Municipality, County, or Agency - Preliminary Draft

#### Technical Report No. 39

- Chapter I Introduction Preliminary Draft
- <u>Chapter II Water Quality Definitions and Issues Preliminary Draft</u>
- Chapter III Data Sources and Methods of Analysis -

- **Preliminary Draft**
- <u>Chapter IV Water Use Objectives and Water Quality</u>
   <u>Standards Preliminary Draft</u>
- Chapter V Surface Water Quality Conditions and Sources of <u>Pollution in the Kinnickinnic River Watershed - Preliminary</u>
   <u>Draft</u>
- Chapter VI Surface Water Quality Conditions and Sources of Pollution in the Menomonee River Watershed - Preliminary Draft
- Chapter VII Surface Water Quality Conditions and Sources of Pollution in the Milwaukee River Watershed
- Chapter VIII Surface Water Quality Conditions and Sources of Pollution in the Oak Creek Watershed - Preliminary Draft
- Chapter IX Surface Water Quality Conditions and Sources of Pollution in the Root River Watershed - Preliminary Draft
- Chapter X Surface Water Quality Conditions and Sources of Pollution in the Milwaukee Harbor Estuary and Adjacent Nearshore Lake Michigan Areas
- <u>Chapter XI Groundwater Quality Conditions and Sources of</u> <u>Pollution in the Study Area</u>
- Chapter XII Summary and Conclusions
- Appendix A Scientific Names of Organisms Discussed in this Report Preliminary Draft
- Appendix C Seasonal and Annual Trends in Water Quality Parameters Among Streams of the Greater Milwaukee Watersheds Within Southeastern Wisconsin - Preliminary Draft
- Appendix D Mammals Known to Occur in the Southeastern Wisconsin Area - Preliminary Draft
- Appendix E Birds Known or Likely to Occur in the Southeastern Wisconsin Area Preliminary Draft
- Appendix F Amphibians and Reptiles in the Southeastern Wisconsin Area Preliminary Draft
- Appendix G WPDES Permitted Stormwater Facilities -Preliminary Draft
- Appendix H Nonpoint Source Pollution Loads Preliminary Draft
- Appendix I Evaluation of Contamination Potential of Shallow Groundwater
- Appendix J Soil Series in Southeastern Wisconsin Listed by Attenuation Potential
- Appendix L Great Lakes and Fisheries Related Newspaper Articles: 2003-2005



Overview

Planning Background

The Current Effort

Schedule

Public Involvement Approach

**Study Meetings** 

**Advisory Committees** 

Plan Chapters

Environmental Corridors, Yard Care, and Related Fact Sheets

Links

Contact Us

#### Regional Water Quality Management Plan Update

#### **Advisory Committee Structure**

Advisory committees form a most fundamental type of public involvement, with strong prospects for the planning program contributions to be of a broad and representative nature. Three types of advisory bodies are guiding the regional water quality management plan update, one of a technical nature, one to provide intergovernmental coordination and policy advice and assistance, and one citizen based.

#### Technical Advisory Committee (TAC)

The technical advisory committee is an integral part of the organization of the study, created by action of the Regional Planning Commission. The composition of this committee includes broad technical representation, including technical staffs, academia, business, agriculture, community and environmental organization representation, among others. The committee is designed to represent the entire study area. Included in its purview is a review of the draft planning report preparation and related technical work at important milestones. The committee also will be asked to review and provide advice on all important technical matters and decisions. Follow these links for a listing of the TAC membership, and to find plan chapters reviewed and approved by the Committee.

#### **Watershed Officials Forum**

In addition to the technical committee, a Watershed Officials Forum has been organized to provide a basis for periodic briefings and to obtain feedback and input from the units and agencies of government on a watershedwide basis. This forum is one of the shared advisory bodies utilized by both the Commission and MMSD.

#### Citizens Advisory Council (CAC)

Another shared advisory body, the Citizens Advisory Council, has been formed in cooperation with the MMSD 2020 facilities planning program to actively involve private citizens, businesses, special interest groups, and industry representatives in the development of the planning studies. The Council functions as a representative body of concerned and diverse citizens. <a href="Materials pertaining to the CAC">Materials pertaining to the CAC</a> and interrelationships with other project committees can be viewed at the MMSD website.



Overview

Planning Background

The Current Effort

Schedule

Public Involvement Approach

**Study Meetings** 

**Advisory Committees** 

Plan Chapters

Environmental Corridors, Yard Care, and Related Fact Sheets

Links

Contact Us

#### Regional Water Quality Management Plan Update

#### **Public Involvement Approach**

The Commission's public involvement goal is to ensure early and continuous public notification about regional water quality planning activities, provide meaningful information concerning such work, and obtain participation in and input to regional water quality planning efforts. In short, public involvement will be essential to the conduct of the regional water quality management plan update.

The public involvement activities are being focused through the use of advisory committees, cooperative actions with related ongoing public involvement efforts, and other public involvement and watershed education programming.

It should be noted that MMSD and the Commission have developed and initiated a joint public involvement program for a number of key purposes, including joint activity planning and public events, several shared committees, and deferring to one another as appropriate in the preparation of informational and educational materials that both programs can utilize. Examples of the latter are newsletters and "State of the Watershed" booklets and pictorial tour maps produced by MMSD under its <u>Water Quality Initiative</u>.

- View the full <u>Public Involvement Program Summary</u> for the regional water quality management plan update
- Consult other helpful links
- Contact us with questions and comments



Overview

Planning Background

The Current Effort

Schedule

Public Involvement Approach

**Study Meetings** 

**Advisory Committees** 

Plan Chapters

Environmental Corridors, Yard Care, and Related Fact Sheets

Links

Contact Us

Regional Water Quality Management Plan Update

Links

Helpful links for water quality planning, resource materials, and activities related to the regional water quality management plan update:

- <u>Milwaukee Metropolitan Sewerage District's Water Quality Initiative</u>
- Wisconsin Department of Natural Resources publications
- University of Wisconsin-Extension publications
- Milwaukee River Basin Partnership
- Root-Pike Watershed Initiative Network
- SEWRPC publication list



Overview

Regional Water Quality Management Plan Update

Planning Background
The Current Effort

Contact us

Schedule

For further information, or to offer comments, you may contact the following individuals:

Public Involvement Approach

Michael G. Hahn, P.E., P.H. Chief Environmental Engineer

Study Meetings

Plan Chapters

Southeastern Wisconsin Regional Planning Commission

(262) 547-6721

**Advisory Committees** 

Gary K. Korb

Regional Planning Educator

UW-Extension working with SEWRPC

(262) 547-6721

Environmental Corridors, Yard Care, and Related Fact

Sheets

Contact Us

Commission staff may also be contacted through the following

methods:

Links

E-mail: <u>mhahn@sewrpc.org</u> or <u>gkorb@sewrpc.org</u>

Southeastern Wisconsin Regional Planning Commission

U.S. Mail: P.O. Box 1607

Waukesha, WI 53187-1607

Fax: (262) 547-1103

To request a hard copy of any documents available on this website:

E-mail: pubrequest@sewrpc.org

Phone: (262) 547-6721 Fax: (262) 547-1103

(This page intentionally left blank)

#### Appendix A-5

# BROCHURES FOR CLEAN RIVERS/CLEAN LAKES WATERSHED PLANNING CONFERENCES

# CONFERENCE ANNOUNCEMENT

Southeastern Wisconsin Regional Planning Commission P.O. Box 1607 Waukesha, Wisconsin 53187-1607

# CLEAN RIVERS, CLEAN LAKES

A watershed planning conference targeting the Greater Milwaukee Watersheds-from the Northern Kettle Moraine, south to Union Grove, and from the Subcontinental Divide east to Milwaukee and Racine, plus all points between, downstream toward Lake Michigan

February 10, 2004

Four Points Sheraton, Milwaukee North Hotel

STH 57 and Brown Deer Road

Brown Deer, Wisconsin

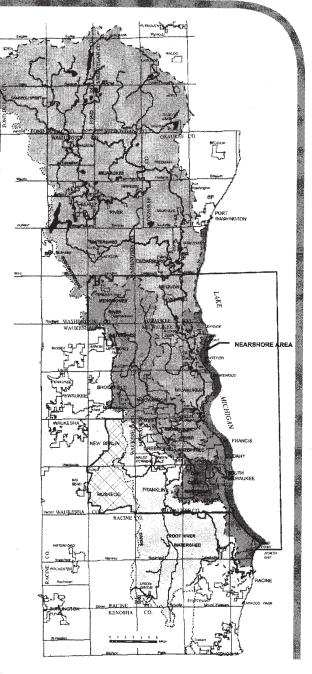
Sponsored by the
Southeastern Wisconsin Regional Planning Commission
and the
Milwaukee Metropolitan Sewerage District

In part, under a grant from the U.S. Environmental Protection Agency

And in cooperation with the
Great Lakes Nonpoint Abatement Coalition
National Park Service
University of Wisconsin-Extension
and the
Wisconsin Department of Natural Resources

# WATERSHED PLANNING CONFERENCE Our Purpose

This day-long event will examine our actions within the Greater Milwaukee Watersheds and how they impact local streams, Lake Michigan, groundwater, and ultimately our drinking water. Learn about:


- Resource conditions
- Present needs
- Potential risks
- · What you can do to help plan for quality waters both today and for future generations

Much has already been accomplished for water resource protection in Southeastern Wisconsin, and local communities and individuals can be credited for positive efforts. HOWEVER ..... many of our waters remain far from fishable and swimmable, as threats continue to be identified, or even grow. Some drinking water has become not only a quality concern, but also a quantity concern, in an otherwise "water rich" region. And while some areas are alarmed by all the new residents and associated land use changes, Lake Michigan must brace for both the associated runoff and the latest invasive species. Governmental units, businesses, and certain landowners will face increasing regulations and the ire of citizens and water recreationists because of such factors. Just keeping up with all of the information can be challenging.

For these reasons, we've invited:

- elected and appointed officials.
- · water resource teams and councils,
- public and consulting agency staff.
- environmental groups.
- development industry representatives.
- and interested citizens to this important water quality conference.

The focus for the day will be on wise planning and actions within the Milwaukee, Menomonee, Kinnickinnic, Root, and Oak Creek watersheds, as well as small adjoining areas of direct drainage to Lake Michigan - all part of the Great Lakes system. Our target area of some 1,100 square miles, from southern Fond du Lac and Sheboygan Counties to Racine County, is also the subject of a new interagency planning effort which will be outlined.



Please Reserve February 10, 2004 for this important watershed planning conference

Registration will be from 8:00-8:30, with plenary sessions all day.

#### **Registration Fee**

Your \$10 conference fee, due February 5th, includes morning coffee and rolls, breaks, and the luncheon. You may register by fax, e-mail, or regular mail with payment included. The latter is preferable for fast check-in at the registration table.

#### Additional Information

Questions about the program or the conference can be addressed to: Gary Korb, UW-Extension Regional Planning Educator working with SEWRPC.

(262) 547-6721 ext. 234

# WATERSHED PLANNING CONFERENCE

Agenda

8:00 Registration

Coffee, rolls, and conversation

8:30 Welcome and Introduction

Philip C. Evenson, Executive Director, Southeastern Wisconsin Regional Planning Commission (SEWRPC)

Kevin L. Shafer, Executive Director, Milwaukee Metropolitan Sewerage District (MMSD)

8:45 Early History Of Water Use and Abuse In the Region

John A. Gurda, Milwaukee Area Historian

Questions and Answers

9:15 Lake Michigan and the Rivers That Run To It

Lake Michigan Basin Challenges and Opportunities

Judy Beck, Lake Michigan Team Manager, U.S. Environmental Protection Agency

The State of Our Watersheds - Progress in Wisconsin and its Southeastern Counties

Todd L. Ambs, Administrator, Division of Water, Wisconsin Department of Natural Resources (WDNR)

Questions and Answers

**Break** 

10:30 Water Quality Planning, Regulations, and Expectations

A Once-in-a-Generation Opportunity - Regional Water Quality Management Plan Update

Robert P. Biebel, Chief Environmental Engineer, SEWRPC

Major Upcoming Investments and the Involvement of Communities and Citizens - MMSD 2020 Facilities Plan

Karen L. Sands, Watershed Planning Manager, and Timothy R. Bate, Engineering Planning Manager, MMSD

Water Resource Regulations, Today and In the Future - Complementary State Efforts

Charles G. Burney, Special Assistant, Bureau of Watershed Management, WDNR

Questions and Answers

#### 12:00 Luncheon Program: Local Governments and a Clean Environment

David A. Ullrich, Director, Great Lakes Cities Initiative, Chicago

Questions and Answers

#### 1:15 Exploring Public Understanding and Acceptance

What the Public Knows / Feels about Water Quality Issues - And How Today's Conference Attendees Compare

Kevin L. Shafer, Executive Director, MMSD

Development Alternatives With an Eye Toward Watershed Friendly Design

Robert G. Brownell, CEO. Bielinski Homes

Upstream Successes - Local Benefits and Downstream Gains

Daniel W. Stoffel, Washington County Board Supervisor and
Farmer, Town of Kewaskum

Questions and Answers

Break

#### 2:45 Difficult Remaining Issues - But Knowledge Brings Promise

The Continuing Problem of Public Beach Closures

Dr. Sandra McLellan, Assistant Scientist, UW-Milwaukee Great Lakes WATER Institute

Groundwater and Drinking Water Supplies - Facts and Concerns

Madeline B. Gotkowitz, Hydrogeologist/Assistant Professor, Wisconsin Geological and Natural History Survey

Everyone Taking Responsibility - Restoring Resource Quality and Hydrologic Integrity

Roger T. Bannerman, Non-point Source Monitoring Specialist, WDNR

Questions and Answers

#### 4:00 Parting Thoughts

Philip C. Evenson and Kevin L. Shafer

#### 4:15 Adjournment and Social Hour

# Milwaukee Metropolitan Sewerage District 260 W. Seeboth Street Milwaukee, WI 53204



INITIATIVE

www.mmsd.com/wai

The 2nd Annual Watershed Planning Conference targeting the Greater Milwaukee Watersheds - from the Northern Kettle Moraine, south to Union Grove, and from the Subcontinental Divide east to Milwaukee and Racine, plus all points between, downstream toward Lake Michigan

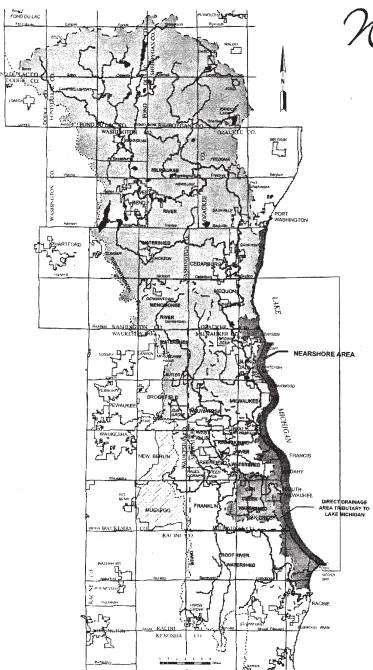
### February 23, 2005

Four Points Sheraton, Airport Location 4747 S. Howell Avenue Milwaukee, Wisconsin

#### Sponsored by:

Milwaukee Metropolitan Sewerage District Southeastern Wisconsin Regional Planning Commission

#### Conference Planning Committee:


Milwaukee Metropolitan Sewerage District National Park Service Southeastern Wisconsin Regional Planning Commission University of Wisconsin - Milwaukee University of Wisconsin-Extension Wisconsin Department of Natural Resources

#### In Collaboration with:

American Society of Civil Engineers (WI Section-Southeast Branch) Greater Milwaukee Committee Keep Greater Milwaukee Beautiful Metropolitan Builders Association Water Quality Metropolitan Milwaukee Association of Commerce Milwaukee River Basin Partnership River Revitalization Foundation

Root-Pike WIN

Wisconsin Chapter, American Planning Association



# Watershed Planning Conference

The rains of May in southeastern Wisconsin invigorated our on-going regional examination of water quality in our rivers, lakes and streams.

For the past two years, regional and local agencies, partnering with citizens and local community organizations, have been working on updating our plans for regional water quality and the facilities and policies needed to make those improvements. This second annual watershed planning conference will focus our attention on the concerns of water quality and what we as homeowners, businesses, appointed and elected municipal officials, and conservationists can do. This conference will include a look at what happens to water quality when it rains, the region's interconnected sewer systems, numerous local and regional policy issues, case studies from other areas, and discussions of what's being done (and can be done in the future) to manage rain water.

For these reasons, we've invited:

- · elected and appointed officials,
- water resource teams and councils,
- public and consulting agency staff,
- environmental groups,
- development industry representatives,
- and interested citizens to this important water quality conference.

The focus for the day will be on wise planning and actions within the Milwaukee, Menomonee, Kinnickinnic, Root, and Oak Creek watersheds, as well as small adjoining areas of direct drainage to Lake Michigan - all part of the Great Lakes system. Our target area of some 1,100 square miles, from southern Fond du Lac and Sheboygan Counties to Racine County, is also the subject of on-going interagency planning efforts which will be outlined.

Please Reserve February 23, 2005 for this important watershed planning conference Registration will be from 8:00-8:30, with sessions all day.

**Registration Fee:** Your \$20 conference fee, due February 15th, includes morning coffee and rolls, breaks, and the luncheon. You may register by fax, e-mail, or regular mail with payment included. Pre-payment by mail will allow for faster check-in at the registration table.

Additional Information: Questions about the program or the conference can be addressed to:

Karen Sands, Watershed Planning Manager, MMSD

(414) 225-2123 or ksands@mmsd.com

# Watershed Planning CONFERENCE

#### 8:00 Registration, coffee, rolls and conversation

#### 8:30 Welcome

Kevin Shafer, Executive Director, Milwaukee Metropolitan Sewerage District (MMSD)

#### 8:45 Opening Remarks

Tom Barrett, Mayor, City of Milwaukee

Mayor Barrett will welcome conference participants and address the importance of water resource planning and regional cooperation.

#### Gary Becker, Mayor, City of Racine

Mayor Becker will address the benefits and responsibilities of being a Great Lakes City and the importance of protecting our greatest natural resource.

9:15 Evolution of Stormwater Management

Russ Rasmussen, Director - Bureau of Watershed Management, Wisconsin Department of Natural Resources (WDNR)

Mr. Rasmussen will address how the WDNR has come to recognize stormwater as a major source of pollution and the subsequent regulation and management of stormwater in southeast Wisconsin and statewide.

9:45 Planning Projects Underway

Moderator – Dr. Nancy Frank, University of Wisconsin – Milwaukee (UWM)

The presenters will provide updates on the major watershed planning studies being led by the Southeastern Wisconsin Regional Planning Commission (SEWRPC) and the MMSD

- Status of the MMSD 2020 Facilities Plan Karen Sands, Watershed Planning Manager, MMSD and Timothy Bate, Engineering Planning Manager. MMSD
- Status of the Regional Water Quality Management Update
- Robert Biebel, Chief Environmental Engineer, SEWRPC

#### Break

## 10:30 Water, Water Everywhere – Let's Manage It! SESSION A

• Infiltration and Inflow 101

Moderator - Dr. Nancy Frank - UWM

The presenters will provide the audience with an understanding of the basics of the infiltration and inflow issues.

· Intro to I/Í

Timothy Bate, Engineering Planning Manager, MMSD DNR – Why We Care

lack Saltes, Wastewater Engineer, WDNR

#### SESSION B

• Infiltration and Inflow – the Role of Local Governments Moderator – Dr. Carol Diggelman, Milwaukee School of Engineering

The presenters will provide the audience with information from actual programs and studies completed regarding lateral replacement and infiltration/inflow issues.

· Local Government Case Study – Lateral Replacement Program in Brown Deer, WI

Larry Neitzel, Superintendent of Public Works, Brown Deer, WI

Legal Considerations Relating to Private Property I/I Programs
 Attorney Michael Simpson, Reinhart Boemer Van Deuren s.c.
 Overview of New Commerce Department Storm Codes
 Jim Zickert, Plumbing Consultant, Wisconsin Department of Commerce

#### SESSION C

• What's Happening in the Community? - Part 1

Moderator – Ängie Tomes, Rivers and Trails Program, National Park Service (NPS)

Preser. :s will offer information about stormwater projects in the community which are underway or built.

• Walnut Way and Environmental Stewardship
Sharon Adams, Walnut Way Conservation Corp

· Miller Brewing Company Rain Garden and Bioretention Swale Willie Gonwa, Triad Engineering

· Tonawanda School Rain Garden

Michele Trawicki, Instructional Resource Teacher, Tonawanda School, Elm Grove, WI

11:45 Lunch and Keynote Speaker

Paul Loeb — The Impossible Will Take a Little While: Acting for Change in a Time of Fear

#### 1:15 Wet Weather Impacts to Lake Michigan

Moderator - Kevin Shafer, MMSD

The presenter will share information from a research study on the fate and transport of bacteria into Lake Michigan and new research on storm pollution at Bradford Beach.

The Fate and Transport of Bacterial Contamination in our Rivers and Lake Michigan

Dr. Sandra McLellan, Assistant Scientist, UWM Great Lakes WATER Institute

#### 2:15 Brief Descriptions of the Milwaukee River Basin Partnership (Steve Books, MRBP President) and Root/Pike WIN (Allison Werner, Executive Director)

River Basin Partnership Groups are working creatively to address the concerns of Lake Michigan and the rivers that flow into it.

#### Break

#### 2:45 Taming the Raindrops

#### SESSION A

• Wet Weather and the Bottom Line

Moderator – Tim Sheehy, President, Metropolitan Milwaukee Association of Commerce

Presenters will discuss the impacts to businesses when spending on stormwater – related projects.

Positive Aspects of Green Roofs and Related Technologies
David Ciepluch, Office of Energy Options, We Energies

The Benefits of Porous Pavement

Steve Nikolas, President, Zabest Commercial Group

Stormwater Benefits of Conservation Subdivisions
John Siepmann, Sales Agent, Siepmann Realty

#### SESSION B

• What's Happening in the Community? — Part 2 Moderator — Angie Tornes, NPS Presenters will offer information about stormwater projects in the community which are underway or built.

Sustainable Development – Building for the Future: Lessons from Utilizing Green Principles in Multi-Family Housing Rocky Marcoux, Commissioner, Department of City Development. Milwaukee

Advancing Sustainable Development in Milwaukee's Menomonee River Valley

Peter McAvoy, Director of Environmental Health, 16th Street Community Health Center

· The Importance of Ulao Creek

Mike Grisar, President, Ulao Creek Partnership

#### SESSION C

• Resources Available to Local Governments

Moderator – Gary Korb, Regional Planning Educator, SEWRPC/ UW-Extension

Presenters will discuss various tools, techniques and resources that are available

Outreach and Education Resources for Your Community
Andy Yencha, River Basin Educator, UW-Extension

Using Funding Resources to Create a Stormwater Management System at the Allis Chalmers Brownfield Site in West Allis Rob Montgomery, Principal, Montgomery and Associates

· A Cool Tool for LID

Kevin Shafer, Executive Director, MMSD

#### SESSION D

· Sedimentation and Erosion

Moderator – Chris Magruder, Community Environmental Liason, MMSD

Presenters will discuss information on the issues surrounding sedimentation and erosion of our rivers.

· West Branch of Sugar River: Case Study of a Successful Partnership for River Restoration

Frank Fetter, Executive Director, Upper Sugar River Watershed Association

• Technical Report on Statewide Sedimentation Issues
Dale Robertson – US Geological Service, WI

#### 4:00 Call to Action

Paul Loeb

#### 4:15 Closing

Phil Evenson, Executive Director, SEWRPC

Conference presentations will be posted to the project Web site at www.mmsd.com/wqi as they are available. Printouts of presentations will not be provided at the conference in order to preserve natural resources.

Keynote Speaker Paul Loeb



Based on thirty years examining the psychology of social involvement, Paul Loeb will explore how ordinary citizens can make their voices heard and actions count in a time when we're told neither matter. He'll look at how people get involved in larger community issues and what stops them from getting involved; how they burn out in exhaustion or maintain their commitment for the long haul; how involvement can give a sense of connection and purpose rare in purely personal life. He'll focus this conversation on our role as stewards of our local water system.

# Clean Rivers, Clean Lakes III

The 3rd Annual Watershed Planning Conference targeting the Greater Milwaukee Watersheds - from the Northern Kettle Moraine, south to Union Grove, and from the Subcontinental Divide east to Milwaukee and Racine, plus all points between, downstream toward Lake Michigan

### March 2, 2006

Italian Community Center 63 | E. Chicago Street Milwaukee, Wisconsin

#### Sponsored by:

Milwaukee Metropolitan Sewerage District Southeastern Wisconsin Regional Planning Commission

#### Conference Planning Committee:

Milwaukee Metropolitan Sewerage District (MMSD)

National Park Service

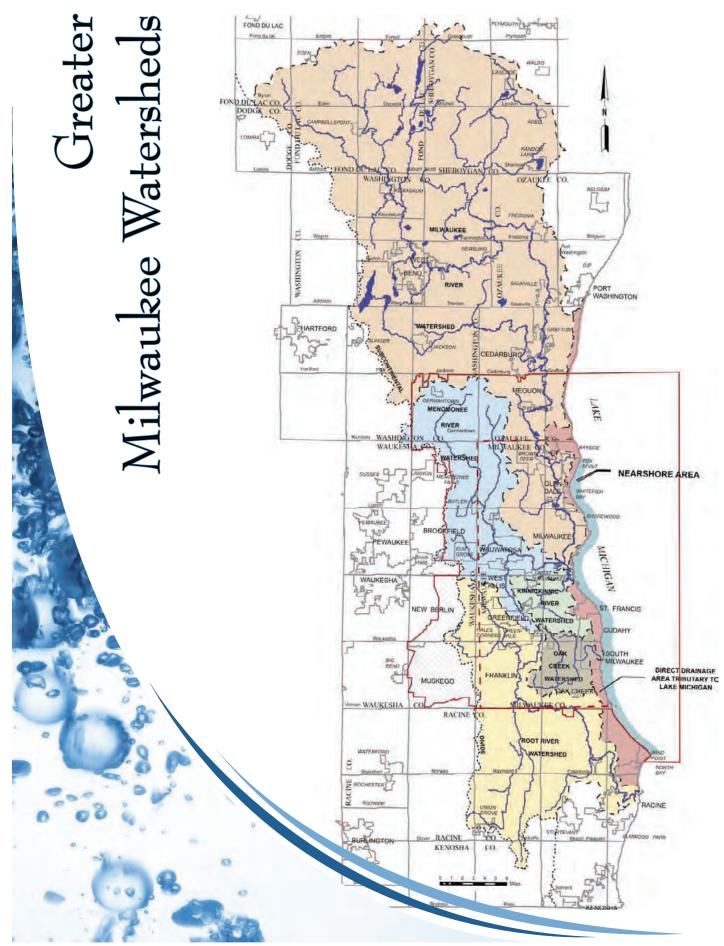
Southeastern Wisconsin Regional Planning Commission (SEWRPC)

University of Wisconsin - Milwaukee (UWM)

University of Wisconsin - Extension

Wisconsin Department of Natural Resources (WDNR)

#### In Cooperation with:


Wisconsin Chapter, American Planning Association
Sierra Club
Root-Pike WIN
River Revitalization Foundation
Milwaukee River Basin Partnership
Metropolitan Milwaukee Association of Commerce
Keep Greater Milwaukee Beautiful
Greater Milwaukee Committee
Friends of Milwaukee's Rivers

#### Partially Funded by Grants from:

U.S. Environmental Protection Agency (USEPA) –

- Lake Michigan Watershed Academy
- Great Lakes National Program Office





# Watershed Planning conference

# Examining water quality in the rivers, lakes and streams of Fond du Lac, Milwaukee, Ozaukee, Racine, Sheboygan, Washington & Waukesha Counties

For the past three years, MMSD and SEWRPC, partnering with WDNR, USEPA, local environmental organizations, and communities have worked on updating both the SEWRPC Regional Water Quality Management Plan for the Greater Milwaukee Watersheds and the MMSD 2020 Facilities Plan. This third conference will feature that planning process, including presentations on 1) existing water quality conditions and sources of pollution in the Kinnickinnic, Menomonee, Milwaukee, and Root River, and Oak Creek watersheds and 2) the preliminary alternative plans that have been developed by MMSD and SEWRPC with an early opportunity for you to comment. The conference will include a look at watershed modeling, what it is and how it is used; inventory findings of instream and riparian habitat; information about water quality and the origins of pollution in our waterways; the magnitude, challenges and shared solutions integral to abating pollution; the complexity of water quality-related issues; the costs of possible approaches to improve water quality; and, finally, the necessity of everyone working together to preserve the Greater Milwaukee Watersheds.

For these reasons, we've invited:

- Elected and appointed officials
- Water resource teams and councils
- Public and consulting agency staff
- Environmental groups
- Industry representatives
- Developers, and
- Citizens interested in improving and protecting our water resources

The focus of this year's conference will be on the planning and actions within the Greater Milwaukee Watersheds, as well as small adjoining areas of direct drainage to Lake Michigan – all part of the Great Lakes System.

### March 2, 2006

### Registration from 7:30-8:15, with sessions all day.

**Registration Fee:** Your \$25 conference fee, due February 20, includes conference materials, morning coffee and rolls, breaks, and the luncheon. February 21 - March 1 conference fee will be \$30. Day of the Conference fee will be \$35. Pre-payment by mail will allow for faster check-in at the registration table.

#### For More Information About the Conference:

- Please contact Bernadette Berdes (414) 225-2161 or conference@mmsd.com
- Visit www.mmsd.com/wqi
- Visit www.sewrpc.org/waterqualityplan

# Watershed Planning conference

#### 7:30 Registration

Coffee, rolls, and conversation

#### 8:15 Welcome

Mayor Tom Barrett - City of Milwaukee (Invited)

#### • Conference Overview

A Watershed Event in Joint Planning – From History to Public Comments on Alternatives
Gary Korb, Regional Planning Educator, UW-Extension/SEWRPC

#### • Historical Perspective on Water Quality

Where We've Come From ... Reflections on Problems and Solutions

John Gurda, Milwaukee Area Historian

#### • The Big Picture

The Lake Michigan Basin and the Region's Important Niche Judy Beck, Lake Michigan Team Manager, USEPA

#### • State of the Greater Milwaukee Watersheds

Basis of Plan Development

Karen Sands, Watershed Planning Manager, MMSD

Existing Water Quality Data and Pollution Sources Michael Hahn, Chief Environmental Engineer, SEWRPC

Water Quality Modeling and How It Is Being Used Dr. Leslie Shoemaker, Vice President, Water Resources, Tetra Tech, Inc.

#### **BREAK**

# 11:00 Details on Watersheds: Status & Building Blocks of Alternative Plans

Concurrent Sessions - Participants Choose A, B, or C

# Session A – Water Resource Science As Applied to the Current Planning

Moderator: Chris Magruder, Community and Environmental Liaison, MMSD

- Instream Habitat, Biological Conditions and Fishery Potential
  - Dr. Thomas Slawski, Principal Planner, SEWRPC
- Wisconsin Buffer Initiative for Rural Water Quality Treatment

Dr. Peter Nowak, Soil & Water Management Specialist, UW-Madison & UW-Extension

• Latest Studies on Bacteria in Stormwater Dr. Sandra McLellan, Assistant Scientist, UWM Great Lakes WATER Institute (Invited)

# Session B – Technologies Being Considered in the Planning

Moderator: Shirley Krug, Project Manager, MMSD

 Village of Shorewood Wet Weather Flow Management Program

Dr. Mustafa Emir, Water Group Leader, Bonestroo & Associates

 Applications of Stormwater BMPs in Southeastern Wisconsin

David Kendziorski, President, Stormtech, Inc.

 Physical/Chemical Wastewater Treatment of Peak Wet Weather Flows: Pilot Study Results Richard Onderko, Senior Project Manager, MMSD

# Session C – Programs, Policies, & Regulations Affecting Watershed Planning

Moderator: Angie Tornes, Rivers and Trails Program, U.S. National Park Service

- Milwaukee River North Branch Wildlife and Farming Heritage Area
  - Dale Katsma, Wildlife Biologist, Wisconsin Department of Natural Resources (WDNR)
- Status of Separate Sewer Overflow Regulations Duane Schuettpelz, Section Chief, Wastewater Permits & Pretreatment, WDNR
- Permitting and Stormwater Requirements for Municipalities (NR 151 & NR 216) James Ritchie, Stormwater Specialist, WDNR

#### 12:10 Lunch & Keynote Speaker

Clean Water, Healthy Future Jeffrey Browne, President, Public Policy Forum (Invited)

## 1:20 Details of the MMSD's 2020 Facilities Planning Process

Water Quality Improvement for the Greater Milwaukee Watersheds Kevin Shafer, Executive Director, MMSD

#### Alternatives to Improve Our Water Resources

- The Watershed Planning Perspective Charles Krohn, Regional Water Leader, WDNR
- Considering Our Options, Trade-Offs, Responsibilities, and Costs
  - Dr. Nancy Frank, Chair, Department of Urban Planning, UWM
- Overview of Screening and Preliminary Alternatives William Krill, Senior Project Manager, HNTB Corporation

#### **BREAK**

# 2:45 More Details on Alternative Plans, or Other Planning Considerations

Concurrent Sessions - Participants Choose D or E

# Session D – Alternative Plans Focusing on the MMSD Planning Area

Moderator: Timothy Bate, Engineering Planning Manager, MMSD

 Preliminary Alternatives from the MMSD 2020 Facilities Planning Project and SEWRPC's Regional Water Quality Management Plan Update

William Krill, Senior Project Manager, HNTB Corporation Dr. Leslie Shoemaker, Vice President, Water Resources, TetraTech, Inc.

David Bennett, Great Lakes Infrastructure Practice Lead, Brown & Caldwell

#### Continued on following page...

#### Session E - Other Watershed - Based Planning Considerations

Moderator: David Fowler, Project Manager, MMSD

- Estuary and Nearshore Lake Michigan Fishery
   Bradley Eggold, Supervisor, Southern Lake Michigan Fisheries Work Unit,
   WDNR
- Accelerated Conservation Reserve Enhancement Program for Streamside Buffers
   Andrew Holschbach, Director, Planning, Resources and Land Management Department, Ozaukee County
- Milwaukee Harbor Remedial Action Plan Status Marsha Burzynski, Water Resources Planner, WDNR

#### 4:00 A Leadership Perspective on What Lies Ahead

Panel Discussion on What Was Heard Today and Prospects for the Future Moderator: Philip Evenson, Executive Director, SEWRPC

- The Headwaters Perspective
   Daniel Schmidt, Administrator, Village of Kewaskum,
   SEWRPC Commissioner & Chair of the Regional Water Quality Management
   Plan Advisory Committee
- The Greater Milwaukee Watersheds Perspective Peter McAvoy, Director of Environmental Health, Sixteenth St. Community Health Center
- The Municipal Perspective Neil Palmer, President, Village of Elm Grove
- The MMSD & Green Team Perspective Preston Cole, MMSD Commissioner & City of Milwaukee Green Team Steering Committee Member

#### 4:45 Summary & Adjornment

#### 4:45 - 6:30 MMSD & SEWRPC Joint Open House

An opportunity for you to discuss what you heard today with technical staff, ask questions and comment on the preliminary alternatives presented during the conference.



# conference "At a Glance"

#### 8:15 Morning Plenary Sessions

Gain an historical perspective on water quality in the area, be updated about issues and changes in the Lake Michigan Basin, and hear new findings regarding the state of the Greater Milwaukee Watersheds.

#### 11:00 Concurrent Sessions

Choose from among three sessions, all designed to examine different aspects of water quality status and the underpinnings for plan alternatives:

- **A**: Water Resource Science...from rural streams to nearshore Lake Michigan, study applications for the fishery, farmland management, and human use.
- **B**: Technologies Being Considered...results of urban demonstrations, neighborhood practices, and pilot projects integral to the planning.
- **C**: Programs, Policies, and Regulations...major initiatives from voluntary to mandatory that affect future upstream heritage and present municipal operations.

#### 1:20 Early Afternoon Plenary Session

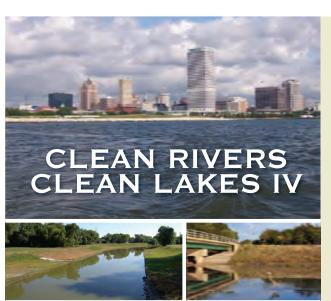
Learn the framework for improvement in the Greater Milwaukee Watersheds, featuring the direction we are heading and preliminary plan alternatives for getting there. Perspectives, options, trade-offs, responsibilities, costs, and future scenarios will all be discussed.

#### 2:45 Concurrent Sessions

Choose from two different sessions, both offering more detail:

- **D**: Preliminary Plan Alternatives Focusing on the MMSD... hear information about the preliminary plans that include A completing all committed MMSD projects, B meeting regulations on overflows and nonpoint source pollution and C meeting the publicly inspired goals, and all current in-stream water quality criteria, using the watershed approach.
- **E**: Other Watershed-Based Planning... considerations that complement the joint agency planning, examining major efforts both upstream and downstream.

#### 4:00 Closing Plenary Session


Hear viewpoints on the day's proceedings and prospects for the future from area leaders representing the public, and nonprofit sectors, as well as jurisdictions of various types in different portions of the Greater Milwaukee Watersheds.

#### 4:45 Open House

Comment directly on the preliminary plans, discuss questions directly with staff, view displays, & do a bit of socializing until 6:30 p.m.



MILWAUKEE METROPOLITAN SEWERAGE DISTRICT 260 WEST SEEBOTH STREET MILWAUKEE, WISCONSIN 53204



4TH ANNUAL WATERSHED PLANNING CONFERENCE

TUESDAY, APRIL 24TH, 2007

CLARION HOTEL & CONFERENCE CENTER
5311 SOUTH HOWELL AVENUE
MILWAUKEE, WISCONSIN





#### CLEAN RIVERS, CLEAN LAKES IV

The 4th Annual Watershed Planning Conference targeting the Greater Milwaukee Watersheds – from the Northern Kettle Moraine, south to Union Grove, and from the Subcontinental Divide east to Lake Michigan, and points in between.

#### April 24, 2007

#### Clarion Hotel and Conference Center

5311 South Howell Avenue • Milwaukee, WI

#### Sponsored by:

Milwaukee Metropolitan Sewerage District Southeastern Wisconsin Regional Planning Commission

#### **Conference Planning Committee**

Milwaukee Metropolitan Sewerage District Southeastern Wisconsin Regional Planning Commission University of Wisconsin – Extension Wisconsin Department of Natural Resources National Park Service

In 2002, the Milwaukee Metropolitan Sewerage District (MMSD), Wisconsin Department of Natural Resources (WDNR) and Southeastern Wisconsin Regional Planning Commission (SEWRPC) formed the Water Quality Initiative (WQI) partnership. This partnership was the basis for a joint planning effort that used scientific techniques and a watershed-based approach to holistically assess and chart improvements for water resources within the Greater Milwaukee Watersheds. Through an extensive public involvement program, local governments, environmental organizations, business and industry, and citizens joined the partnership.

MMSD and SEWRPC have completed four years of intensive study and planning, and are ready to present their respective findings and implementation plans necessary for water quality improvement. The conference will feature the recommended programs, policies and operational changes in the companion plans, roles and responsibilities for getting things done, projected regional and local costs, activities necessary to improve water quality in our region, good examples used here and elsewhere, strategies for improved water resources within the Greater Milwaukee Watersheds, and finally, the necessity of everyone working together in our region on shared, cost-effective solutions.

7057

# FOURTH ANNUAL WATERSHED PLANNING CONFERENCE

#### 7:30 Registration Coffee, rolls, and conversation

#### 8:15 Welcome

Mayor Tom Barrett, City of Milwaukee

#### Conference Overview

A Watershed Event- Finalizing the Plans and Moving to Implementation Philip Evenson, Executive Director, SEWRPC

How the Region Fits into the Big Picture Todd Ambs. Water Division Administrator, WDNR

#### The Unveiling- Water Quality Plans for Action

MMSD 2020 Facilities Plan Tim Bate, Engineering Planning Manager, MMSD

SEWRPC Regional Water Quality Management Plan Update Michael Hahn, Chief Environmental Engineer, SEWRPC

#### **BREAK**

#### 10:45 Assembling the Building Blocks of Implementation

Concurrent Sessions — Participants choose Session A, B, or C

#### SESSION A

Treatment Technologies, Handling Stormwater, and Nonpoint Source Reduction Moderator: Michael Hahn, Chief Environmental Engineer, SFWRPC

 Racine - A Developed Community taking a Proactive Approach to **Stormwater Pollution Control** 

Chuck Boehm, Earth Tech, Inc. laren Hiller, Water Resources Engineer. Earth Tech, Inc.

· Emerging Technologies in the Recommended Plans

Troy Deibert, Project Engineer, HNTB Corp. Kevin Kratt, Director, Water Resources Group. Tetra Tech, Inc.

SESSION B Local, Small-Scale Water Quality Improvement Projects

Moderator: Dave Fowler, Project Manager, MMSD

 Every Drop Left Behind: Common Sense Landscaping for the 21st Century

Dennis Lukaszewski, Urban Agriculture Program Coordinator, UW- Extension. Milwaukee County Office

• Examples of Successful Lake and Stream Restoration in Southeastern Wisconsin Dr. Thomas Slawski, Principal Planner, SEWRPC

#### **SESSION C**

**Conservation for Sustained Agricultural** Profitability and Clean Water Moderator: Sharon Gayan, Basin Supervisor, WDNR

- Discovery Farms Programs: The Effects of Agriculture on the Environment Dennis Frame and Dr. Fred Madison. Co-Directors, UW-Discovery Farms
- Upstream Successes- Local Benefits and Downstream Gains Daniel Stoffel, Washington County Board Supervisor and Farmer. Town of Kewaskum

#### 12:00 Lunch and Keynote Speaker

Water Wise Gardening Melinda Meyers, Nationally Known Gardening Expert

**Afternoon Plenary Session** 

Moderator: Christopher Magruder, Community and Environmental Liaison, MMSD

• Stormwater Impacts on Recreational Waters

Dr. Sandra McLellan, Assistant Scientist, Great Lakes WATER Institute - UW-Milwaukee

• "A New Awakening" for Achieving Water Quality Improvements
Kevin Shafer, Executive Director, MMSD

#### **BREAK**

2:30 Plan Implementation Issues and Implications for the Region Concurrent Sessions - Participants choose Session D, E, or F

Strategies for Improved Water Quality Moderator: William Krill, Senior Project Manager, HNTB Corp.

 Watershed Implementation Strategies: **Emerging Policies and Programs in Use Across the Country** 

Panel Discussion

Paul Freedman, President, Limno-Tech, Inc. James Klang, Senior Project Engineer, Keiser & Assoc. Dr. Leslie Shoemaker, Vice President Water Resources, TetraTech. Inc.

Stormwater and Being a Better Neighbor Moderator: Angie Tornes, Rivers and Trails Program, U.S. National Park Service

· Linking Watersheds, Landscapes and Communities

Gail Epping Overholt, Milwaukee River Basin Educator, Wisconsin Basin Initiative, UW-Extension

 Wet Basements- The Overlooked Source of Infiltration/Inflow Michael Campbell, Senior Vice President and COO,

#### SESSION F

Reducing Nutrients in Runoff -Some New Looks

Ruekert and Mielke. Inc.

Moderator: Andrew Holschbach, Director, Planning, Resources and Land Management Department, Ozaukee County

• Dane County's Ordinance Banning Unnecessary Phosphorus in Lawn Fertilizer

Susan Jones, Watershed Management Coordinator, Dane County

· Runoff Management Solutions for Agricultural Landscapes Dennis Frame and Dr. Fred Madison,

Co-Directors, UW-Discovery Farms

#### 3:45 Regional Cooperation - Challenges and Opportunities

Moderator: Kevin Shafer, Executive Director, MMSD

Panel Discussion:

Ann Beier, Director, Office of Environmental Sustainability, City of Milwaukee

Philip Evenson, Executive Director, SEWRPC

Scott Hassett, Secretary, WDNR (invited) Christine Nuernberg, Mayor, City of Mequon

4:30 Closing Remarks and Adjournment



#### REGISTRATION FORM WATERSHED PLANNING CONFERENCE

#### April 24th, 2007 Registration from 7:30 a.m - 8:15 a.m.

Registration Fee: Your \$30 conference fee includes conference materials. breakfast, mid-morning and afternoon refreshments, and the luncheon. Pre-payment by mail will allow for faster check-in at the registration table. Send complete registration form and check (payable to MMSD) to the address below.

#### For more information about the Conference:

- · Visit www.mmsd.com/wai
- Visit www.sewrpc.org/waterqualityplan



#### Please return before April 20th, 2007

Send complete registration form and check (payable to MMSD) to:

#### **B.** Berdes

Name(s):

Affiliation:

Address:

Milwaukee Metro. Sewerage District 260 W. Seeboth Street Milwaukee, WI 53204 Email: conference@mmsd.com

Phone: (414) 225-2161

| Conterence Fees\$30   |
|-----------------------|
| Day of Conference\$40 |
|                       |

| Phone No.:                                                            |                       |         |    |   |
|-----------------------------------------------------------------------|-----------------------|---------|----|---|
| Email Address:                                                        |                       |         |    |   |
| Concurrent Sessions (please circle one session that interests you mos | t for each time slot) |         |    |   |
| 10:45 a.m.                                                            |                       | Α       | В  | С |
| 2:30 p.m.                                                             |                       | Α       | В  | С |
| Special Needs: (please circle necessary arm                           | rangements)           |         |    |   |
| Vegetarian Meal A                                                     | Access                | Seating |    |   |
| (for office use only)                                                 |                       |         |    |   |
| Date Rec'd:                                                           | Multiple Registrant   | s: Y    |    | Ν |
| Check included: Y N                                                   |                       |         |    |   |
| Name on Check:                                                        |                       | Check N | lo |   |
| Initials of MMSD employee:                                            |                       |         |    |   |

#### Appendix A-6

#### PUBLIC INFORMATIONAL MEETINGS AND HEARINGS

| September 2004 Public Informational Meetings on Water Quality Initiative Draft Goals and Objectives                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Thursday, September 16, 4:00-8:00 p.m. Bayside Middle School 601 E. Ellsworth Lane Bayside                                                        |
| Tuesday, September 21, 7:00-10:00 a.m. United Community Center 1028 S. 9th Street Milwaukee                                                       |
| Wednesday, September 22, 4:30-8:30 p.m.<br>Longfellow Middle School<br>7600 W. North Avenue<br>Wauwatosa                                          |
| Saturday, September 25, 9:30 a.mNoon<br>Washington Park Library<br>2121 N. Sherman Boulevard<br>Milwaukee                                         |
| April 2006 Water Quality Initiative Open Houses on MMSD's 2020 Facility Planning and SEWRPC's Regional Water Quality Management Plan Alternatives |
| Thursday, March 2, 4:45-6:30 p.m. Italian Community Center 631 E. Chicago Street Milwaukee                                                        |
| Wednesday, April 5, 7:30-10:00 a.m. United Community Center 1028 S. 9th Street Milwaukee                                                          |
| Thursday, April 6, 5:30-8:00 p.m. Mother Kathryn Daniels Conference Center 3500 W. Mother Daniels Way Milwaukee                                   |
| Monday, April 10, 5:30-8:00 p.m. Longfellow Middle School 7600 W. North Avenue Wauwatosa                                                          |
| Wednesday, April 12, 5:30-8:00 p.m.<br>North Shore Library<br>6800 N. Port Washington Road<br>Glendale                                            |
| October 2007 Public Information Meetings and Hearings on the Regional Water Quality Management Plan Update Recommended Plan                       |
| Monday, October 15, 4:30-7:00 p.m. Gateway Technical College 901 Pershing Drive Racine                                                            |
| Tuesday, October 16, 4:30-7:00 p.m. Downtown Transit Center 909 E. Michigan Street Milwaukee                                                      |
| Tuesday, October 23, 4:30-7:00 p.m. Riveredge Nature Center 4458 W. Hawthorne Drive Newburg                                                       |

## SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION

W239 N1812 ROCKWOOD DRIVE • PO BOX 1607 • WAUKESHA, WI 53187-1607•

TELEPHONE (262) 547-6721 FAX (262) 547-1103

Serving the Counties of:

KENOSHA MILWAUKEE OZAUKEE RACINE WALWORTH WASHINGTON WAUKESHA



## **News Release**

October 9, 2007 Release No. 07-05

FOR IMMEDIATE RELEASE

For more information, contact Michael G. Hahn, Chief Environmental Engineer, at (262) 547-6721 e-mail: mhahn@sewrpc.org

# SEWRPC HOLDS PUBLIC HEARINGS ON REGIONAL WATER QUALITY MANAGEMENT PLAN

Citizens are invited to public information meetings and hearings related to the protection and improvement of water quality in a major portion of southeastern Wisconsin. These sessions will provide opportunities to learn more about, and to comment on, the findings and recommendations documented in Southeastern Wisconsin Regional Planning Commission (SEWRPC) Planning Report No. 50, A Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds. The plan includes recommendations related to land use, surface water quality, and groundwater quality in the Kinnickinnic, Menomonee, Milwaukee, and Root River watersheds; the Oak Creek watershed; and the direct drainage area to Lake Michigan. These watersheds are roughly comprised of areas draining toward Lake Michigan from extreme northeastern Dodge County, southeastern Fond du Lac County, southwestern Sheboygan County, eastern Washington County, all of Ozaukee County except the northeastern portion, extreme eastern Waukesha County, all of Milwaukee County, eastern Racine County, and a small portion of the Town of Paris in Kenosha County. The study area also includes the nearshore Lake Michigan area from the Village of Fox Point to the Village of Wind Point. Copies of the report chapters, including the recommended plan chapter, are now available for review on the SEWRPC web site at http://www.sewrpc.org/waterqualityplan/chapters.asp.

The plan was prepared by SEWRPC, in partnership with the Milwaukee Metropolitan Sewerage District (MMSD) under the "Water Quality Initiative," and in cooperation the Wisconsin Department of Natural

News Release No. 07-05 October 9, 2007

Page 2

Resources (WDNR) and the U.S. Geological Survey (USGS). The plan was developed in close

coordination with the MMSD 2020 Facilities Plan. Preparation of the plan was guided by a Technical

Advisory Committee composed of representatives of county and municipal government, special-purpose

units of government, MMSD, WDNR, USGS, the U.S. Environmental Protection Agency, academic

institutions, and environmental and conservation organizations. In addition, the regional water quality

management plan and MMSD Facilities Plan were presented and discussed at periodic meetings of a

joint Citizens Advisory Council formed specifically to provide input on the two plans and at meetings of

watershed officials, consisting of the elected and appointed representatives from the counties, cities,

villages, and towns in the study area.

The following 4:30-7:00 p.m. sessions will be held during October 2007:

October 15 at Gateway Technical College, Racine Campus, Racine Building, 901 Pershing Drive,

Parking Lot D, Great Lakes, Room (#110)

October 16 at the Downtown Transit Center, Harbor Lights Room (upper floor), 909 E. Michigan

Street, Milwaukee

October 23 at Riveredge Nature Center, 4458 W. Hawthorne Drive, Newburg, WI, 53060, located

a mile north of STH 33 on CTH Y, northeast of Newburg

Each session will begin with a meeting in "open house" format from 4:30-5:30 p.m., which will provide

an opportunity to meet one-on-one or in small groups with the Commission staff to receive information,

ask questions, and provide comment. A presentation will be made by the Commission staff at 5:30 p.m.,

followed by a public hearing providing a forum for public comment in "town hall" format from

approximately 6:00 p.m. to 7:00 p.m.

In addition to providing comments at the public meetings and hearings, written comments may also be

submitted. Written comments should be received no later than Wednesday, October 24, 2007.

\* \* \*

#131445 V1 - RWQMPU NEWS RELEASE NO. 07-05

MGH/pk

855

(This page intentionally left blank)

## Appendix B

# COMPARISON OF AVERAGE ANNUAL POLLUTANT LOADS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS

Table B-1

AVERAGE ANNUAL POLLUTANT LOADS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: KINNICKINNIC RIVER WATERSHED

|                           |                      |                                                            |                                               | Point S                                     | Sources                               |                                                | N                                                  | Ionpoint Source                        | а                                                  |                                                    |
|---------------------------|----------------------|------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Water Quality Indicator   | Subwatershed         | Screening Alternative                                      | Industrial<br>Point<br>Sources                | SSOs <sup>a</sup>                           | CSOs                                  | Subtotal                                       | Urban                                              | Rural <sup>b,c</sup>                   | Subtotal                                           | Total                                              |
| Total Phosphorus (pounds) | Kinnickinnic River   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 220<br>220<br>220<br>220<br>220<br>220<br>220 | 880<br>1,130<br>70<br>430<br>1,350<br>1,350 | 490<br>320<br>230<br>90<br>230<br>230 | 1,590<br>1,670<br>520<br>740<br>1,800<br>1,800 | 2,790<br>2,440<br>2,440<br>2,440<br>2,270<br>2,270 | 20<br>20<br>20<br>20<br>20<br>20<br>20 | 2,810<br>2,460<br>2,460<br>2,460<br>2,290<br>2,290 | 4,400<br>4,130<br>2,980<br>3,200<br>4,090<br>4,090 |
|                           | Wilson Park Creek    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 320<br>320<br>320<br>320<br>320<br>320<br>320 | 10<br>10<br><10<br><10<br>10                | 0<br>0<br>0<br>0<br>0                 | 330<br>330<br>320<br>320<br>330<br>330         | 3,390<br>3,040<br>3,040<br>3,040<br>2,830<br>2,830 | 50<br>30<br>30<br>30<br>30<br>30<br>30 | 3,440<br>3,070<br>3,070<br>3,070<br>2,860<br>2,860 | 3,770<br>3,400<br>3,390<br>3,390<br>3,190<br>3,190 |
|                           | Holmes Avenue Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 440<br>440<br>440<br>440<br>440<br>440        | 0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0                 | 440<br>440<br>440<br>440<br>440<br>440         | 1,000<br>870<br>870<br>870<br>870<br>810           | <10<br><10<br><10<br><10<br><10<br><10 | 1,000<br>870<br>870<br>870<br>870<br>810           | 1,440<br>1,310<br>1,310<br>1,310<br>1,250<br>1,250 |
|                           | Villa Mann Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0                          | 730<br>630<br>630<br>630<br>590<br>590             | <10<br><10<br><10<br><10<br><10<br><10 | 730<br>630<br>630<br>630<br>590<br>590             | 730<br>630<br>630<br>630<br>590<br>590             |
|                           | Cherokee Park Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0                          | 440<br>390<br>390<br>390<br>360<br>360             | <10<br><10<br><10<br><10<br><10<br><10 | 440<br>390<br>390<br>390<br>360<br>360             | 440<br>390<br>390<br>390<br>360<br>360             |
|                           | Lyons Park Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                         | <10<br><10<br><10<br><10<br><10<br><10      | 0<br>0<br>0<br>0<br>0                 | <10<br><10<br><10<br><10<br><10<br><10         | 620<br>550<br>550<br>550<br>510<br>510             | <10<br><10<br><10<br><10<br><10<br><10 | 620<br>550<br>550<br>550<br>510<br>510             | 620<br>550<br>550<br>550<br>510<br>510             |
|                           | S. 43rd Street Ditch | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 460<br>460<br>460<br>460<br>460<br>460        | <10<br><10<br><10<br><10<br><10<br><10      | 0<br>0<br>0<br>0<br>0                 | 460<br>460<br>460<br>460<br>460<br>460         | 890<br>790<br>790<br>790<br>730<br>730             | <10<br><10<br><10<br><10<br><10<br><10 | 890<br>790<br>790<br>790<br>730<br>730             | 1,350<br>1,250<br>1,250<br>1,250<br>1,190<br>1,190 |

Table B-1 (continued)

|                                       |                      |                                                            |                                                             | Point S                                                 | Sources                                                 |                                                          | N                                                                          | lonpoint Source                                     | а                                                                          |                                                                            |
|---------------------------------------|----------------------|------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed         | Screening Alternative                                      | Industrial<br>Point<br>Sources                              | SSOs <sup>a</sup>                                       | CSOs                                                    | Subtotal                                                 | Urban                                                                      | Rural <sup>b,c</sup>                                | Subtotal                                                                   | Total                                                                      |
| Total Phosphorus (pounds) (continued) | Watershed Total      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,440<br>1,440<br>1,440<br>1,440<br>1,440<br>1,440          | 890<br>1,140<br>70<br>430<br>1,360<br>1,360             | 490<br>320<br>230<br>90<br>230<br>230                   | 2,820<br>2,900<br>1,740<br>1,960<br>3,030<br>3,030       | 9,860<br>8,710<br>8,710<br>8,710<br>8,100<br>8,100                         | 70<br>50<br>50<br>50<br>50<br>50                    | 9,930<br>8,760<br>8,760<br>8,760<br>8,150<br>8,150                         | 12,750<br>11,660<br>10,500<br>10,720<br>11,180<br>11,180                   |
| Total Suspended Solids (pounds)       | Kinnickinnic River   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 2,230<br>2,230<br>2,230<br>2,230<br>2,230<br>2,230<br>2,230 | 50,280<br>64,810<br>3,910<br>24,370<br>77,420<br>77,420 | 42,810<br>28,270<br>20,110<br>7,930<br>18,750<br>18,750 | 95,320<br>95,310<br>26,250<br>34,530<br>98,400<br>98,400 | 1,400,580<br>1,106,590<br>1,106,590<br>1,106,590<br>1,106,590<br>1,106,590 | 2,900<br>2,800<br>2,800<br>2,800<br>2,800<br>2,800  | 1,403,480<br>1,109,390<br>1,109,390<br>1,109,390<br>1,109,390<br>1,109,390 | 1,498,800<br>1,204,700<br>1,135,640<br>1,143,920<br>1,207,790<br>1,207,790 |
|                                       | Wilson Park Creek    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 6,300<br>6,300<br>6,300<br>6,300<br>6,300<br>6,300          | 850<br>380<br>40<br>220<br>390<br>390                   | 0<br>0<br>0<br>0<br>0                                   | 7,150<br>6,680<br>6,340<br>6,520<br>6,690<br>6,690       | 1,681,280<br>1,365,030<br>1,365,030<br>1,365,030<br>1,365,030<br>1,365,030 | 24,830<br>3,070<br>3,070<br>3,070<br>3,070<br>3,070 | 1,706,110<br>1,368,100<br>1,368,100<br>1,368,100<br>1,368,100<br>1,368,100 | 1,713,260<br>1,374,780<br>1,374,440<br>1,374,620<br>1,374,790<br>1,374,790 |
|                                       | Holmes Avenue Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 800<br>800<br>800<br>800<br>800<br>800                      | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 800<br>800<br>800<br>800<br>800<br>800                   | 643,010<br>499,250<br>499,250<br>499,250<br>499,250<br>499,250             | 530<br>330<br>330<br>330<br>330<br>330              | 643,540<br>499,580<br>499,580<br>499,580<br>499,580<br>499,580             | 644,340<br>500,380<br>500,380<br>500,380<br>500,380<br>500,380             |
|                                       | Villa Mann Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                    | 380,220<br>289,850<br>289,850<br>289,850<br>289,850<br>289,850             | 220<br>120<br>120<br>120<br>120<br>120              | 380,440<br>289,970<br>289,970<br>289,970<br>289,970<br>289,970             | 380,440<br>289,970<br>289,970<br>289,970<br>289,970<br>289,970             |
|                                       | Cherokee Park Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                    | 216,410<br>170,560<br>170,560<br>170,560<br>170,560<br>170,560             | 600<br>490<br>490<br>490<br>490<br>490              | 217,010<br>171,050<br>171,050<br>171,050<br>171,050<br>171,050             | 217,010<br>171,050<br>171,050<br>171,050<br>171,050<br>171,050             |
|                                       | Lyons Park Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                       | 30<br>30<br>30<br>30<br>30<br>30<br>30                  | 0<br>0<br>0<br>0<br>0                                   | 30<br>30<br>30<br>30<br>30<br>30                         | 283,620<br>225,650<br>225,650<br>225,650<br>225,650<br>225,650             | 250<br>210<br>210<br>210<br>210<br>210<br>210       | 283,870<br>225,860<br>225,860<br>225,860<br>225,860<br>225,860             | 283,900<br>225,890<br>225,890<br>225,890<br>225,890<br>225,890             |
|                                       | S. 43rd Street Ditch | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 3,080<br>3,080<br>3,080<br>3,080<br>3,080<br>3,080          | 110<br>110<br>110<br>110<br>110<br>110                  | 0<br>0<br>0<br>0<br>0                                   | 3,190<br>3,190<br>3,190<br>3,190<br>3,190<br>3,190       | 557,400<br>428,650<br>428,650<br>428,650<br>428,650<br>428,650             | 430<br>160<br>160<br>160<br>160<br>160              | 557,830<br>428,810<br>428,810<br>428,810<br>428,810<br>428,810             | 561,020<br>432,000<br>432,000<br>432,000<br>432,000<br>432,000             |

|                                              |                      |                                                            |                                                          | Point S                                                       | Sources                                                  |                                                                  | N                                                                          | Ionpoint Source                                     | <sub>,</sub> a                                                             |                                                                            |
|----------------------------------------------|----------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                      | Subwatershed         | Screening Alternative                                      | Industrial<br>Point<br>Sources                           | SSOs <sup>a</sup>                                             | CSOs                                                     | Subtotal                                                         | Urban                                                                      | Rural <sup>b,c</sup>                                | Subtotal                                                                   | Total                                                                      |
| Total Suspended Solids (pounds) (continued)  | Watershed Total      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 12,410<br>12,410<br>12,410<br>12,410<br>12,410<br>12,410 | 51,270<br>65,330<br>4,090<br>24,730<br>77,950<br>77,950       | 42,810<br>28,270<br>20,110<br>7,930<br>18,750<br>18,750  | 106,490<br>106,010<br>36,610<br>45,070<br>109,110<br>109,110     | 5,162,520<br>4,085,580<br>4,085,580<br>4,085,580<br>4,085,580<br>4,085,580 | 29,760<br>7,180<br>7,180<br>7,180<br>7,180<br>7,180 | 5,192,280<br>4,092,760<br>4,092,760<br>4,092,760<br>4,092,760<br>4,092,760 | 5,298,770<br>4,198,770<br>4,129,370<br>4,137,830<br>4,201,870<br>4,201,870 |
| Fecal Coliform Bacteria (trillions of cells) | Kinnickinnic River   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 959.33<br>1,236.62<br>74.68<br>465.04<br>1,477.12<br>1,477.12 | 554.79<br>366.38<br>260.57<br>102.75<br>303.71<br>303.71 | 1,514.12<br>1,603.00<br>335.25<br>567.79<br>1,780.83<br>1,780.83 | 1,031.94<br>861.35<br>861.35<br>861.35<br>745.26<br>745.26                 | 0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06        | 1,032.00<br>861.41<br>861.41<br>861.41<br>745.32<br>745.32                 | 2,546.12<br>2,464.41<br>1,196.66<br>1,429.20<br>2,526.15<br>2,526.15       |
|                                              | Wilson Park Creek    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 16.14<br>7.35<br>0.77<br>4.25<br>7.40<br>7.40                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 16.14<br>7.35<br>0.77<br>4.25<br>7.40<br>7.40                    | 996.39<br>860.49<br>860.49<br>860.49<br>749.74<br>749.74                   | 0.20<br>0.08<br>0.08<br>0.08<br>0.08<br>0.08        | 996.59<br>860.57<br>860.57<br>860.57<br>749.82<br>749.82                   | 1,012.73<br>867.92<br>861.34<br>864.82<br>757.22<br>757.22                 |
|                                              | Holmes Avenue Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 361.85<br>298.64<br>298.64<br>298.64<br>251.50<br>251.50                   | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01        | 361.86<br>298.65<br>298.65<br>298.65<br>251.51<br>251.51                   | 361.86<br>298.65<br>298.65<br>298.65<br>251.51<br>251.51                   |
|                                              | Villa Mann Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 247.97<br>203.64<br>203.64<br>203.64<br>183.27<br>183.27                   | 0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 247.98<br>203.64<br>203.64<br>203.64<br>183.27<br>183.27                   | 247.98<br>203.64<br>203.64<br>203.64<br>183.27<br>183.27                   |
|                                              | Cherokee Park Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 145.02<br>121.71<br>121.71<br>121.71<br>109.54<br>109.54                   | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01        | 145.03<br>121.72<br>121.72<br>121.72<br>109.55<br>109.55                   | 145.03<br>121.72<br>121.72<br>121.72<br>109.55<br>109.55                   |
|                                              | Lyons Park Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52                  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52                     | 247.09<br>208.42<br>208.42<br>208.42<br>187.58<br>187.58                   | 0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 247.10<br>208.42<br>208.42<br>208.42<br>187.58<br>187.58                   | 247.62<br>208.94<br>208.94<br>208.94<br>188.10<br>188.10                   |
|                                              | S. 43rd Street Ditch | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07                  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07                     | 327.94<br>277.19<br>277.19<br>277.19<br>219.60<br>219.60                   | 0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 327.95<br>277.19<br>277.19<br>277.19<br>219.60<br>219.60                   | 330.02<br>279.26<br>279.26<br>279.26<br>221.67<br>221.67                   |

Table B-1 (continued)

|                                                          |                      |                                                            |                                                    | Point S                                                       | Sources                                                  |                                                                  | N                                                                    | lonpoint Source                               | a                                                                    |                                                                      |
|----------------------------------------------------------|----------------------|------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed         | Screening Alternative                                      | Industrial<br>Point<br>Sources                     | SSOs <sup>a</sup>                                             | CSOs                                                     | Subtotal                                                         | Urban                                                                | Rural <sup>b,c</sup>                          | Subtotal                                                             | Total                                                                |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Watershed Total      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 978.06<br>1,246.56<br>78.04<br>471.88<br>1,487.11<br>1,487.11 | 554.79<br>366.38<br>260.57<br>102.75<br>303.71<br>303.71 | 1,532.85<br>1,612.94<br>338.61<br>574.63<br>1,790.82<br>1,790.82 | 3,358.20<br>2,831.44<br>2,831.44<br>2,831.44<br>2,446.49<br>2,446.49 | 0.31<br>0.16<br>0.16<br>0.16<br>0.16<br>0.16  | 3,358.51<br>2,831.60<br>2,831.60<br>2,831.60<br>2,446.65<br>2,446.65 | 4,891.36<br>4,444.54<br>3,170.21<br>3,406.23<br>4,237.47<br>4,237.47 |
| Total Nitrogen (pounds)                                  | Kinnickinnic River   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 3,800<br>3,800<br>3,800<br>3,800<br>3,800<br>3,800 | 1,840<br>2,370<br>140<br>890<br>2,830<br>2,830                | 2,290<br>1,510<br>1,080<br>420<br>1,120<br>1,120         | 7,930<br>7,680<br>5,020<br>5,110<br>7,750<br>7,750               | 17,730<br>15,880<br>15,880<br>15,880<br>15,370<br>15,370             | 220<br>210<br>210<br>210<br>210<br>210<br>210 | 17,950<br>16,090<br>16,090<br>16,090<br>15,580<br>15,580             | 25,880<br>23,770<br>21,110<br>21,200<br>23,330<br>23,330             |
|                                                          | Wilson Park Creek    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 980<br>980<br>980<br>980<br>980<br>980             | 30<br>10<br><10<br>10<br>10                                   | 0<br>0<br>0<br>0<br>0                                    | 1,010<br>990<br>980<br>990<br>990<br>990                         | 21,270<br>19,570<br>19,570<br>19,570<br>18,950<br>18,950             | 980<br>250<br>250<br>250<br>250<br>250<br>250 | 22,250<br>19,820<br>19,820<br>19,820<br>19,200<br>19,200             | 23,260<br>20,810<br>20,800<br>20,810<br>20,190<br>20,190             |
|                                                          | Holmes Avenue Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,460<br>1,460<br>1,460<br>1,460<br>1,460<br>1,460 | 0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0                                    | 1,460<br>1,460<br>1,460<br>1,460<br>1,460<br>1,460               | 6,090<br>5,450<br>5,450<br>5,450<br>5,260<br>5,260                   | 50<br>30<br>30<br>30<br>30<br>30<br>30        | 6,140<br>5,480<br>5,480<br>5,480<br>5,290<br>5,290                   | 7,600<br>6,940<br>6,940<br>6,940<br>6,750<br>6,750                   |
|                                                          | Villa Mann Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                            | 4,480<br>3,980<br>3,980<br>3,980<br>3,850<br>3,850                   | 20<br>10<br>10<br>10<br>10<br>10              | 4,500<br>3,990<br>3,990<br>3,990<br>3,860<br>3,860                   | 4,500<br>3,990<br>3,990<br>3,990<br>3,860<br>3,860                   |
|                                                          | Cherokee Park Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                            | 2,750<br>2,490<br>2,490<br>2,490<br>2,420<br>2,420                   | 50<br>40<br>40<br>40<br>40<br>40              | 2,800<br>2,530<br>2,530<br>2,530<br>2,460<br>2,460                   | 2,800<br>2,530<br>2,530<br>2,530<br>2,460<br>2,460                   |
|                                                          | Lyons Park Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | <10<br><10<br><10<br><10<br><10<br><10                        | 0<br>0<br>0<br>0<br>0                                    | <10<br><10<br><10<br><10<br><10<br><10                           | 3,980<br>3,600<br>3,600<br>3,600<br>3,490<br>3,490                   | 20<br>20<br>20<br>20<br>20<br>20<br>20        | 4,000<br>3,620<br>3,620<br>3,620<br>3,510<br>3,510                   | 4,000<br>3,620<br>3,620<br>3,620<br>3,510<br>3,510                   |
|                                                          | S. 43rd Street Ditch | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 490<br>490<br>490<br>490<br>490<br>490             | <10<br><10<br><10<br><10<br><10<br><10                        | 0<br>0<br>0<br>0<br>0                                    | 490<br>490<br>490<br>490<br>490<br>490                           | 5,570<br>5,050<br>5,050<br>5,050<br>4,880<br>4,880                   | 30<br>10<br>10<br>10<br>10<br>10              | 5,600<br>5,060<br>5,060<br>5,060<br>4,890<br>4,890                   | 6,090<br>5,550<br>5,550<br>5,550<br>5,380<br>5,380                   |

|                                     |                      |                                                            |                                                    | Point S                                              | Sources                                            |                                                         | ١                                                              | Nonpoint Source                                    | а                                                              |                                                                |
|-------------------------------------|----------------------|------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed         | Screening Alternative                                      | Industrial<br>Point<br>Sources                     | SSOs <sup>a</sup>                                    | CSOs                                               | Subtotal                                                | Urban                                                          | Rural <sup>b,c</sup>                               | Subtotal                                                       | Total                                                          |
| Total Nitrogen (pounds) (continued) | Watershed Total      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 6,730<br>6,730<br>6,730<br>6,730<br>6,730<br>6,730 | 1,870<br>2,380<br>140<br>900<br>2,840<br>2,840       | 2,290<br>1,510<br>1,080<br>420<br>1,120<br>1,120   | 10,890<br>10,620<br>7,950<br>8,050<br>10,690<br>10,690  | 61,870<br>56,020<br>56,020<br>56,020<br>54,220<br>54,220       | 1,370<br>570<br>570<br>570<br>570<br>570           | 63,240<br>56,590<br>56,590<br>56,590<br>54,790<br>54,790       | 74,130<br>67,210<br>64,540<br>64,640<br>65,480<br>65,480       |
| Biochemical Oxygen Demand (pounds)  | Kinnickinnic River   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 3,680<br>3,680<br>3,680<br>3,680<br>3,680<br>3,680 | 12,370<br>15,950<br>960<br>6,000<br>19,050<br>19,050 | 6,880<br>4,540<br>3,230<br>1,270<br>3,210<br>3,210 | 22,930<br>24,170<br>7,870<br>10,950<br>25,940<br>25,940 | 80,050<br>67,460<br>67,460<br>67,460<br>67,460                 | 740<br>710<br>710<br>710<br>710<br>710             | 80,790<br>68,170<br>68,170<br>68,170<br>68,170                 | 103,720<br>92,340<br>76,040<br>79,120<br>94,110<br>94,110      |
|                                     | Wilson Park Creek    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 5,630<br>5,630<br>5,630<br>5,630<br>5,630<br>5,630 | 210<br>90<br>10<br>50<br>100<br>100                  | 0<br>0<br>0<br>0<br>0                              | 5,840<br>5,720<br>5,640<br>5,680<br>5,730<br>5,730      | 165,660<br>157,460<br>157,460<br>157,460<br>157,460<br>157,460 | 1,900<br>1,100<br>1,100<br>1,100<br>1,100<br>1,100 | 167,560<br>158,560<br>158,560<br>158,560<br>158,560<br>158,560 | 173,400<br>164,280<br>164,200<br>164,240<br>164,290<br>164,290 |
|                                     | Holmes Avenue Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120 | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                              | 1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120      | 44,320<br>39,590<br>39,590<br>39,590<br>39,590<br>39,590       | 160<br>90<br>90<br>90<br>90<br>90                  | 44,480<br>39,680<br>39,680<br>39,680<br>39,680<br>39,680       | 45,600<br>40,800<br>40,800<br>40,800<br>40,800<br>40,800       |
|                                     | Villa Mann Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                   | 20,320<br>16,940<br>16,940<br>16,940<br>16,940<br>16,940       | 80<br>40<br>40<br>40<br>40<br>40                   | 20,400<br>16,980<br>16,980<br>16,980<br>16,980<br>16,980       | 20,400<br>16,980<br>16,980<br>16,980<br>16,980<br>16,980       |
|                                     | Cherokee Park Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                   | 11,980<br>10,350<br>10,350<br>10,350<br>10,350<br>10,350       | 140<br>110<br>110<br>110<br>110<br>110             | 12,120<br>10,460<br>10,460<br>10,460<br>10,460<br>10,460       | 12,120<br>10,460<br>10,460<br>10,460<br>10,460<br>10,460       |
|                                     | Lyons Park Creek     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 10<br>10<br>10<br>10<br>10<br>10                     | 0<br>0<br>0<br>0<br>0                              | 10<br>10<br>10<br>10<br>10<br>10                        | 16,880<br>14,340<br>14,340<br>14,340<br>14,340                 | 60<br>50<br>50<br>50<br>50<br>50                   | 16,940<br>14,390<br>14,390<br>14,390<br>14,390                 | 16,950<br>14,400<br>14,400<br>14,400<br>14,400<br>14,400       |
|                                     | S. 43rd Street Ditch | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 5,420<br>5,420<br>5,420<br>5,420<br>5,420<br>5,420 | 30<br>30<br>30<br>30<br>30<br>30                     | 0<br>0<br>0<br>0<br>0                              | 5,450<br>5,450<br>5,450<br>5,450<br>5,450<br>5,450      | 30,730<br>26,040<br>26,040<br>26,040<br>26,040<br>26,040       | 130<br>50<br>50<br>50<br>50<br>50                  | 30,860<br>26,090<br>26,090<br>26,090<br>26,090<br>26,090       | 36,310<br>31,540<br>31,540<br>31,540<br>31,540<br>31,540       |

Table B-1 (continued)

|                                                |                      |                                                            |                                                          | Point S                                                | Sources                                            |                                                          | N                                                              | lonpoint Source                                             | a                                                              |                                                                |
|------------------------------------------------|----------------------|------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed         | Screening Alternative                                      | Industrial<br>Point<br>Sources                           | SSOs <sup>a</sup>                                      | CSOs                                               | Subtotal                                                 | Urban                                                          | Rural <sup>b,c</sup>                                        | Subtotal                                                       | Total                                                          |
| Biochemical Oxygen Demand (pounds) (continued) | Watershed Total      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 15,850<br>15,850<br>15,850<br>15,850<br>15,850<br>15,850 | 12,620<br>16,080<br>1,010<br>6,090<br>19,190<br>19,190 | 6,880<br>4,540<br>3,230<br>1,270<br>3,210<br>3,210 | 35,350<br>36,470<br>20,090<br>23,210<br>38,250<br>38,250 | 369,940<br>332,180<br>332,180<br>332,180<br>332,180<br>332,180 | 3,210<br>2,150<br>2,150<br>2,150<br>2,150<br>2,150<br>2,150 | 373,150<br>334,330<br>334,330<br>334,330<br>334,330<br>334,330 | 408,500<br>370,800<br>354,420<br>357,540<br>372,580<br>372,580 |
| Copper (pounds)                                | Kinnickinnic River   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 7<br>7<br>7<br>7<br>7                                    | 8<br>10<br>1<br>4<br>12<br>12                          | 15<br>10<br>7<br>3<br>7<br>7                       | 30<br>27<br>15<br>14<br>26<br>26                         | 146<br>120<br>120<br>120<br>120<br>120                         | <1<br><1<br><1<br><1<br><1<br><1                            | 146<br>120<br>120<br>120<br>120<br>120                         | 176<br>147<br>135<br>134<br>146<br>146                         |
|                                                | Wilson Park Creek    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | <1<br><1<br><1<br><1<br><1<br><1                       | 0<br>0<br>0<br>0<br>0                              | <1<br><1<br><1<br><1<br><1<br><1                         | 174<br>151<br>151<br>151<br>151<br>151                         | 1<br><1<br><1<br><1<br><1<br><1                             | 175<br>151<br>151<br>151<br>151<br>151                         | 175<br>151<br>151<br>151<br>151<br>151                         |
|                                                | Holmes Avenue Creek  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                    | 59<br>49<br>49<br>49<br>49                                     | <1<br><1<br><1<br><1<br><1<br><1                            | 59<br>49<br>49<br>49<br>49                                     | 59<br>49<br>49<br>49<br>49                                     |
|                                                | Villa Mann Creek     | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                    | 37<br>30<br>30<br>30<br>30<br>30<br>30                         | <1<br><1<br><1<br><1<br><1<br><1                            | 37<br>30<br>30<br>30<br>30<br>30<br>30                         | 37<br>30<br>30<br>30<br>30<br>30<br>30                         |
|                                                | Cherokee Park Creek  | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                    | 22<br>18<br>18<br>18<br>18<br>18                               | <1<br><1<br><1<br><1<br><1<br><1                            | 22<br>18<br>18<br>18<br>18<br>18                               | 22<br>18<br>18<br>18<br>18<br>18                               |
|                                                | Lyons Park Creek     | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | <1<br><1<br><1<br><1<br><1<br><1                       | 0<br>0<br>0<br>0<br>0                              | <1<br><1<br><1<br><1<br><1<br><1                         | 30<br>25<br>25<br>25<br>25<br>25<br>25<br>25                   | <1<br><1<br><1<br><1<br><1<br><1                            | 30<br>25<br>25<br>25<br>25<br>25<br>25<br>25                   | 30<br>25<br>25<br>25<br>25<br>25<br>25<br>25                   |
|                                                | S. 43rd Street Ditch | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | <1<br><1<br><1<br><1<br><1                             | 0<br>0<br>0<br>0<br>0                              | <1<br><1<br><1<br><1<br><1<br><1                         | 57<br>47<br>47<br>47<br>47<br>47                               | <1<br><1<br><1<br><1<br><1<br><1                            | 57<br>47<br>47<br>47<br>47<br>47                               | 57<br>47<br>47<br>47<br>47<br>47                               |

|                             |                 |                                                            | Point S                        | Sources                       |                              | Nonpoint Source <sup>a</sup>     |                                        |                           |                                        |                                        |
|-----------------------------|-----------------|------------------------------------------------------------|--------------------------------|-------------------------------|------------------------------|----------------------------------|----------------------------------------|---------------------------|----------------------------------------|----------------------------------------|
| Water Quality Indicator     | Subwatershed    | Screening Alternative                                      | Industrial<br>Point<br>Sources | SSOs <sup>a</sup>             | CSOs                         | Subtotal                         | Urban                                  | Rural <sup>b,c</sup>      | Subtotal                               | Total                                  |
| Copper (pounds) (continued) | Watershed Total | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 7<br>7<br>7<br>7<br>7          | 8<br>10<br>1<br>4<br>12<br>12 | 15<br>10<br>7<br>3<br>7<br>7 | 30<br>27<br>15<br>14<br>26<br>26 | 525<br>440<br>440<br>440<br>440<br>440 | 1<br><1<br><1<br><1<br><1 | 526<br>440<br>440<br>440<br>440<br>440 | 556<br>467<br>455<br>454<br>466<br>466 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint source subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table B-2

AVERAGE ANNUAL POLLUTANT LOADS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: MENOMONEE RIVER WATERSHED

|                           |                                 |                                                            |                                                     | Point S                                | Sources                                        |                                                     | N                                                  | Ionpoint Source                        | a                                                  |                                                          |
|---------------------------|---------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| Water Quality Indicator   | Subwatershed                    | Screening Alternative                                      | Industrial<br>Point<br>Sources                      | SSOs <sup>a</sup>                      | CSOs                                           | Subtotal                                            | Urban                                              | Rural <sup>b,c</sup>                   | Subtotal                                           | Total                                                    |
| Total Phosphorus (pounds) | Butler Ditch                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                               | 10<br>10<br>10<br>10<br>10<br>10       | 0<br>0<br>0<br>0<br>0                          | 10<br>10<br>10<br>10<br>10                          | 1,490<br>1,290<br>1,290<br>1,290<br>1,200<br>1,200 | 50<br>40<br>40<br>40<br>40<br>40       | 1,540<br>1,330<br>1,330<br>1,330<br>1,240<br>1,240 | 1,550<br>1,340<br>1,340<br>1,340<br>1,250<br>1,250       |
|                           | Honey Creek                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 200<br>200<br>200<br>200<br>200<br>200<br>200       | 10<br>10<br>10<br>10<br>10<br>10       | 0<br>0<br>0<br>0<br>0                          | 210<br>210<br>210<br>210<br>210<br>210<br>210       | 3,900<br>3,430<br>3,430<br>3,430<br>3,200<br>3,200 | 20<br>10<br>10<br>10<br>10<br>10       | 3,920<br>3,440<br>3,440<br>3,440<br>3,210<br>3,210 | 4,130<br>3,650<br>3,650<br>3,650<br>3,420<br>3,420       |
|                           | Lily Creek                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                               | 1,200<br>1,120<br>1,120<br>1,120<br>1,040<br>1,040 | 90<br>30<br>30<br>30<br>30<br>30<br>30 | 1,290<br>1,150<br>1,150<br>1,150<br>1,070<br>1,070 | 1,290<br>1,150<br>1,150<br>1,150<br>1,070<br>1,070       |
|                           | Little Menomonee Creek          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                               | 80<br>70<br>70<br>70<br>70<br>70                   | 350<br>310<br>290<br>290<br>290<br>290 | 430<br>380<br>360<br>360<br>360<br>360             | 430<br>380<br>360<br>360<br>360<br>360                   |
|                           | Little Menomonee River          | Existing 2020 Future (baseline) B1 B2 C1 C2                | 360<br>360<br>360<br>360<br>360<br>360              | <10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0                          | 360<br>360<br>360<br>360<br>360<br>360              | 3,300<br>3,170<br>3,170<br>3,170<br>2,950<br>2,950 | 840<br>690<br>670<br>670<br>660<br>660 | 4,140<br>3,860<br>3,840<br>3,840<br>3,610<br>3,610 | 4,500<br>4,220<br>4,200<br>4,200<br>3,970<br>3,970       |
|                           | Lower Menomonee River           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 15,650<br>3,910<br>3,910<br>3,910<br>3,910<br>3,910 | 550<br>470<br>60<br>440<br>750<br>750  | 1,880<br>1,350<br>990<br>250<br>1,030<br>1,030 | 18,080<br>5,730<br>4,960<br>4,600<br>5,690<br>5,690 | 7,180<br>6,290<br>6,290<br>6,290<br>5,850<br>5,850 | 70<br>60<br>60<br>60<br>60<br>60       | 7,250<br>6,350<br>6,350<br>6,350<br>5,910<br>5,910 | 25,330<br>12,080<br>11,310<br>10,950<br>11,600<br>11,600 |
|                           | North Branch<br>Menomonee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                               | 50<br>50<br>50<br>50<br>50<br>50                   | 220<br>220<br>200<br>200<br>210<br>210 | 270<br>270<br>250<br>250<br>260<br>260             | 270<br>270<br>250<br>250<br>260<br>260                   |
|                           | Nor-X-Way Channel               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 160<br>160<br>160<br>160<br>160<br>160              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                          | 160<br>160<br>160<br>160<br>160<br>160              | 630<br>910<br>910<br>910<br>910<br>830<br>830      | 340<br>330<br>330<br>330<br>310<br>310 | 970<br>1,240<br>1,240<br>1,240<br>1,140<br>1,140   | 1,130<br>1,400<br>1,400<br>1,400<br>1,300<br>1,300       |

|                                       |                                |                                                            |                                                     | Point S                                | Sources                                        |                                                     | N                                                                          | Ionpoint Source                                              | a                                                                          |                                                                            |
|---------------------------------------|--------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources                      | SSOs <sup>a</sup>                      | CSOs                                           | Subtotal                                            | Urban                                                                      | Rural <sup>b,c</sup>                                         | Subtotal                                                                   | Total                                                                      |
| Total Phosphorus (pounds) (continued) | Underwood Creek                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 30<br>30<br>30<br>30<br>30<br>30<br>30              | 10<br>10<br>10<br>10<br>10<br>10       | 0<br>0<br>0<br>0<br>0                          | 40<br>40<br>40<br>40<br>40<br>40                    | 6,350<br>5,480<br>5,480<br>5,480<br>5,100<br>5,100                         | 270<br>220<br>220<br>220<br>220<br>220<br>220                | 6,620<br>5,700<br>5,700<br>5,700<br>5,320<br>5,320                         | 6,660<br>5,740<br>5,740<br>5,740<br>5,360<br>5,360                         |
|                                       | Upper Menomonee River          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150  | <10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0                          | 1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150  | 4,170<br>4,630<br>4,630<br>4,630<br>4,190<br>4,190                         | 1,150<br>1,100<br>1,080<br>1,080<br>1,030<br>1,030           | 5,320<br>5,730<br>5,710<br>5,710<br>5,220<br>5,220                         | 6,470<br>6,880<br>6,860<br>6,860<br>6,370<br>6,370                         |
|                                       | West Branch<br>Menomonee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                               | 370<br>600<br>600<br>600<br>530<br>530                                     | 240<br>250<br>240<br>240<br>230<br>230                       | 610<br>850<br>840<br>840<br>760<br>760                                     | 610<br>850<br>840<br>840<br>760<br>760                                     |
|                                       | Willow Creek                   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                               | 320<br>430<br>430<br>430<br>380<br>380                                     | 430<br>450<br>440<br>440<br>410<br>410                       | 750<br>880<br>870<br>870<br>790<br>790                                     | 750<br>880<br>870<br>870<br>790<br>790                                     |
|                                       | Watershed Total                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 17,550<br>5,810<br>5,810<br>5,810<br>5,810<br>5,810 | 580<br>500<br>90<br>470<br>780<br>780  | 1,880<br>1,330<br>990<br>250<br>1,010<br>1,010 | 20,010<br>7,640<br>6,890<br>6,530<br>7,600<br>7,600 | 29,040<br>27,470<br>27,470<br>27,470<br>25,390<br>25,390                   | 4,070<br>3,710<br>3,610<br>3,610<br>3,500<br>3,500           | 33,110<br>31,180<br>31,080<br>31,080<br>28,890<br>28,890                   | 53,120<br>38,820<br>37,970<br>37,610<br>36,490<br>36,490                   |
| Total Suspended Solids (pounds)       | Butler Ditch                   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                               | 320<br>320<br>320<br>320<br>320<br>320 | 0<br>0<br>0<br>0<br>0                          | 320<br>320<br>320<br>320<br>320<br>320<br>320       | 689,190<br>506,400<br>506,400<br>506,400<br>506,390<br>506,390             | 8,000<br>2,540<br>2,540<br>2,540<br>2,540<br>2,540           | 697,190<br>508,940<br>508,940<br>508,940<br>508,930<br>508,930             | 697,510<br>509,260<br>509,260<br>509,260<br>509,250<br>509,250             |
|                                       | Honey Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 800<br>800<br>800<br>800<br>800                     | 470<br>450<br>420<br>450<br>450<br>450 | 0<br>0<br>0<br>0<br>0                          | 1,270<br>1,250<br>1,220<br>1,250<br>1,250<br>1,250  | 1,874,860<br>1,453,590<br>1,453,590<br>1,453,590<br>1,453,600<br>1,453,600 | 2,400<br>1,790<br>1,790<br>1,790<br>1,780<br>1,780           | 1,877,260<br>1,455,380<br>1,455,380<br>1,455,380<br>1,455,380<br>1,455,380 | 1,878,530<br>1,456,630<br>1,456,600<br>1,456,630<br>1,456,630<br>1,456,630 |
|                                       | Lily Creek                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                               | 666,000<br>498,090<br>498,090<br>498,090<br>498,090                        | 53,720<br>2,820<br>2,820<br>2,820<br>2,820<br>2,820<br>2,820 | 719,720<br>500,910<br>500,910<br>500,910<br>500,910<br>500,910             | 719,720<br>500,910<br>500,910<br>500,910<br>500,910<br>500,910             |

Table B-2 (continued)

|                                             |                                 |                                                            |                                                          | Point S                                                 | Sources                                                    |                                                               | N                                                                          | Ionpoint Source                                                | e <sup>a</sup>                                                             |                                                                            |
|---------------------------------------------|---------------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                     | Subwatershed                    | Screening Alternative                                      | Industrial<br>Point<br>Sources                           | SSOs <sup>a</sup>                                       | CSOs                                                       | Subtotal                                                      | Urban                                                                      | Rural <sup>b,c</sup>                                           | Subtotal                                                                   | Total                                                                      |
| Total Suspended Solids (pounds) (continued) | Little Menomonee Creek          | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0                                         | 58,630<br>45,820<br>45,820<br>45,820<br>45,820<br>45,820                   | 205,820<br>150,780<br>126,790<br>126,790<br>140,580<br>122,480 | 264,450<br>196,600<br>172,610<br>172,610<br>186,400<br>168,300             | 264,450<br>196,600<br>172,610<br>172,610<br>186,400<br>168,300             |
|                                             | Little Menomonee River          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530       | 30<br>30<br>30<br>230<br>30<br>30                       | 0<br>0<br>0<br>0<br>0                                      | 2,560<br>2,560<br>2,560<br>2,760<br>2,560<br>2,560            | 1,976,270<br>1,650,910<br>1,650,910<br>1,650,910<br>1,650,920<br>1,650,920 | 437,140<br>206,370<br>179,290<br>179,290<br>194,760<br>174,160 | 2,413,410<br>1,857,280<br>1,830,200<br>1,830,200<br>1,845,680<br>1,825,080 | 2,415,970<br>1,859,840<br>1,832,760<br>1,832,960<br>1,848,240<br>1,827,640 |
|                                             | Lower Menomonee River           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 51,660<br>30,880<br>30,880<br>30,880<br>30,880<br>30,880 | 31,670<br>26,930<br>3,290<br>25,100<br>43,140<br>43,140 | 182,960<br>129,150<br>96,430<br>22,820<br>90,450<br>90,450 | 266,290<br>186,960<br>130,600<br>78,800<br>164,470<br>164,470 | 4,001,330<br>3,109,190<br>3,109,190<br>3,109,190<br>3,099,310<br>3,099,310 | 10,180<br>9,930<br>9,930<br>9,930<br>9,910<br>9,910            | 4,011,510<br>3,119,120<br>3,119,120<br>3,119,120<br>3,109,220<br>3,109,220 | 4,277,800<br>3,306,080<br>3,249,720<br>3,197,920<br>3,273,690<br>3,273,690 |
|                                             | North Branch<br>Menomonee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0                                         | 27,660<br>29,120<br>29,120<br>29,120<br>26,630<br>26,630                   | 117,390<br>102,450<br>86,280<br>86,280<br>94,700<br>82,000     | 145,050<br>131,570<br>115,400<br>115,400<br>121,330<br>108,630             | 145,050<br>131,570<br>115,400<br>115,400<br>121,330<br>108,630             |
|                                             | Nor-X-Way Channel               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 280<br>280<br>280<br>280<br>280<br>280                   | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                      | 280<br>280<br>280<br>280<br>280<br>280                        | 478,790<br>710,880<br>710,880<br>710,880<br>690,850<br>690,850             | 351,000<br>100,670<br>95,550<br>95,550<br>96,810<br>94,580     | 829,790<br>811,550<br>806,430<br>806,430<br>787,660<br>785,430             | 830,070<br>811,830<br>806,710<br>806,710<br>787,940<br>785,710             |
|                                             | Underwood Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 90<br>90<br>90<br>90<br>90<br>90                         | 860<br>740<br>740<br>740<br>740<br>740                  | 0<br>0<br>0<br>0<br>0                                      | 950<br>830<br>830<br>830<br>830<br>830                        | 3,031,420<br>2,241,900<br>2,241,900<br>2,241,900<br>2,241,900<br>2,241,900 | 46,540<br>15,560<br>15,560<br>15,560<br>15,520<br>15,440       | 3,077,960<br>2,257,460<br>2,257,460<br>2,257,460<br>2,257,420<br>2,257,340 | 3,078,910<br>2,258,290<br>2,258,290<br>2,258,290<br>2,258,250<br>2,258,170 |
|                                             | Upper Menomonee River           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 3,380<br>3,380<br>3,380<br>3,380<br>3,380<br>3,380       | 240<br>240<br>240<br>240<br>240<br>240<br>240           | 0<br>0<br>0<br>0<br>0                                      | 3,620<br>3,620<br>3,620<br>3,620<br>3,620<br>3,620            | 2,504,060<br>2,540,160<br>2,540,160<br>2,540,160<br>2,406,940<br>2,406,940 | 462,670<br>268,490<br>252,120<br>252,120<br>250,150<br>237,520 | 2,966,730<br>2,808,650<br>2,792,280<br>2,792,280<br>2,657,090<br>2,644,460 | 2,970,350<br>2,812,270<br>2,795,900<br>2,795,900<br>2,660,710<br>2,648,080 |
|                                             | West Branch<br>Menomonee River  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0                                         | 232,070<br>414,350<br>414,350<br>414,350<br>377,740<br>377,740             | 103,580<br>74,340<br>67,970<br>67,970<br>68,500<br>63,450      | 335,650<br>488,690<br>482,320<br>482,320<br>446,240<br>441,190             | 335,650<br>488,690<br>482,320<br>482,320<br>446,240<br>441,190             |

|                                              |                        |                                                            |                                                          | Point S                                                 | Sources                                                          |                                                                  | N                                                                                | Ionpoint Source                                                    | a                                                                                |                                                                                  |
|----------------------------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                              |                        |                                                            | Industrial<br>Point                                      |                                                         |                                                                  |                                                                  |                                                                                  |                                                                    |                                                                                  |                                                                                  |
| Water Quality Indicator                      | Subwatershed           | Screening Alternative                                      | Sources                                                  | SSOs <sup>a</sup>                                       | CSOs                                                             | Subtotal                                                         | Urban                                                                            | Rural <sup>b,c</sup>                                               | Subtotal                                                                         | Total                                                                            |
| Total Suspended Solids (pounds) (continued)  | Willow Creek           | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                            | 0<br>0<br>0<br>0<br>0                                            | 197,990<br>259,850<br>259,850<br>259,850<br>238,480<br>238,480                   | 151,790<br>121,870<br>111,530<br>111,530<br>112,460<br>106,710     | 349,780<br>381,720<br>371,380<br>371,380<br>350,940<br>345,190                   | 349,780<br>381,720<br>371,380<br>371,380<br>350,940<br>345,190                   |
|                                              | Watershed Total        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 58,740<br>37,960<br>37,960<br>37,960<br>37,960<br>37,960 | 33,590<br>28,710<br>5,040<br>27,080<br>44,920<br>44,920 | 182,960<br>127,230<br>96,430<br>22,820<br>89,180<br>89,180       | 275,290<br>193,900<br>139,430<br>87,860<br>172,060<br>172,060    | 15,738,270<br>13,460,260<br>13,460,260<br>13,460,260<br>13,236,670<br>13,236,670 | 1,950,230<br>1,057,610<br>952,170<br>952,170<br>990,530<br>913,390 | 17,688,500<br>14,517,870<br>14,412,430<br>14,412,430<br>14,227,200<br>14,150,060 | 17,963,790<br>14,711,770<br>14,551,860<br>14,500,290<br>14,399,260<br>14,322,120 |
| Fecal Coliform Bacteria (trillions of cells) | Butler Ditch           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 6.07<br>6.07<br>6.07<br>6.07<br>6.07<br>6.07            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 6.07<br>6.07<br>6.07<br>6.07<br>6.07<br>6.07                     | 223.75<br>188.25<br>188.25<br>188.25<br>169.43<br>169.43                         | 0.46<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17                       | 224.21<br>188.42<br>188.42<br>188.42<br>169.60<br>169.60                         | 230.28<br>194.49<br>194.49<br>194.49<br>175.67                                   |
|                                              | Honey Creek            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 9.01<br>8.54<br>8.00<br>8.53<br>8.57<br>8.57            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 9.01<br>8.54<br>8.00<br>8.53<br>8.57<br>8.57                     | 2,342.61<br>1,964.37<br>1,964.37<br>1,964.37<br>1,613.14<br>1,613.14             | 0.14<br>0.11<br>0.10<br>0.10<br>0.10<br>0.10                       | 2,342.75<br>1,964.48<br>1,964.47<br>1,964.47<br>1,613.24<br>1,613.24             | 2,351.76<br>1,973.02<br>1,972.47<br>1,973.00<br>1,621.81<br>1,621.81             |
|                                              | Lily Creek             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 199.31<br>185.33<br>185.33<br>185.33<br>166.80<br>166.80                         | 1.25<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18                       | 200.56<br>185.51<br>185.51<br>185.51<br>166.98<br>166.98                         | 200.56<br>185.51<br>185.51<br>185.51<br>166.98<br>166.98                         |
|                                              | Little Menomonee Creek | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 65.43<br>58.34<br>58.34<br>58.34<br>52.51<br>52.51                               | 84.91<br>72.51<br>71.17<br>71.17<br>64.20<br>64.03                 | 150.34<br>130.85<br>129.51<br>129.51<br>116.71<br>116.54                         | 150.34<br>130.85<br>129.51<br>129.51<br>116.71<br>116.54                         |
|                                              | Little Menomonee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.52<br>0.52<br>0.52<br>4.32<br>0.52<br>0.52            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.52<br>0.52<br>0.52<br>4.32<br>0.52<br>0.52                     | 2,097.81<br>1,855.49<br>1,855.49<br>1,855.49<br>1,669.94<br>1,669.94             | 105.28<br>104.67<br>102.67<br>102.67<br>92.66<br>92.42             | 2,203.09<br>1,960.16<br>1,958.16<br>1,958.16<br>1,762.60<br>1,762.36             | 2,203.61<br>1,960.68<br>1,958.68<br>1,962.48<br>1,763.12<br>1,762.88             |
|                                              | Lower Menomonee River  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 604.24<br>513.76<br>62.76<br>478.94<br>823.07<br>823.07 | 1,727.39<br>1,293.26<br>920.90<br>275.76<br>1,100.22<br>1,100.22 | 2,331.63<br>1,807.02<br>983.66<br>754.70<br>1,923.29<br>1,923.29 | 4,067.91<br>3,371.59<br>3,371.59<br>3,371.59<br>2,804.30<br>2,804.30             | 0.28<br>0.44<br>0.41<br>0.41<br>0.41<br>0.41                       | 4,068.19<br>3,372.03<br>3,372.00<br>3,372.00<br>2,804.71<br>2,804.71             | 6,399.82<br>5,179.05<br>4,355.66<br>4,126.70<br>4,728.00<br>4,728.00             |

Table B-2 (continued)

|                                                          |                                 |                                                            |                                              | Point S                                                 | Sources                                                          |                                                                    | N                                                                          | Ionpoint Source                                          | a                                                                          |                                                                            |
|----------------------------------------------------------|---------------------------------|------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed                    | Screening Alternative                                      | Industrial<br>Point<br>Sources               | SSOs <sup>a</sup>                                       | CSOs                                                             | Subtotal                                                           | Urban                                                                      | Rural <sup>b,c</sup>                                     | Subtotal                                                                   | Total                                                                      |
| Fecal Coliform Bacteria (trillions of cells) (continued) | North Branch<br>Menomonee River | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                       | 9.30<br>12.48<br>12.48<br>12.48<br>10.66<br>10.66                          | 7.82<br>9.73<br>8.83<br>8.83<br>7.57<br>7.50             | 17.12<br>22.21<br>21.31<br>21.31<br>18.23<br>18.16                         | 17.12<br>22.21<br>21.31<br>21.31<br>18.23<br>18.16                         |
|                                                          | Nor-X-Way Channel               | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                       | 256.06<br>316.87<br>316.87<br>316.87<br>279.42<br>279.42                   | 48.78<br>85.76<br>85.45<br>85.45<br>75.34<br>75.31       | 304.84<br>402.63<br>402.32<br>402.32<br>354.76<br>354.73                   | 304.84<br>402.63<br>402.32<br>402.32<br>354.76<br>354.73                   |
|                                                          | Underwood Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 16.33<br>14.07<br>14.07<br>14.07<br>14.07<br>14.07      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 16.33<br>14.07<br>14.07<br>14.07<br>14.07<br>14.07                 | 3,454.09<br>2,796.17<br>2,796.17<br>2,796.17<br>2,416.37<br>2,416.37       | 1.67<br>1.03<br>1.02<br>1.02<br>1.02<br>1.02             | 3,455.76<br>2,797.20<br>2,797.19<br>2,797.19<br>2,417.39<br>2,417.39       | 3,472.09<br>2,811.27<br>2,811.26<br>2,811.26<br>2,431.46<br>2,431.46       |
|                                                          | Upper Menomonee River           | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 4.65<br>4.65<br>4.65<br>4.65<br>4.65<br>4.65            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 4.65<br>4.65<br>4.65<br>4.65<br>4.65<br>4.65                       | 1,274.47<br>1,344.32<br>1,344.32<br>1,344.32<br>1,169.12<br>1,169.12       | 79.98<br>102.94<br>100.99<br>100.99<br>85.62<br>85.43    | 1,354.45<br>1,447.26<br>1,445.31<br>1,445.31<br>1,254.74<br>1,254.55       | 1,359.10<br>1,451.91<br>1,449.96<br>1,449.96<br>1,259.39<br>1,259.20       |
|                                                          | West Branch<br>Menomonee River  | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                       | 62.41<br>99.56<br>99.56<br>99.56<br>84.39<br>84.39                         | 16.80<br>22.71<br>22.37<br>22.37<br>18.81<br>18.79       | 79.21<br>122.27<br>121.93<br>121.93<br>103.20<br>103.18                    | 79.21<br>122.27<br>121.93<br>121.93<br>103.20<br>103.18                    |
|                                                          | Willow Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                       | 58.69<br>89.91<br>89.91<br>89.91<br>76.91                                  | 45.74<br>50.22<br>49.78<br>49.78<br>41.92<br>41.89       | 104.43<br>140.13<br>139.69<br>139.69<br>118.83<br>118.80                   | 104.43<br>140.13<br>139.69<br>139.69<br>118.83<br>118.80                   |
|                                                          | Watershed Total                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 640.82<br>547.61<br>96.07<br>516.58<br>856.95<br>856.95 | 1,727.39<br>1,268.37<br>920.90<br>275.76<br>1,079.64<br>1,079.64 | 2,368.21<br>1,815.98<br>1,016.97<br>792.34<br>1,936.59<br>1,936.59 | 14,111.84<br>12,282.68<br>12,282.68<br>12,282.68<br>10,512.99<br>10,512.99 | 393.11<br>450.47<br>443.14<br>443.14<br>388.00<br>387.25 | 14,504.95<br>12,733.15<br>12,725.82<br>12,725.82<br>10,900.99<br>10,900.24 | 16,873.16<br>14,549.13<br>13,742.79<br>13,518.16<br>12,837.58<br>12,836.83 |
| Total Nitrogen (pounds)                                  | Butler Ditch                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                        | 10<br>10<br>10<br>10<br>10                              | 0<br>0<br>0<br>0<br>0                                            | 10<br>10<br>10<br>10<br>10                                         | 10,890<br>9,750<br>9,750<br>9,750<br>9,480<br>9,480                        | 570<br>220<br>220<br>220<br>220<br>220<br>220            | 11,460<br>9,970<br>9,970<br>9,970<br>9,700<br>9,700                        | 11,470<br>9,980<br>9,980<br>9,980<br>9,710<br>9,710                        |

|                                     |                                 |                                                            |                                                          | Point S                                      | Sources                                             |                                                          | ٨                                                        | Ionpoint Source                                          | a                                                        |                                                           |
|-------------------------------------|---------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                    | Screening Alternative                                      | Industrial<br>Point<br>Sources                           | SSOs <sup>a</sup>                            | CSOs                                                | Subtotal                                                 | Urban                                                    | Rural <sup>b,c</sup>                                     | Subtotal                                                 | Total                                                     |
| Total Nitrogen (pounds) (continued) | Honey Creek                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 640<br>640<br>640<br>640<br>640<br>640                   | 20<br>20<br>20<br>20<br>20<br>20<br>20       | 0<br>0<br>0<br>0<br>0                               | 660<br>660<br>660<br>660<br>660<br>660                   | 27,300<br>24,740<br>24,740<br>24,740<br>24,010<br>24,010 | 220<br>150<br>150<br>150<br>150<br>150                   | 27,520<br>24,890<br>24,890<br>24,890<br>24,160<br>24,160 | 28,180<br>25,550<br>25,550<br>25,550<br>24,820<br>24,820  |
|                                     | Lily Creek                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 9,530<br>9,190<br>9,190<br>9,190<br>8,950<br>8,950       | 2,920<br>270<br>270<br>270<br>270<br>270<br>270          | 12,450<br>9,460<br>9,460<br>9,460<br>9,220<br>9,220      | 12,450<br>9,460<br>9,460<br>9,460<br>9,220<br>9,220       |
|                                     | Little Menomonee Creek          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 530<br>530<br>530<br>530<br>510<br>510                   | 9,610<br>7,870<br>7,600<br>7,600<br>7,790<br>6,820       | 10,140<br>8,400<br>8,130<br>8,130<br>8,300<br>7,330      | 10,140<br>8,400<br>8,130<br>8,130<br>8,300<br>7,330       |
|                                     | Little Menomonee River          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350       | <10<br><10<br><10<br>10<br><10<br><10        | 0<br>0<br>0<br>0<br>0                               | 1,350<br>1,350<br>1,350<br>1,360<br>1,350<br>1,350       | 25,150<br>23,930<br>23,930<br>23,930<br>23,220<br>23,220 | 22,270<br>12,480<br>12,170<br>12,170<br>12,360<br>11,250 | 47,420<br>36,410<br>36,100<br>36,100<br>35,580<br>34,470 | 48,770<br>37,760<br>37,450<br>37,460<br>36,930<br>35,820  |
|                                     | Lower Menomonee River           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 52,730<br>20,850<br>20,850<br>20,850<br>20,850<br>20,850 | 1,160<br>980<br>120<br>920<br>1,570<br>1,570 | 11,610<br>7,990<br>6,090<br>1,280<br>6,300<br>6,300 | 65,500<br>29,820<br>27,060<br>23,050<br>28,720<br>28,720 | 49,520<br>44,550<br>44,550<br>44,550<br>43,160<br>43,160 | 730<br>650<br>650<br>650<br>650<br>650                   | 50,250<br>45,200<br>45,200<br>45,200<br>43,810<br>43,810 | 115,750<br>75,020<br>72,260<br>68,250<br>72,530<br>72,530 |
|                                     | North Branch<br>Menomonee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 310<br>340<br>340<br>340<br>310<br>310                   | 13,000<br>12,050<br>11,720<br>11,720<br>11,920<br>10,150 | 13,310<br>12,390<br>12,060<br>12,060<br>12,230<br>10,460 | 13,310<br>12,390<br>12,060<br>12,060<br>12,230<br>10,460  |
|                                     | Nor-X-Way Channel               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 100<br>100<br>100<br>100<br>100<br>100                   | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                               | 100<br>100<br>100<br>100<br>100<br>100                   | 4,350<br>5,730<br>5,730<br>5,730<br>5,470<br>5,470       | 8,110<br>3,490<br>3,480<br>3,480<br>3,420<br>3,370       | 12,460<br>9,220<br>9,210<br>9,210<br>8,890<br>8,840      | 12,560<br>9,320<br>9,310<br>9,310<br>8,990<br>8,940       |
|                                     | Underwood Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 20<br>20<br>20<br>20<br>20<br>20<br>20                   | 30<br>30<br>30<br>30<br>30<br>30             | 0<br>0<br>0<br>0<br>0                               | 50<br>50<br>50<br>50<br>50<br>50                         | 45,090<br>40,210<br>40,210<br>40,210<br>39,060<br>39,060 | 2,810<br>1,580<br>1,580<br>1,580<br>1,580<br>1,570       | 47,900<br>41,790<br>41,790<br>41,790<br>40,640<br>40,630 | 47,950<br>41,840<br>41,840<br>41,840<br>40,690<br>40,680  |

Table B-2 (continued)

|                                     |                                |                                                            |                                                          | Point S                                          | Sources                                             |                                                          | ١                                                              | Ionpoint Source                                           | a                                                              |                                                                |
|-------------------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources                           | SSOs <sup>a</sup>                                | CSOs                                                | Subtotal                                                 | Urban                                                          | Rural <sup>b,c</sup>                                      | Subtotal                                                       | Total                                                          |
| Total Nitrogen (pounds) (continued) | Upper Menomonee River          | Existing 2020 Future (baseline) B1 B2 C1 C2                | 810<br>810<br>810<br>810<br>810<br>810                   | 10<br>10<br>10<br>10<br>10<br>10                 | 0<br>0<br>0<br>0<br>0                               | 820<br>820<br>820<br>820<br>820<br>820                   | 32,240<br>35,050<br>35,050<br>35,050<br>35,050<br>33,160       | 32,270<br>21,850<br>21,540<br>21,540<br>21,370<br>19,790  | 64,510<br>56,900<br>56,590<br>56,590<br>54,530<br>52,950       | 65,330<br>57,720<br>57,410<br>57,410<br>55,350<br>53,770       |
|                                     | West Branch<br>Menomonee River | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 2,500<br>3,670<br>3,670<br>3,670<br>3,400<br>3,400             | 10,770<br>7,500<br>7,370<br>7,370<br>7,340<br>6,590       | 13,270<br>11,170<br>11,040<br>11,040<br>10,740<br>9,990        | 13,270<br>11,170<br>11,040<br>11,040<br>10,740<br>9,990        |
|                                     | Willow Creek                   | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 1,930<br>2,530<br>2,530<br>2,530<br>2,340<br>2,340             | 15,130<br>9,830<br>9,660<br>9,660<br>9,560<br>8,890       | 17,060<br>12,360<br>12,190<br>12,190<br>11,900<br>11,230       | 17,060<br>12,360<br>12,190<br>12,190<br>11,900<br>11,230       |
|                                     | Watershed Total                | Existing 2020 Future (baseline) B1 B2 C1 C2                | 55,650<br>23,770<br>23,770<br>23,770<br>23,770<br>23,770 | 1,230<br>1,050<br>190<br>1,000<br>1,640<br>1,640 | 11,610<br>7,890<br>6,090<br>1,280<br>6,230<br>6,230 | 68,490<br>32,710<br>30,050<br>26,050<br>31,640<br>31,640 | 209,340<br>200,220<br>200,220<br>200,220<br>193,070<br>193,070 | 118,410<br>77,940<br>76,410<br>76,410<br>76,630<br>69,720 | 327,750<br>278,160<br>276,630<br>276,630<br>269,700<br>262,790 | 396,240<br>310,870<br>306,680<br>302,680<br>301,340<br>294,430 |
| Biochemical Oxygen Demand (pounds)  | Butler Ditch                   | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | 80<br>80<br>80<br>80<br>80                       | 0<br>0<br>0<br>0<br>0                               | 80<br>80<br>80<br>80<br>80                               | 44,260<br>36,520<br>36,520<br>36,520<br>36,520<br>36,520       | 1,680<br>1,180<br>1,180<br>1,180<br>1,180<br>1,180        | 45,940<br>37,700<br>37,700<br>37,700<br>37,700<br>37,700       | 46,020<br>37,780<br>37,780<br>37,780<br>37,780<br>37,780       |
|                                     | Honey Creek                    | Existing 2020 Future (baseline) B1 B2 C1 C2                | 970<br>970<br>970<br>970<br>970<br>970                   | 120<br>110<br>100<br>110<br>110<br>110           | 0<br>0<br>0<br>0<br>0                               | 1,090<br>1,080<br>1,070<br>1,080<br>1,080<br>1,080       | 119,400<br>100,700<br>100,700<br>100,700<br>100,700<br>100,700 | 720<br>510<br>510<br>510<br>510<br>510                    | 120,120<br>101,210<br>101,210<br>101,210<br>101,210<br>101,210 | 121,210<br>102,290<br>102,280<br>102,290<br>102,290<br>102,290 |
|                                     | Lily Creek                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 42,390<br>38,020<br>38,020<br>38,020<br>38,020<br>38,020       | 4,250<br>1,030<br>1,030<br>1,030<br>1,030<br>1,030        | 46,640<br>39,050<br>39,050<br>39,050<br>39,050<br>39,050       | 46,640<br>39,050<br>39,050<br>39,050<br>39,050<br>39,050       |
|                                     | Little Menomonee Creek         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 3,570<br>3,380<br>3,380<br>3,380<br>3,380<br>3,380             | 13,290<br>12,930<br>12,810<br>12,810<br>12,530<br>11,700  | 16,860<br>16,310<br>16,190<br>16,190<br>15,910<br>15,080       | 16,860<br>16,310<br>16,190<br>16,190<br>15,910<br>15,080       |

|                                                |                                 |                                                            |                                                           | Point S                                            | Sources                                                 |                                                              | N                                                              | Ionpoint Source                                          | <sub>,</sub> a                                                 |                                                                |
|------------------------------------------------|---------------------------------|------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                    | Screening Alternative                                      | Industrial<br>Point<br>Sources                            | SSOs <sup>a</sup>                                  | CSOs                                                    | Subtotal                                                     | Urban                                                          | Rural <sup>b,c</sup>                                     | Subtotal                                                       | Total                                                          |
| Biochemical Oxygen Demand (pounds) (continued) | Little Menomonee River          | Existing 2020 Future (baseline) B1 B2 C1 C2                | 3,090<br>3,090<br>3,090<br>3,090<br>3,090<br>3,090        | 10<br>10<br>10<br>60<br>10                         | 0<br>0<br>0<br>0<br>0                                   | 3,100<br>3,100<br>3,100<br>3,150<br>3,100<br>3,100           | 126,650<br>124,990<br>124,990<br>124,990<br>124,990<br>124,990 | 32,380<br>23,540<br>23,460<br>23,460<br>23,080<br>22,140 | 159,030<br>148,530<br>148,450<br>148,450<br>148,070<br>147,130 | 162,130<br>151,630<br>151,550<br>151,600<br>151,170<br>150,230 |
|                                                | Lower Menomonee River           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 104,920<br>61,040<br>61,040<br>61,040<br>61,040<br>61,040 | 7,790<br>6,620<br>810<br>6,180<br>10,610<br>10,610 | 58,680<br>38,060<br>30,450<br>4,580<br>29,620<br>29,620 | 171,390<br>105,720<br>92,300<br>71,800<br>101,270<br>101,270 | 236,620<br>199,350<br>199,350<br>199,350<br>198,950<br>198,950 | 2,440<br>2,160<br>2,160<br>2,160<br>2,160<br>2,160       | 239,060<br>201,510<br>201,510<br>201,510<br>201,110<br>201,110 | 410,450<br>307,230<br>293,810<br>273,310<br>302,380<br>302,380 |
|                                                | North Branch<br>Menomonee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                        | 2,200<br>2,390<br>2,390<br>2,390<br>2,250<br>2,250             | 16,120<br>15,810<br>15,810<br>15,810<br>15,150<br>14,010 | 18,320<br>18,200<br>18,200<br>18,200<br>17,400<br>16,260       | 18,320<br>18,200<br>18,200<br>18,200<br>17,400<br>16,260       |
|                                                | Nor-X-Way Channel               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 450<br>450<br>450<br>450<br>450<br>450                    | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                   | 450<br>450<br>450<br>450<br>450<br>450                       | 26,530<br>43,680<br>43,680<br>43,680<br>42,880<br>42,880       | 9,200<br>6,960<br>6,840<br>6,840<br>6,830<br>6,790       | 35,730<br>50,640<br>50,520<br>50,520<br>49,710<br>49,670       | 36,180<br>51,090<br>50,970<br>50,970<br>50,160<br>50,120       |
|                                                | Underwood Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 200<br>200<br>200<br>200<br>200<br>200<br>200             | 210<br>180<br>180<br>180<br>180<br>180             | 0<br>0<br>0<br>0<br>0                                   | 410<br>380<br>380<br>380<br>380<br>380                       | 194,480<br>159,880<br>159,880<br>159,880<br>159,880<br>159,880 | 9,490<br>6,400<br>6,400<br>6,400<br>6,400<br>6,390       | 203,970<br>166,280<br>166,280<br>166,280<br>166,280<br>166,270 | 204,380<br>166,660<br>166,660<br>166,660<br>166,650            |
|                                                | Upper Menomonee River           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 6,880<br>6,880<br>6,880<br>6,880<br>6,880<br>6,880        | 60<br>60<br>60<br>60<br>60                         | 0<br>0<br>0<br>0<br>0                                   | 6,940<br>6,940<br>6,940<br>6,940<br>6,940<br>6,940           | 164,500<br>192,130<br>192,130<br>192,130<br>184,740<br>184,740 | 52,650<br>44,770<br>44,690<br>44,690<br>43,160<br>42,070 | 217,150<br>236,900<br>236,820<br>236,820<br>227,900<br>226,810 | 224,090<br>243,840<br>243,760<br>243,760<br>234,840<br>233,750 |
|                                                | West Branch<br>Menomonee River  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                        | 18,000<br>31,910<br>31,910<br>31,910<br>29,870<br>29,870       | 14,280<br>11,640<br>11,640<br>11,640<br>11,110<br>10,760 | 32,280<br>43,550<br>43,550<br>43,550<br>40,980<br>40,630       | 32,280<br>43,550<br>43,550<br>43,550<br>40,980<br>40,630       |
|                                                | Willow Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                        | 14,790<br>20,230<br>20,230<br>20,230<br>19,050<br>19,050       | 19,350<br>19,200<br>18,070<br>18,070<br>18,330<br>17,870 | 34,140<br>39,430<br>38,300<br>38,300<br>37,380<br>36,920       | 34,140<br>39,430<br>38,300<br>38,300<br>37,380<br>36,920       |

Table B-2 (continued)

|                                                |                                 |                                                            | _                                                         | Point S                                              | Sources                                                 |                                                               | N                                                              | Ionpoint Source                                                | a                                                                          |                                                                            |
|------------------------------------------------|---------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                    | Screening Alternative                                      | Industrial<br>Point<br>Sources                            | SSOs <sup>a</sup>                                    | CSOs                                                    | Subtotal                                                      | Urban                                                          | Rural <sup>b,c</sup>                                           | Subtotal                                                                   | Total                                                                      |
| Biochemical Oxygen Demand (pounds) (continued) | Watershed Total                 | Existing 2020 Future (baseline) B1 B2 C1 C2                | 116,510<br>72,630<br>72,630<br>72,630<br>72,630<br>72,630 | 8,270<br>7,060<br>1,240<br>6,670<br>11,050<br>11,050 | 58,680<br>37,750<br>30,450<br>4,580<br>29,400<br>29,400 | 183,460<br>117,440<br>104,320<br>83,880<br>113,080<br>113,080 | 993,390<br>953,180<br>953,180<br>953,180<br>941,230<br>941,230 | 175,840<br>146,130<br>144,600<br>144,600<br>141,470<br>136,610 | 1,169,230<br>1,099,310<br>1,097,780<br>1,097,780<br>1,082,700<br>1,077,840 | 1,352,690<br>1,216,750<br>1,202,100<br>1,181,660<br>1,195,780<br>1,190,920 |
| Copper (pounds)                                | Butler Ditch                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                     | <1<br><1<br><1<br><1<br><1<br><1                     | 0<br>0<br>0<br>0<br>0                                   | <1<br><1<br><1<br><1<br><1<br><1                              | 78<br>61<br>61<br>61<br>61                                     | 1<br><1<br><1<br><1<br><1<br><1                                | 79<br>61<br>61<br>61<br>61                                                 | 79<br>61<br>61<br>61<br>61<br>61                                           |
|                                                | Honey Creek                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1<br>1<br>1<br>1<br>1                                     | <1<br><1<br><1<br><1<br><1<br><1                     | 0<br>0<br>0<br>0<br>0                                   | 1<br>1<br>1<br>1<br>1                                         | 211<br>172<br>172<br>172<br>172<br>172<br>172                  | <1<br><1<br><1<br><1<br><1<br><1                               | 211<br>172<br>172<br>172<br>172<br>172<br>172                              | 212<br>173<br>173<br>173<br>173<br>173                                     |
|                                                | Lily Creek                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                         | 73<br>61<br>61<br>61<br>61<br>61                               | 1<br><1<br><1<br><1<br><1<br><1                                | 74<br>61<br>61<br>61<br>61<br>61                                           | 74<br>61<br>61<br>61<br>61<br>61                                           |
|                                                | Little Menomonee Creek          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                         | 6<br>6<br>6<br>6                                               | 9<br>8<br>8<br>8<br>8<br>7                                     | 15<br>14<br>14<br>14<br>14<br>13                                           | 15<br>14<br>14<br>14<br>14<br>13                                           |
|                                                | Little Menomonee River          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                     | <1<br>0<br><1<br><1<br><1<br><1                      | 0<br>0<br>0<br>0<br>0                                   | <1<br>0<br><1<br><1<br><1<br><1                               | 224<br>207<br>207<br>207<br>207<br>207<br>207                  | 17<br>15<br>15<br>15<br>15<br>15                               | 241<br>222<br>222<br>222<br>222<br>222<br>222                              | 241<br>222<br>222<br>222<br>222<br>222<br>222                              |
|                                                | Lower Menomonee River           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 3<br>3<br>3<br>3<br>3<br>3                                | 5<br>4<br>1<br>4<br>7<br>7                           | 48<br>36<br>25<br>8<br>25<br>25                         | 56<br>43<br>29<br>15<br>35<br>35                              | 428<br>349<br>349<br>349<br>348<br>348                         | 1<br>1<br>1<br>1<br>1<br>1                                     | 429<br>350<br>350<br>350<br>349<br>349                                     | 485<br>393<br>379<br>365<br>384<br>384                                     |
|                                                | North Branch<br>Menomonee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                         | 4<br>4<br>4<br>4<br>4                                          | 6<br>7<br>7<br>7<br>6<br>6                                     | 10<br>11<br>11<br>11<br>10<br>10                                           | 10<br>11<br>11<br>11<br>10<br>10                                           |

|                             |                                |                                                            |                                | Point S                          | Sources                         |                                  | ١                                                  |                                       |                                                    |                                                    |
|-----------------------------|--------------------------------|------------------------------------------------------------|--------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Water Quality Indicator     | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources | SSOs <sup>a</sup>                | CSOs                            | Subtotal                         | Urban                                              | Rural <sup>b,c</sup>                  | Subtotal                                           | Total                                              |
| Copper (pounds) (continued) | Nor-X-Way Channel              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0            | 49<br>79<br>79<br>79<br>77<br>77                   | 8<br>9<br>9<br>9<br>9                 | 57<br>88<br>88<br>88<br>88<br>86                   | 57<br>88<br>88<br>88<br>88<br>86<br>86             |
|                             | Underwood Creek                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | <1<br><1<br><1<br><1<br><1<br><1 | 0<br>0<br>0<br>0<br>0           | <1<br><1<br><1<br><1<br><1<br><1 | 340<br>268<br>268<br>268<br>268<br>268             | 3<br>2<br>2<br>2<br>2<br>2<br>2       | 343<br>270<br>270<br>270<br>270<br>270<br>270      | 343<br>270<br>270<br>270<br>270<br>270<br>270      |
|                             | Upper Menomonee River          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | <1<br><1<br><1<br><1<br><1<br><1 | 0<br>0<br>0<br>0<br>0           | <1<br><1<br><1<br><1<br><1<br><1 | 295<br>329<br>329<br>329<br>314<br>314             | 35<br>37<br>37<br>37<br>35<br>34      | 330<br>366<br>366<br>366<br>349<br>348             | 330<br>366<br>366<br>366<br>349<br>348             |
|                             | West Branch<br>Menomonee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0            | 33<br>60<br>60<br>60<br>56<br>56                   | 9<br>9<br>9<br>9                      | 42<br>69<br>69<br>69<br>65                         | 42<br>69<br>69<br>69<br>65<br>65                   |
|                             | Willow Creek                   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0            | 27<br>37<br>37<br>37<br>35<br>35                   | 16<br>16<br>16<br>16<br>15            | 43<br>53<br>53<br>53<br>50<br>50                   | 43<br>53<br>53<br>53<br>50<br>50                   |
|                             | Watershed Total                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 4<br>4<br>4<br>4<br>4<br>4     | 5<br>4<br>1<br>4<br>7<br>7       | 48<br>35<br>25<br>8<br>25<br>25 | 57<br>43<br>30<br>16<br>36<br>36 | 1,768<br>1,633<br>1,633<br>1,633<br>1,609<br>1,609 | 105<br>104<br>104<br>104<br>100<br>98 | 1,873<br>1,737<br>1,737<br>1,737<br>1,709<br>1,707 | 1,930<br>1,780<br>1,767<br>1,753<br>1,745<br>1,743 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint source subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table B-3

AVERAGE ANNUAL POLLUTANT LOADS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: MILWAUKEE RIVER WATERSHED

|                           |                                |                                                            |                                        |                       | Point Sources         | 3                                                       |                                                         | N                                                  | onpoint Source                                           | e <sup>a</sup>                                           |                                                          |
|---------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------|-----------------------|-----------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Water Quality Indicator   | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources         | SSOs <sup>a</sup>     | CSOs                  | WWTPs                                                   | Subtotal                                                | Urban                                              | Rural <sup>b,c</sup>                                     | Subtotal                                                 | Total                                                    |
| Total Phosphorus (pounds) | Batavia Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 120<br>120<br>110<br>110<br>120<br>110             | 480<br>460<br>400<br>400<br>440<br>430                   | 600<br>580<br>510<br>510<br>560<br>540                   | 600<br>580<br>510<br>510<br>560<br>540                   |
|                           | Cedar Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 7,400<br>10,050<br>10,050<br>10,050<br>10,050<br>10,050 | 7,400<br>10,050<br>10,050<br>10,050<br>10,050<br>10,050 | 3,310<br>3,550<br>3,270<br>3,270<br>3,220<br>3,090 | 15,390<br>14,850<br>12,760<br>12,760<br>13,980<br>12,560 | 18,700<br>18,400<br>16,030<br>16,030<br>17,200<br>15,650 | 26,100<br>28,450<br>26,080<br>26,080<br>27,250<br>25,700 |
|                           | Cedar Lake                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 390<br>380<br>350<br>350<br>350<br>340             | 2,250<br>2,200<br>1,980<br>1,980<br>2,070<br>1,940       | 2,640<br>2,580<br>2,330<br>2,330<br>2,420<br>2,280       | 2,640<br>2,580<br>2,330<br>2,330<br>2,420<br>2,280       |
|                           | Chambers Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 150<br>150<br>140<br>140<br>140<br>130             | 500<br>490<br>440<br>440<br>470<br>460                   | 650<br>640<br>580<br>580<br>610<br>590                   | 650<br>640<br>580<br>580<br>610<br>590                   |
|                           | East Branch<br>Milwaukee River | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 460<br>470<br>430<br>430<br>430<br>410             | 2,140<br>2,130<br>1,960<br>1,960<br>2,080<br>1,990       | 2,600<br>2,600<br>2,390<br>2,390<br>2,510<br>2,400       | 2,600<br>2,600<br>2,390<br>2,390<br>2,510<br>2,400       |
|                           | Kettle Moraine Lake            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 270<br>270<br>250<br>250<br>260<br>250             | 3,180<br>3,050<br>2,650<br>2,650<br>2,920<br>2,710       | 3,450<br>3,320<br>2,900<br>2,900<br>3,180<br>2,960       | 3,450<br>3,320<br>2,900<br>2,900<br>3,180<br>2,960       |
|                           | Kewaskum Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                   | 370<br>380<br>350<br>350<br>350<br>340             | 1,870<br>1,800<br>1,560<br>1,560<br>1,690<br>1,540       | 2,240<br>2,180<br>1,910<br>1,910<br>2,040<br>1,880       | 2,240<br>2,180<br>1,910<br>1,910<br>2,040<br>1,880       |

|                                       |                                       |                                                            |                                                          |                                            | Point Sources                              | S                                                        |                                                          | N                                                        | onpoint Source                                     | ea                                                       |                                                          |
|---------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Water Quality Indicator               | Subwatershed                          | Screening Alternative                                      | Industrial<br>Point<br>Sources                           | SSOs <sup>a</sup>                          | CSOs                                       | WWTPs                                                    | Subtotal                                                 | Urban                                                    | Rural <sup>b,c</sup>                               | Subtotal                                                 | Total                                                    |
| Total Phosphorus (pounds) (continued) | Lake Fifteen Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 220<br>220<br>210<br>210<br>210<br>200                   | 1,200<br>1,180<br>1,080<br>1,080<br>1,150<br>1,100 | 1,420<br>1,400<br>1,290<br>1,290<br>1,360<br>1,300       | 1,420<br>1,400<br>1,290<br>1,290<br>1,360<br>1,300       |
|                                       | Lincoln Creek                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 4,260<br>4,260<br>4,260<br>4,260<br>4,260<br>4,260       | 200<br>180<br>180<br>340<br>280<br>280     | 80<br>10<br><10<br>20<br><10<br><10        | 0<br>0<br>0<br>0<br>0                                    | 4,540<br>4,450<br>4,440<br>4,620<br>4,540<br>4,540       | 7,870<br>6,940<br>6,340<br>6,340<br>5,420<br>5,110       | 70<br>80<br>70<br>70<br>40<br>40                   | 7,940<br>7,020<br>6,410<br>6,410<br>5,460<br>5,150       | 12,480<br>11,470<br>10,850<br>11,030<br>10,000<br>9,690  |
|                                       | Lower Cedar Creek                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 10<br>10<br>10<br>10<br>10<br>10                         | 10<br>10<br>10<br>10<br>10<br>10           | 0<br>0<br>0<br>0<br>0                      | 5,730<br>7,470<br>7,470<br>7,470<br>7,470<br>7,470       | 5,750<br>7,490<br>7,490<br>7,490<br>7,490<br>7,490       | 3,200<br>3,320<br>3,070<br>3,070<br>3,080<br>2,970       | 5,210<br>5,000<br>4,400<br>4,400<br>4,720<br>4,430 | 8,410<br>8,320<br>7,470<br>7,470<br>7,800<br>7,400       | 14,160<br>15,810<br>14,960<br>14,960<br>15,290<br>14,890 |
|                                       | Lower Milwaukee<br>River              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 73,470<br>73,470<br>73,470<br>73,470<br>73,470<br>73,470 | 540<br>860<br>200<br>670<br>1,050<br>1,050 | 1,710<br>1,210<br>880<br>450<br>540<br>540 | 0<br>0<br>0<br>0<br>0                                    | 75,720<br>75,540<br>74,550<br>74,590<br>75,060<br>75,060 | 14,780<br>13,500<br>12,340<br>12,340<br>11,630<br>11,020 | 6,740<br>6,210<br>5,540<br>5,540<br>5,700<br>5,150 | 21,520<br>19,710<br>17,880<br>17,880<br>17,330<br>16,170 | 97,240<br>95,250<br>92,430<br>92,470<br>92,390<br>91,230 |
|                                       | Middle Milwaukee<br>River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 10<br>10<br>10<br>10<br>10<br>10                         | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                      | 14,740<br>19,420<br>19,420<br>19,420<br>19,420<br>19,420 | 14,750<br>19,430<br>19,430<br>19,430<br>19,430<br>19,430 | 3,480<br>3,700<br>3,410<br>3,410<br>3,330<br>3,190       | 6,150<br>6,110<br>5,470<br>5,470<br>5,630<br>5,330 | 9,630<br>9,810<br>8,880<br>8,880<br>8,960<br>8,520       | 24,380<br>29,240<br>28,310<br>28,310<br>28,390<br>27,950 |
|                                       | Mink Creek                            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 320<br>320<br>300<br>300<br>300<br>300<br>280            | 1,120<br>1,080<br>960<br>960<br>1,040<br>1,040     | 1,440<br>1,400<br>1,260<br>1,260<br>1,340<br>1,320       | 1,440<br>1,400<br>1,260<br>1,260<br>1,340<br>1,320       |
|                                       | North Branch<br>Milwaukee River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 15,870<br>15,870<br>15,870<br>15,870<br>15,870<br>15,870 | <10<br><10<br><10<br><10<br><10<br><10     | 0<br>0<br>0<br>0<br>0                      | 6,580<br>6,830<br>6,830<br>6,830<br>6,830<br>6,830       | 22,450<br>22,700<br>22,700<br>22,700<br>22,700<br>22,700 | 1,480<br>1,490<br>1,370<br>1,370<br>1,380<br>1,310       | 6,240<br>6,070<br>5,380<br>5,380<br>5,790<br>5,530 | 7,720<br>7,560<br>6,750<br>6,750<br>7,170<br>6,840       | 30,170<br>30,260<br>29,450<br>29,450<br>29,870<br>29,540 |
|                                       | Silver Creek<br>(Sheboygan<br>County) | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                      | 900<br>1,070<br>1,070<br>1,070<br>1,070<br>1,070         | 900<br>1,070<br>1,070<br>1,070<br>1,070<br>1,070         | 830<br>930<br>860<br>860<br>840<br>800                   | 1,350<br>1,310<br>1,160<br>1,160<br>1,240<br>1,190 | 2,180<br>2,240<br>2,020<br>2,020<br>2,080<br>1,990       | 3,080<br>3,310<br>3,090<br>3,090<br>3,150<br>3,060       |

Table B-3 (continued)

|                                       |                                |                                                            |                                                          |                                                | Point Sources                              | <b>i</b>                                                 |                                                                | N                                                        | onpoint Source                                           | ea                                                             |                                                                |
|---------------------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources                           | SSOs <sup>a</sup>                              | CSOs                                       | WWTPs                                                    | Subtotal                                                       | Urban                                                    | Rural <sup>b,c</sup>                                     | Subtotal                                                       | Total                                                          |
| Total Phosphorus (pounds) (continued) | Silver Creek<br>(West Bend)    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                          | 1,280<br>1,410<br>1,300<br>1,300<br>1,310<br>1,260       | 730<br>740<br>680<br>680<br>680<br>650                   | 2,010<br>2,150<br>1,980<br>1,980<br>1,990<br>1,910             | 2,010<br>2,150<br>1,980<br>1,980<br>1,990<br>1,910             |
|                                       | Stony Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                          | 310<br>310<br>290<br>290<br>290<br>280                   | 1,090<br>1,060<br>950<br>950<br>1,030<br>1,010           | 1,400<br>1,370<br>1,240<br>1,240<br>1,320<br>1,290             | 1,400<br>1,370<br>1,240<br>1,240<br>1,320<br>1,290             |
|                                       | Upper Lower<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 140<br>140<br>140<br>140<br>140<br>140                   | 30<br>30<br>30<br>30<br>30<br>30               | 0<br>0<br>0<br>0<br>0                      | 12,850<br>17,370<br>17,370<br>17,370<br>17,370<br>17,370 | 13,020<br>17,540<br>17,540<br>17,540<br>17,540<br>17,540       | 3,480<br>3,790<br>3,500<br>3,500<br>3,500<br>3,270       | 5,120<br>4,850<br>4,290<br>4,290<br>4,520<br>4,170       | 8,600<br>8,640<br>7,790<br>7,790<br>8,020<br>7,440             | 21,620<br>26,180<br>25,330<br>25,330<br>25,560<br>24,980       |
|                                       | Upper Milwaukee<br>River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 80<br>80<br>80<br>80<br>80                               | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                      | 3,540<br>4,620<br>4,620<br>4,620<br>4,620<br>4,620       | 3,620<br>4,700<br>4,700<br>4,700<br>4,700<br>4,700             | 1,400<br>1,480<br>1,370<br>1,370<br>1,380<br>1,330       | 8,830<br>8,430<br>7,210<br>7,210<br>8,010<br>7,340       | 10,230<br>9,910<br>8,580<br>8,580<br>9,390<br>8,670            | 13,850<br>14,610<br>13,280<br>13,280<br>14,090<br>13,370       |
|                                       | Watercress Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                          | 300<br>300<br>280<br>280<br>280<br>270                   | 2,360<br>2,290<br>2,030<br>2,030<br>2,190<br>2,060       | 2,660<br>2,590<br>2,310<br>2,310<br>2,470<br>2,330             | 2,660<br>2,590<br>2,310<br>2,310<br>2,470<br>2,330             |
|                                       | West Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                          | 1,270<br>1,260<br>1,170<br>1,170<br>1,180<br>1,150       | 9,040<br>8,620<br>7,400<br>7,400<br>8,210<br>7,520       | 10,310<br>9,880<br>8,570<br>8,570<br>9,390<br>8,670            | 10,310<br>9,880<br>8,570<br>8,570<br>9,390<br>8,670            |
|                                       | Watershed Total                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 93,840<br>93,840<br>93,840<br>93,840<br>93,840<br>93,840 | 780<br>1,080<br>420<br>1,050<br>1,370<br>1,370 | 1,790<br>1,220<br>880<br>470<br>540<br>540 | 51,740<br>66,830<br>66,830<br>66,830<br>66,830<br>66,830 | 148,150<br>162,970<br>161,970<br>162,190<br>162,580<br>162,580 | 45,290<br>44,290<br>40,710<br>40,710<br>39,000<br>37,110 | 81,060<br>78,010<br>68,370<br>68,370<br>73,600<br>68,190 | 126,350<br>122,300<br>109,080<br>109,080<br>112,600<br>105,300 | 274,500<br>285,270<br>271,050<br>271,270<br>275,180<br>267,880 |

|                                 |                                |                                                            |                                |                       | Point Sources         | 3                                                        |                                                          | N                                                                          | onpoint Sourc                                                              | ea                                                                         |                                                                            |
|---------------------------------|--------------------------------|------------------------------------------------------------|--------------------------------|-----------------------|-----------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator         | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources | SSOs <sup>a</sup>     | CSOs                  | WWTPs                                                    | Subtotal                                                 | Urban                                                                      | Rural <sup>b,c</sup>                                                       | Subtotal                                                                   | Total                                                                      |
| Total Suspended Solids (pounds) | Batavia Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 40,000<br>40,000<br>36,000<br>36,000<br>36,000<br>34,000                   | 186,000<br>180,000<br>150,000<br>150,000<br>170,000<br>170,000             | 226,000<br>220,000<br>186,000<br>186,000<br>206,000<br>204,000             | 226,000<br>220,000<br>186,000<br>186,000<br>206,000<br>204,000             |
|                                 | Cedar Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 24,000<br>32,000<br>32,000<br>32,000<br>32,000<br>32,000 | 24,000<br>32,000<br>32,000<br>32,000<br>32,000<br>32,000 | 1,504,000<br>1,588,000<br>1,472,000<br>1,472,000<br>1,470,000<br>1,428,000 | 6,782,000<br>6,634,000<br>5,414,000<br>5,414,000<br>6,236,000<br>6,354,000 | 8,286,000<br>8,222,000<br>6,886,000<br>6,886,000<br>7,706,000<br>7,782,000 | 8,310,000<br>8,254,000<br>6,918,000<br>6,918,000<br>7,738,000<br>7,814,000 |
|                                 | Cedar Lake                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 186,000<br>178,000<br>164,000<br>164,000<br>166,000<br>162,000             | 1,070,000<br>1,048,000<br>922,000<br>922,000<br>988,000<br>1,002,000       | 1,256,000<br>1,226,000<br>1,086,000<br>1,086,000<br>1,154,000<br>1,164,000 | 1,256,000<br>1,226,000<br>1,086,000<br>1,086,000<br>1,154,000<br>1,164,000 |
|                                 | Chambers Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 52,000<br>52,000<br>46,000<br>46,000<br>46,000<br>44,000                   | 200,000<br>194,000<br>164,000<br>164,000<br>184,000<br>182,000             | 252,000<br>246,000<br>210,000<br>210,000<br>230,000<br>226,000             | 252,000<br>246,000<br>210,000<br>210,000<br>230,000<br>226,000             |
|                                 | East Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 150,000<br>150,000<br>126,000<br>126,000<br>128,000<br>122,000             | 860,000<br>852,000<br>744,000<br>744,000<br>820,000<br>806,000             | 1,010,000<br>1,002,000<br>870,000<br>870,000<br>948,000<br>928,000         | 1,010,000<br>1,002,000<br>870,000<br>870,000<br>948,000<br>928,000         |
|                                 | Kettle Moraine Lake            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 126,000<br>126,000<br>108,000<br>108,000<br>110,000<br>110,000             | 1,916,000<br>1,874,000<br>1,558,000<br>1,558,000<br>1,794,000<br>1,882,000 | 2,042,000<br>2,000,000<br>1,666,000<br>1,666,000<br>1,904,000<br>1,992,000 | 2,042,000<br>2,000,000<br>1,666,000<br>1,666,000<br>1,904,000<br>1,992,000 |
|                                 | Kewaskum Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 162,000<br>160,000<br>140,000<br>140,000<br>140,000<br>138,000             | 878,000<br>840,000<br>714,000<br>714,000<br>784,000<br>862,000             | 1,040,000<br>1,000,000<br>854,000<br>854,000<br>924,000<br>1,000,000       | 1,040,000<br>1,000,000<br>854,000<br>854,000<br>924,000<br>1,000,000       |
|                                 | Lake Fifteen Creek             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 94,000<br>94,000<br>76,000<br>76,000<br>78,000<br>76,000                   | 686,000<br>680,000<br>586,000<br>586,000<br>652,000<br>670,000             | 780,000<br>774,000<br>662,000<br>662,000<br>730,000<br>746,000             | 780,000<br>774,000<br>662,000<br>662,000<br>730,000<br>746,000             |

Table B-3 (continued)

|                                             |                                       |                                                            |                                                                |                                                          | Point Sources                                               | 3                                                        |                                                                | N                                                                          | onpoint Source                                                             | e <sup>a</sup>                                                             |                                                                            |
|---------------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                     | Subwatershed                          | Screening Alternative                                      | Industrial<br>Point<br>Sources                                 | SSOs <sup>a</sup>                                        | CSOs                                                        | WWTPs                                                    | Subtotal                                                       | Urban                                                                      | Rural <sup>b,c</sup>                                                       | Subtotal                                                                   | Total                                                                      |
| Total Suspended Solids (pounds) (continued) | Lincoln Creek                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 28,000<br>28,000<br>28,000<br>28,000<br>28,000<br>28,000       | 6,000<br>6,000<br>16,000<br>28,000<br>24,000<br>24,000   | 4,000<br>0<br>0<br>2,000<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 38,000<br>34,000<br>44,000<br>58,000<br>52,000<br>52,000       | 2,778,000<br>2,180,000<br>1,852,000<br>1,852,000<br>1,284,000<br>1,226,000 | 48,000<br>38,000<br>36,000<br>36,000<br>26,000<br>24,000                   | 2,826,000<br>2,218,000<br>1,888,000<br>1,888,000<br>1,310,000<br>1,250,000 | 2,864,000<br>2,252,000<br>1,932,000<br>1,946,000<br>1,362,000<br>1,302,000 |
|                                             | Lower Cedar Creek                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                       | 46,000<br>62,000<br>62,000<br>62,000<br>62,000           | 46,000<br>62,000<br>62,000<br>62,000<br>62,000                 | 1,256,000<br>1,266,000<br>1,070,000<br>1,070,000<br>1,086,000<br>1,064,000 | 3,094,000<br>3,030,000<br>2,538,000<br>2,538,000<br>2,870,000<br>3,024,000 | 4,350,000<br>4,296,000<br>3,608,000<br>3,608,000<br>3,956,000<br>4,088,000 | 4,396,000<br>4,358,000<br>3,670,000<br>3,670,000<br>4,018,000<br>4,150,000 |
|                                             | Lower Milwaukee<br>River              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 370,000<br>370,000<br>370,000<br>370,000<br>370,000<br>370,000 | 16,000<br>24,000<br>18,000<br>58,000<br>90,000<br>90,000 | 139,650<br>104,140<br>130,120<br>59,390<br>94,000<br>94,000 | 0<br>0<br>0<br>0<br>0                                    | 525,650<br>498,140<br>518,120<br>487,390<br>554,000<br>554,000 | 5,236,000<br>4,306,000<br>3,748,000<br>3,748,000<br>3,418,000<br>3,274,000 | 3,032,000<br>2,654,000<br>2,232,000<br>2,232,000<br>2,450,000<br>2,414,000 | 8,268,000<br>6,960,000<br>5,980,000<br>5,980,000<br>5,868,000<br>5,688,000 | 8,793,650<br>7,458,140<br>6,498,120<br>6,467,390<br>6,422,000<br>6,242,000 |
|                                             | Middle Milwaukee<br>River             | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                       | 44,000<br>60,000<br>60,000<br>60,000<br>60,000           | 44,000<br>60,000<br>60,000<br>60,000<br>60,000                 | 1,510,000<br>1,558,000<br>1,356,000<br>1,356,000<br>1,344,000<br>1,316,000 | 3,088,000<br>2,990,000<br>2,542,000<br>2,542,000<br>2,746,000<br>2,862,000 | 4,598,000<br>4,548,000<br>3,898,000<br>3,898,000<br>4,090,000<br>4,178,000 | 4,642,000<br>4,608,000<br>3,958,000<br>3,958,000<br>4,150,000<br>4,238,000 |
|                                             | Mink Creek                            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                          | 106,000<br>106,000<br>94,000<br>94,000<br>96,000<br>92,000                 | 460,000<br>442,000<br>374,000<br>374,000<br>420,000<br>426,000             | 566,000<br>548,000<br>468,000<br>468,000<br>516,000<br>518,000             | 566,000<br>548,000<br>468,000<br>468,000<br>516,000<br>518,000             |
|                                             | North Branch<br>Milwaukee River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 54,000<br>54,000<br>54,000<br>54,000<br>54,000                 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                       | 8,000<br>22,280<br>22,280<br>22,280<br>22,280<br>22,280  | 62,000<br>76,280<br>76,280<br>76,280<br>76,280<br>76,280       | 532,000<br>530,000<br>466,000<br>466,000<br>474,000<br>454,000             | 2,666,000<br>2,582,000<br>2,170,000<br>2,170,000<br>2,434,000<br>2,450,000 | 3,198,000<br>3,112,000<br>2,636,000<br>2,636,000<br>2,908,000<br>2,904,000 | 3,260,000<br>3,188,280<br>2,712,280<br>2,712,280<br>2,984,280<br>2,980,280 |
|                                             | Silver Creek<br>(Sheboygan<br>County) | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                       | 16,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000 | 16,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000       | 292,000<br>322,000<br>280,000<br>280,000<br>282,000<br>268,000             | 532,000<br>518,000<br>430,000<br>430,000<br>480,000<br>472,000             | 824,000<br>840,000<br>710,000<br>710,000<br>762,000<br>740,000             | 840,000<br>860,000<br>730,000<br>730,000<br>782,000<br>760,000             |
|                                             | Silver Creek<br>(West Bend)           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                          | 526,000<br>548,000<br>500,000<br>500,000<br>508,000<br>498,000             | 470,000<br>454,000<br>404,000<br>404,000<br>432,000<br>432,000             | 996,000<br>1,002,000<br>904,000<br>904,000<br>940,000<br>930,000           | 996,000<br>1,002,000<br>904,000<br>904,000<br>940,000<br>930,000           |

|                                              |                                |                                                            |                                                                |                                                    | Point Sources                                               | i                                                              |                                                                        | N                                                                                | onpoint Sourc                                                                    | e <sup>a</sup>                                                                   |                                                                                  |
|----------------------------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Water Quality Indicator                      | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources                                 | SSOs <sup>a</sup>                                  | CSOs                                                        | WWTPs                                                          | Subtotal                                                               | Urban                                                                            | Rural <sup>b,c</sup>                                                             | Subtotal                                                                         | Total                                                                            |
| Total Suspended Solids (pounds) (continued)  | Stony Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                                  | 100,000<br>100,000<br>82,000<br>82,000<br>84,000<br>80,000                       | 434,000<br>426,000<br>362,000<br>362,000<br>404,000<br>404,000                   | 534,000<br>526,000<br>444,000<br>444,000<br>488,000<br>484,000                   | 534,000<br>526,000<br>444,000<br>444,000<br>488,000<br>484,000                   |
|                                              | Upper Lower<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000 | 0<br>0<br>0<br>0<br>0                                       | 130,000<br>172,000<br>172,000<br>172,000<br>172,000<br>172,000 | 132,000<br>174,000<br>174,000<br>174,000<br>174,000<br>174,000         | 1,748,000<br>1,880,000<br>1,702,000<br>1,702,000<br>1,728,000<br>1,622,000       | 2,574,000<br>2,442,000<br>2,050,000<br>2,050,000<br>2,266,000<br>2,278,000       | 4,322,000<br>4,322,000<br>3,752,000<br>3,752,000<br>3,994,000<br>3,900,000       | 4,454,000<br>4,496,000<br>3,926,000<br>3,926,000<br>4,168,000<br>4,074,000       |
|                                              | Upper Milwaukee<br>River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000             | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                       | 26,000<br>36,000<br>36,000<br>36,000<br>36,000<br>36,000       | 28,000<br>38,000<br>38,000<br>38,000<br>38,000<br>38,000               | 580,000<br>610,000<br>538,000<br>538,000<br>548,000<br>536,000                   | 4,714,000<br>4,578,000<br>3,746,000<br>3,746,000<br>4,340,000<br>4,578,000       | 5,294,000<br>5,188,000<br>4,284,000<br>4,284,000<br>4,888,000<br>5,114,000       | 5,322,000<br>5,226,000<br>4,322,000<br>4,322,000<br>4,926,000<br>5,152,000       |
|                                              | Watercress Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                                  | 134,000<br>134,000<br>112,000<br>112,000<br>114,000<br>112,000                   | 1,388,000<br>1,358,000<br>1,138,000<br>1,138,000<br>1,290,000<br>1,372,000       | 1,522,000<br>1,492,000<br>1,250,000<br>1,250,000<br>1,404,000<br>1,484,000       | 1,522,000<br>1,492,000<br>1,250,000<br>1,250,000<br>1,404,000<br>1,484,000       |
|                                              | West Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                                  | 596,000<br>590,000<br>486,000<br>486,000<br>498,000<br>488,000                   | 4,682,000<br>4,538,000<br>3,724,000<br>3,724,000<br>4,276,000<br>4,620,000       | 5,278,000<br>5,128,000<br>4,210,000<br>4,210,000<br>4,774,000<br>5,108,000       | 5,278,000<br>5,128,000<br>4,210,000<br>4,210,000<br>4,774,000<br>5,108,000       |
|                                              | Watershed Total                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 454,000<br>454,000<br>454,000<br>454,000<br>454,000<br>454,000 | 24,000<br>32,000<br>36,000<br>88,000<br>116,000    | 143,650<br>104,140<br>130,120<br>61,390<br>94,000<br>94,000 | 294,000<br>404,280<br>404,280<br>404,280<br>404,280<br>404,280 | 915,650<br>994,420<br>1,024,400<br>1,007,670<br>1,068,280<br>1,068,280 | 17,708,000<br>16,518,000<br>14,454,000<br>14,454,000<br>13,638,000<br>13,144,000 | 39,760,000<br>38,352,000<br>31,998,000<br>31,998,000<br>36,062,000<br>37,284,000 | 57,468,000<br>54,870,000<br>46,452,000<br>46,452,000<br>49,700,000<br>50,428,000 | 58,383,650<br>55,864,420<br>47,476,400<br>47,459,670<br>50,768,280<br>51,496,280 |
| Fecal Coliform Bacteria (trillions of cells) | Batavia Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                           | 73.50<br>73.30<br>73.30<br>73.30<br>65.97<br>62.70                               | 87.60<br>87.52<br>87.52<br>87.52<br>84.23<br>69.10                               | 161.10<br>160.82<br>160.82<br>160.82<br>150.20<br>131.80                         | 161.10<br>160.82<br>160.82<br>160.82<br>150.20<br>131.80                         |
|                                              | Cedar Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.20<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27                   | 0.21<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                           | 1,664.36<br>852.04<br>852.04<br>852.04<br>697.47<br>658.79                       | 1,878.04<br>1,201.78<br>1,201.78<br>1,201.78<br>1,018.90<br>869.91               | 3,542.40<br>2,053.82<br>2,053.82<br>2,053.82<br>1,716.37<br>1,528.70             | 3,542.61<br>2,054.10<br>2,054.10<br>2,054.10<br>1,716.65<br>1,528.98             |

Table B-3 (continued)

|                                                          |                                |                                                            |                                              |                                                      | Point Sources                                  | ;                                            |                                                         | N                                                                    | onpoint Source                                           | e <sup>a</sup>                                                       |                                                                      |
|----------------------------------------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources               | SSOs <sup>a</sup>                                    | CSOs                                           | WWTPs                                        | Subtotal                                                | Urban                                                                | Rural <sup>b,c</sup>                                     | Subtotal                                                             | Total                                                                |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Cedar Lake                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 212.84<br>1.83<br>1.83<br>1.83<br>0.00<br>0.00                       | 1,362.21<br>53.16<br>53.16<br>53.16<br>42.90<br>34.60    | 1,575.05<br>54.99<br>54.99<br>54.99<br>42.90<br>34.60                | 1,575.05<br>54.99<br>54.99<br>54.99<br>42.90<br>34.60                |
|                                                          | Chambers Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 82.08<br>81.86<br>81.86<br>81.86<br>73.67<br>69.92                   | 105.88<br>105.74<br>105.74<br>105.74<br>100.33<br>85.18  | 187.96<br>187.60<br>187.60<br>187.60<br>174.00<br>155.10             | 187.96<br>187.60<br>187.60<br>187.60<br>174.00<br>155.10             |
|                                                          | East Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 270.07<br>237.88<br>237.88<br>237.88<br>212.71<br>201.45             | 521.74<br>514.06<br>514.06<br>514.06<br>468.39<br>419.92 | 791.81<br>751.94<br>751.94<br>751.94<br>681.10<br>621.37             | 791.81<br>751.94<br>751.94<br>751.94<br>681.10<br>621.37             |
|                                                          | Kettle Moraine Lake            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 157.94<br>157.85<br>157.85<br>157.85<br>142.15<br>134.52             | 540.89<br>540.66<br>540.66<br>540.66<br>498.55<br>447.38 | 698.83<br>698.51<br>698.51<br>698.51<br>640.70<br>581.90             | 698.83<br>698.51<br>698.51<br>698.51<br>640.70<br>581.90             |
|                                                          | Kewaskum Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 198.48<br>112.67<br>112.67<br>112.67<br>97.22<br>92.05               | 180.39<br>182.23<br>182.23<br>182.23<br>152.62<br>128.60 | 378.87<br>294.90<br>294.90<br>294.90<br>249.84<br>220.65             | 378.87<br>294.90<br>294.90<br>294.90<br>249.84<br>220.65             |
|                                                          | Lake Fifteen Creek             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 114.69<br>114.49<br>114.49<br>114.49<br>103.01<br>97.44              | 340.61<br>340.01<br>340.01<br>340.01<br>310.69<br>283.86 | 455.30<br>454.50<br>454.50<br>454.50<br>413.70<br>381.30             | 455.30<br>454.50<br>454.50<br>454.50<br>413.70<br>381.30             |
|                                                          | Lincoln Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79 | 111.29<br>99.03<br>95.63<br>182.93<br>151.19         | 57.96<br>6.59<br>0.60<br>12.77<br>0.57<br>0.57 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 170.04<br>106.41<br>97.02<br>196.49<br>152.55<br>152.55 | 4,178.24<br>3,456.43<br>3,456.43<br>3,456.43<br>2,449.00<br>2,272.10 | 0.28<br>19.12<br>19.12<br>19.12<br>0.10<br>0.10          | 4,178.52<br>3,475.55<br>3,475.55<br>3,475.55<br>2,449.10<br>2,272.20 | 4,348.56<br>3,581.96<br>3,572.57<br>3,672.04<br>2,601.65<br>2,424.75 |
|                                                          | Lower Cedar Creek              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 2.78<br>2.78<br>2.78<br>2.78<br>2.78<br>2.78<br>2.78 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00   | 1.67<br>2.17<br>2.17<br>2.17<br>2.17<br>2.17 | 4.45<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95            | 1,637.71<br>446.29<br>446.29<br>446.29<br>384.91<br>364.14           | 851.03<br>798.65<br>798.65<br>798.65<br>662.98<br>591.24 | 2,488.74<br>1,244.94<br>1,244.94<br>1,244.94<br>1,047.89<br>955.38   | 2,493.19<br>1,249.89<br>1,249.89<br>1,249.89<br>1,052.84<br>960.33   |

|                                                          |                                       |                                                            | Point Sources                                |                                                          |                                                              |                                                    | N                                                              | onpoint Sourc                                                        | ea                                                                   |                                                                      |                                                                       |
|----------------------------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed                          | Screening Alternative                                      | Industrial<br>Point<br>Sources               | SSOs <sup>a</sup>                                        | CSOs                                                         | WWTPs                                              | Subtotal                                                       | Urban                                                                | Rural <sup>b,c</sup>                                                 | Subtotal                                                             | Total                                                                 |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Lower Milwaukee<br>River              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 9.84<br>9.84<br>9.84<br>9.84<br>9.84         | 296.62<br>471.65<br>108.66<br>364.32<br>573.70<br>573.70 | 1,820.95<br>1,343.69<br>992.60<br>597.99<br>407.82<br>407.82 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 2,127.41<br>1,825.18<br>1,111.10<br>972.15<br>991.36<br>991.36 | 7,522.97<br>5,901.79<br>5,901.79<br>5,901.79<br>4,721.23<br>4,428.45 | 973.60<br>828.16<br>828.16<br>828.16<br>599.01<br>540.60             | 8,496.57<br>6,729.95<br>6,729.95<br>6,729.95<br>5,320.24<br>4,969.05 | 10,623.98<br>8,555.13<br>7,841.05<br>7,702.10<br>6,311.60<br>5,960.41 |
|                                                          | Middle Milwaukee<br>River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 27.70<br>37.73<br>37.73<br>37.73<br>37.73<br>37.73 | 27.72<br>37.75<br>37.75<br>37.75<br>37.75<br>37.75             | 1,909.21<br>408.44<br>408.44<br>408.44<br>313.67<br>296.47           | 1,396.42<br>1,084.69<br>1,084.69<br>1,084.69<br>782.61<br>701.84     | 3,305.63<br>1,493.13<br>1,493.13<br>1,493.13<br>1,096.28<br>998.31   | 3,333.35<br>1,530.88<br>1,530.88<br>1,530.88<br>1,134.03<br>1,036.06  |
|                                                          | Mink Creek                            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                   | 183.01<br>182.53<br>182.53<br>182.53<br>164.41<br>156.07             | 263.94<br>263.62<br>263.62<br>263.62<br>251.69<br>212.03             | 446.95<br>446.15<br>446.15<br>446.15<br>416.10<br>368.10             | 446.95<br>446.15<br>446.15<br>446.15<br>416.10<br>368.10              |
|                                                          | North Branch<br>Milwaukee River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.67<br>0.67<br>0.67<br>0.67<br>0.67<br>0.67 | 1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 8.19<br>8.26<br>8.26<br>8.26<br>8.26<br>8.26       | 10.63<br>10.70<br>10.70<br>10.70<br>10.70<br>10.70             | 814.80<br>725.20<br>725.20<br>725.20<br>647.36<br>613.59             | 1,623.75<br>1,424.17<br>1,424.17<br>1,424.17<br>1,297.26<br>1,147.88 | 2,438.55<br>2,149.37<br>2,149.37<br>2,149.37<br>1,944.62<br>1,761.47 | 2,449.18<br>2,160.07<br>2,160.07<br>2,160.07<br>1,955.32<br>1,772.17  |
|                                                          | Silver Creek<br>(Sheboygan<br>County) | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.82<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97       | 0.87<br>1.02<br>1.02<br>1.02<br>1.02<br>1.02                   | 599.28<br>192.17<br>192.17<br>192.17<br>163.42<br>155.29             | 295.74<br>303.95<br>303.95<br>303.95<br>255.18<br>221.39             | 895.02<br>496.12<br>496.12<br>496.12<br>418.60<br>376.68             | 895.89<br>497.14<br>497.14<br>497.14<br>419.62<br>377.70              |
|                                                          | Silver Creek<br>(West Bend)           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                   | 722.20<br>311.75<br>311.75<br>311.75<br>273.63<br>257.19             | 210.56<br>224.37<br>224.37<br>224.37<br>170.01<br>157.57             | 932.76<br>536.12<br>536.12<br>536.12<br>443.64<br>414.76             | 932.76<br>536.12<br>536.12<br>536.12<br>443.64<br>414.76              |
|                                                          | Stony Creek                           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                   | 188.85<br>188.35<br>188.35<br>188.35<br>169.44<br>160.75             | 271.65<br>271.24<br>271.24<br>271.24<br>255.56<br>220.45             | 460.50<br>459.59<br>459.59<br>459.59<br>425.00<br>381.20             | 460.50<br>459.59<br>459.59<br>459.59<br>425.00<br>381.20              |
|                                                          | Upper Lower<br>Milwaukee River        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 16.58<br>16.58<br>16.58<br>16.58<br>16.58<br>16.58       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 1.75<br>2.22<br>2.22<br>2.22<br>2.22<br>2.22       | 18.95<br>19.42<br>19.42<br>19.42<br>19.42<br>19.42             | 1,849.48<br>245.37<br>245.37<br>245.37<br>201.24<br>190.54           | 1,104.93<br>774.72<br>774.72<br>774.72<br>598.53<br>523.68           | 2,954.41<br>1,020.09<br>1,020.09<br>1,020.09<br>799.77<br>714.22     | 2,973.36<br>1,039.51<br>1,039.51<br>1,039.51<br>819.19<br>733.64      |

Table B-3 (continued)

|                                                          |                                |                                                            |                                                    |                                                          | Point Sources                                                | 3                                                  |                                                                      | N                                                                          | onpoint Source                                                           | e <sup>a</sup>                                                             |                                                                            |
|----------------------------------------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources                     | SSOs <sup>a</sup>                                        | CSOs                                                         | WWTPs                                              | Subtotal                                                             | Urban                                                                      | Rural <sup>b,c</sup>                                                     | Subtotal                                                                   | Total                                                                      |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Upper Milwaukee<br>River       | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 1.21<br>1.45<br>1.45<br>1.45<br>1.45<br>1.45       | 1.32<br>1.56<br>1.56<br>1.56<br>1.56<br>1.56                         | 820.18<br>438.94<br>438.94<br>438.94<br>389.61<br>370.02                   | 809.09<br>692.87<br>692.87<br>692.87<br>632.83<br>525.15                 | 1,629.27<br>1,131.81<br>1,131.81<br>1,131.81<br>1,022.44<br>895.17         | 1,630.59<br>1,133.37<br>1,133.37<br>1,133.37<br>1,024.00<br>896.73         |
|                                                          | Watercress Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | 201.89<br>201.75<br>201.75<br>201.75<br>181.60<br>171.23                   | 723.77<br>723.42<br>723.42<br>723.42<br>660.30<br>601.17                 | 925.66<br>925.17<br>925.17<br>925.17<br>841.90<br>772.40                   | 925.66<br>925.17<br>925.17<br>925.17<br>841.90<br>772.40                   |
|                                                          | West Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | 697.12<br>605.04<br>605.04<br>605.04<br>544.13<br>515.36                   | 824.04<br>794.74<br>794.74<br>794.74<br>760.05<br>628.62                 | 1,521.16<br>1,399.78<br>1,399.78<br>1,399.78<br>1,304.18<br>1,143.98       | 1,521.16<br>1,399.78<br>1,399.78<br>1,399.78<br>1,304.18<br>1,143.98       |
|                                                          | Watershed Total                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 12.11<br>12.11<br>12.11<br>12.11<br>12.11<br>12.11 | 429.04<br>591.81<br>225.42<br>568.38<br>746.02<br>746.02 | 1,878.91<br>1,350.28<br>993.20<br>610.76<br>408.39<br>408.39 | 41.54<br>53.07<br>53.07<br>53.07<br>53.07<br>53.07 | 2,361.60<br>2,007.27<br>1,283.80<br>1,244.32<br>1,219.59<br>1,219.59 | 24,098.90<br>14,935.97<br>14,935.97<br>14,935.97<br>11,995.85<br>11,268.07 | 14,366.16<br>11,228.88<br>11,228.88<br>11,228.88<br>9,602.72<br>8,410.27 | 38,465.06<br>26,164.85<br>26,164.85<br>26,164.85<br>21,598.57<br>19,678.34 | 40,826.66<br>28,172.12<br>27,448.65<br>27,409.17<br>22,818.16<br>20,887.93 |
| Total Nitrogen (pounds)                                  | Batavia Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                                | 560<br>560<br>530<br>530<br>540<br>520                                     | 18,950<br>18,800<br>18,380<br>18,380<br>18,710<br>15,190                 | 19,510<br>19,360<br>18,910<br>18,910<br>19,250<br>15,710                   | 19,510<br>19,360<br>18,910<br>18,910<br>19,250<br>15,710                   |
|                                                          | Cedar Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 40<br>40<br>40<br>40<br>40<br>40                   | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                        | 4,580<br>6,220<br>6,220<br>6,220<br>6,220<br>6,220 | 4,620<br>6,260<br>6,260<br>6,260<br>6,260<br>6,260                   | 13,420<br>14,600<br>14,280<br>14,280<br>13,890<br>13,390                   | 286,240<br>272,880<br>258,030<br>258,030<br>269,560<br>220,630           | 299,660<br>287,480<br>272,310<br>272,310<br>283,450<br>234,020             | 304,280<br>293,740<br>278,570<br>278,570<br>289,710<br>240,280             |
|                                                          | Cedar Lake                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                                | 1,610<br>1,600<br>1,560<br>1,560<br>1,560<br>1,500                         | 24,990<br>24,560<br>23,550<br>23,550<br>24,300<br>20,700                 | 26,600<br>26,160<br>25,110<br>25,110<br>25,860<br>22,200                   | 26,600<br>26,160<br>25,110<br>25,110<br>25,860<br>22,200                   |
|                                                          | Chambers Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                                | 650<br>650<br>620<br>620<br>620<br>620                                     | 18,970<br>18,830<br>18,480<br>18,480<br>18,760<br>15,360                 | 19,620<br>19,480<br>19,100<br>19,100<br>19,380<br>15,960                   | 19,620<br>19,480<br>19,100<br>19,100<br>19,380<br>15,960                   |

|                                     |                                |                                                            | Point Sources Industrial                           |                                                  |                                                      |                                                          |                                                          | N                                                        | onpoint Sourc                                                 | e <sup>a</sup>                                                 |                                                                |
|-------------------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources                     | SSOs <sup>a</sup>                                | CSOs                                                 | WWTPs                                                    | Subtotal                                                 | Urban                                                    | Rural <sup>b,c</sup>                                          | Subtotal                                                       | Total                                                          |
| Total Nitrogen (pounds) (continued) | East Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 2,080<br>2,090<br>1,950<br>1,950<br>1,960<br>1,880       | 41,270<br>40,690<br>39,930<br>39,930<br>40,520<br>34,630      | 43,350<br>42,780<br>41,880<br>41,880<br>42,480<br>36,510       | 43,350<br>42,780<br>41,880<br>41,880<br>42,480<br>36,510       |
|                                     | Kettle Moraine Lake            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 1,220<br>1,220<br>1,160<br>1,160<br>1,170<br>1,130       | 58,780<br>57,820<br>54,830<br>54,830<br>57,180<br>47,030      | 60,000<br>59,040<br>55,990<br>55,990<br>58,350<br>48,160       | 60,000<br>59,040<br>55,990<br>55,990<br>58,350<br>48,160       |
|                                     | Kewaskum Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 1,780<br>1,870<br>1,800<br>1,800<br>1,780<br>1,730       | 42,100<br>39,920<br>38,600<br>38,600<br>39,440<br>32,310      | 43,880<br>41,790<br>40,400<br>40,400<br>41,220<br>34,040       | 43,880<br>41,790<br>40,400<br>40,400<br>41,220<br>34,040       |
|                                     | Lake Fifteen Creek             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 920<br>920<br>860<br>860<br>870<br>830                   | 20,270<br>20,080<br>19,530<br>19,530<br>19,930<br>16,880      | 21,190<br>21,000<br>20,390<br>20,390<br>20,800<br>17,710       | 21,190<br>21,000<br>20,390<br>20,390<br>20,800<br>17,710       |
|                                     | Lincoln Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 3,530<br>3,530<br>3,530<br>3,530<br>3,530<br>3,530 | 850<br>760<br>730<br>1,400<br>1,160              | 960<br>110<br>10<br>210<br>10                        | 0<br>0<br>0<br>0<br>0                                    | 5,340<br>4,400<br>4,270<br>5,140<br>4,700<br>4,700       | 42,420<br>39,530<br>38,220<br>38,220<br>33,960<br>32,210 | 500<br>460<br>450<br>450<br>340<br>320                        | 42,920<br>39,990<br>38,670<br>38,670<br>34,300<br>32,530       | 48,260<br>44,390<br>42,940<br>43,810<br>39,000<br>37,230       |
|                                     | Lower Cedar Creek              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <10<br><10<br><10<br><10<br><10<br><10             | 20<br>20<br>20<br>20<br>20<br>20<br>20           | 0<br>0<br>0<br>0<br>0                                | 950<br>1,230<br>1,230<br>1,230<br>1,230<br>1,230         | 970<br>1,250<br>1,250<br>1,250<br>1,250<br>1,250         | 16,910<br>17,960<br>17,240<br>17,240<br>17,200<br>16,570 | 95,100<br>89,380<br>85,190<br>85,190<br>88,270<br>73,510      | 112,010<br>107,340<br>102,430<br>102,430<br>105,470<br>90,080  | 112,980<br>108,590<br>103,680<br>103,680<br>106,720<br>91,330  |
|                                     | Lower Milwaukee<br>River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 64,010<br>64,010<br>64,010<br>64,010<br>64,010     | 2,270<br>3,610<br>830<br>2,790<br>4,390<br>4,390 | 16,950<br>11,560<br>8,330<br>3,540<br>6,740<br>6,740 | 0<br>0<br>0<br>0<br>0                                    | 83,230<br>79,180<br>73,170<br>70,340<br>75,140<br>75,140 | 79,020<br>77,390<br>75,350<br>75,350<br>71,490<br>68,230 | 109,560<br>82,260<br>78,610<br>78,610<br>80,720<br>67,700     | 188,580<br>159,650<br>153,960<br>153,960<br>152,210<br>135,930 | 271,810<br>238,830<br>227,130<br>224,300<br>227,350<br>211,070 |
|                                     | Middle Milwaukee<br>River      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 10<br>10<br>10<br>10<br>10<br>10                   | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                                | 27,930<br>37,670<br>37,670<br>37,670<br>37,670<br>37,670 | 27,940<br>37,680<br>37,680<br>37,680<br>37,680<br>37,680 | 16,190<br>17,290<br>16,570<br>16,570<br>16,120<br>15,500 | 123,790<br>109,130<br>105,600<br>105,600<br>107,660<br>90,460 | 139,980<br>126,420<br>122,170<br>122,170<br>123,780<br>105,960 | 167,920<br>164,100<br>159,850<br>159,850<br>161,460<br>143,640 |

Table B-3 (continued)

|                                     |                                       |                                                            |                                                    |                                        | Point Sources         | 3                                                        |                                                               | N                                                        | onpoint Source                                                 | e <sup>a</sup>                                                 |                                                                |
|-------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------------------|----------------------------------------|-----------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                          | Screening Alternative                                      | Industrial<br>Point<br>Sources                     | SSOs <sup>a</sup>                      | CSOs                  | WWTPs                                                    | Subtotal                                                      | Urban                                                    | Rural <sup>b,c</sup>                                           | Subtotal                                                       | Total                                                          |
| Total Nitrogen (pounds) (continued) | Mink Creek                            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                         | 1,420<br>1,420<br>1,350<br>1,350<br>1,360<br>1,310       | 49,620<br>49,240<br>48,360<br>48,360<br>49,070<br>39,850       | 51,040<br>50,660<br>49,710<br>49,710<br>50,430<br>41,160       | 51,040<br>50,660<br>49,710<br>49,710<br>50,430<br>41,160       |
|                                     | North Branch<br>Milwaukee River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 7,560<br>7,560<br>7,560<br>7,560<br>7,560<br>7,560 | 10<br>10<br>10<br>10<br>10<br>10       | 0<br>0<br>0<br>0<br>0 | 9,530<br>9,780<br>9,780<br>9,780<br>9,780<br>9,780       | 17,100<br>17,350<br>17,350<br>17,350<br>17,350<br>17,350      | 6,410<br>6,440<br>6,150<br>6,150<br>6,150<br>5,920       | 171,210<br>167,870<br>163,440<br>163,440<br>166,850<br>136,890 | 177,620<br>174,310<br>169,590<br>169,590<br>173,000<br>142,810 | 194,720<br>191,660<br>186,940<br>186,940<br>190,350<br>160,160 |
|                                     | Silver Creek<br>(Sheboygan<br>County) | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 350<br>420<br>420<br>420<br>420<br>420                   | 350<br>420<br>420<br>420<br>420<br>420                        | 3,680<br>4,240<br>4,060<br>4,060<br>4,000<br>3,830       | 44,550<br>42,820<br>41,810<br>41,810<br>42,550<br>34,580       | 48,230<br>47,060<br>45,870<br>45,870<br>46,550<br>38,410       | 48,580<br>47,480<br>46,290<br>46,290<br>46,970<br>38,830       |
|                                     | Silver Creek<br>(West Bend)           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                         | 6,410<br>7,270<br>7,130<br>7,130<br>7,120<br>6,850       | 10,860<br>8,800<br>8,610<br>8,610<br>8,680<br>7,670            | 17,270<br>16,070<br>15,740<br>15,740<br>15,800<br>14,520       | 17,270<br>16,070<br>15,740<br>15,740<br>15,800<br>14,520       |
|                                     | Stony Creek                           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                         | 1,440<br>1,440<br>1,340<br>1,340<br>1,350<br>1,300       | 39,770<br>39,540<br>38,840<br>38,840<br>39,390<br>32,290       | 41,210<br>40,980<br>40,180<br>40,180<br>40,740<br>33,590       | 41,210<br>40,980<br>40,180<br>40,180<br>40,740<br>33,590       |
|                                     | Upper Lower<br>Milwaukee River        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 350<br>350<br>350<br>350<br>350<br>350             | 130<br>130<br>130<br>130<br>130<br>130 | 0<br>0<br>0<br>0<br>0 | 77,920<br>99,960<br>99,960<br>99,960<br>99,960<br>99,960 | 78,400<br>100,440<br>100,440<br>100,440<br>100,440<br>100,440 | 17,730<br>19,460<br>18,970<br>18,970<br>18,890<br>17,910 | 123,670<br>114,200<br>110,490<br>110,490<br>113,060<br>92,210  | 141,400<br>133,660<br>129,460<br>129,460<br>131,950<br>110,120 | 219,800<br>234,100<br>229,900<br>229,900<br>232,390<br>210,560 |
|                                     | Upper Milwaukee<br>River              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 30<br>30<br>30<br>30<br>30<br>30<br>30             | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 1,950<br>2,300<br>2,300<br>2,300<br>2,300<br>2,300       | 1,980<br>2,330<br>2,330<br>2,330<br>2,330<br>2,330            | 6,740<br>7,130<br>6,850<br>6,850<br>6,860<br>6,640       | 194,190<br>188,890<br>179,540<br>179,540<br>186,810<br>152,570 | 200,930<br>196,020<br>186,390<br>186,390<br>193,670<br>159,210 | 202,910<br>198,350<br>188,720<br>188,720<br>196,000<br>161,540 |
|                                     | Watercress Creek                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                         | 1,480<br>1,480<br>1,380<br>1,380<br>1,390<br>1,350       | 40,150<br>39,440<br>37,630<br>37,630<br>38,990<br>32,740       | 41,630<br>40,920<br>39,010<br>39,010<br>40,380<br>34,090       | 41,630<br>40,920<br>39,010<br>39,010<br>40,380<br>34,090       |

|                                     |                                |                                                            | Point Sources Industrial                                 |                                                    |                                                      |                                                                |                                                                | N                                                              | onpoint Source                                                             | ea                                                                         |                                                                            |
|-------------------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources                           | SSOs <sup>a</sup>                                  | CSOs                                                 | WWTPs                                                          | Subtotal                                                       | Urban                                                          | Rural <sup>b,c</sup>                                                       | Subtotal                                                                   | Total                                                                      |
| Total Nitrogen (pounds) (continued) | West Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 5,390<br>5,360<br>4,980<br>4,980<br>5,030<br>4,880             | 219,160<br>214,960<br>205,790<br>205,790<br>212,680<br>173,000             | 224,550<br>220,320<br>210,770<br>210,770<br>217,710<br>177,880             | 224,550<br>220,320<br>210,770<br>210,770<br>217,710<br>177,880             |
|                                     | Watershed Total                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 75,530<br>75,530<br>75,530<br>75,530<br>75,530<br>75,530 | 3,280<br>4,530<br>1,720<br>4,350<br>5,710<br>5,710 | 17,910<br>11,670<br>8,340<br>3,750<br>6,750<br>6,750 | 123,210<br>157,580<br>157,580<br>157,580<br>157,580<br>157,580 | 219,930<br>249,310<br>243,170<br>241,210<br>245,570<br>245,570 | 227,480<br>229,920<br>222,350<br>222,350<br>213,310<br>204,080 | 1,733,700<br>1,640,570<br>1,575,690<br>1,575,690<br>1,623,470<br>1,336,520 | 1,961,180<br>1,870,490<br>1,798,040<br>1,798,040<br>1,836,780<br>1,540,600 | 2,181,110<br>2,119,800<br>2,041,210<br>2,039,250<br>2,082,350<br>1,786,170 |
| Biochemical Oxygen Demand (pounds)  | Batavia Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 4,000<br>3,990<br>3,990<br>3,990<br>3,990<br>3,830             | 24,470<br>23,680<br>22,020<br>22,020<br>23,690<br>21,060                   | 28,470<br>27,670<br>26,010<br>26,010<br>27,680<br>24,890                   | 28,470<br>27,670<br>26,010<br>26,010<br>27,680<br>24,890                   |
|                                     | Cedar Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 60<br>60<br>60<br>60<br>60                               | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 10,370<br>14,080<br>14,080<br>14,080<br>14,080<br>14,080       | 10,430<br>14,140<br>14,140<br>14,140<br>14,140<br>14,140       | 105,650<br>114,540<br>114,540<br>114,540<br>111,020<br>106,570 | 632,050<br>604,280<br>540,010<br>540,010<br>602,100<br>506,280             | 737,700<br>718,820<br>654,550<br>654,550<br>713,120<br>612,850             | 748,130<br>732,960<br>668,690<br>668,690<br>727,260<br>626,990             |
|                                     | Cedar Lake                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 12,700<br>12,360<br>12,360<br>12,360<br>12,280<br>11,770       | 68,630<br>67,500<br>64,380<br>64,380<br>67,340<br>61,160                   | 81,330<br>79,860<br>76,740<br>76,740<br>79,620<br>72,930                   | 81,330<br>79,860<br>76,740<br>76,740<br>79,620<br>72,930                   |
|                                     | Chambers Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 5,140<br>5,130<br>5,130<br>5,130<br>5,130<br>4,920             | 23,440<br>22,900<br>21,730<br>21,730<br>22,910<br>20,820                   | 28,580<br>28,030<br>26,860<br>26,860<br>28,040<br>25,740                   | 28,580<br>28,030<br>26,860<br>26,860<br>28,040<br>25,740                   |
|                                     | East Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 15,060<br>15,110<br>15,110<br>15,110<br>15,020<br>14,310       | 82,180<br>80,930<br>79,090<br>79,090<br>80,830<br>75,090                   | 97,240<br>96,040<br>94,200<br>94,200<br>95,850<br>89,400                   | 97,240<br>96,040<br>94,200<br>94,200<br>95,850<br>89,400                   |
|                                     | Kettle Moraine Lake            | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 8,880<br>8,880<br>8,880<br>8,880<br>8,880<br>8,690             | 120,250<br>115,640<br>105,450<br>105,450<br>115,690<br>101,610             | 129,130<br>124,520<br>114,330<br>114,330<br>124,570<br>110,300             | 129,130<br>124,520<br>114,330<br>114,330<br>124,570<br>110,300             |

Table B-3 (continued)

|                                                |                                 |                                                            |                                                                |                                                    | Point Sources                                         | 3                                                              |                                                                | N                                                              | onpoint Source                                                 | e <sup>a</sup>                                                 |                                                                |
|------------------------------------------------|---------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                    | Screening Alternative                                      | Industrial<br>Point<br>Sources                                 | SSOs <sup>a</sup>                                  | CSOs                                                  | WWTPs                                                          | Subtotal                                                       | Urban                                                          | Rural <sup>b,c</sup>                                           | Subtotal                                                       | Total                                                          |
| Biochemical Oxygen Demand (pounds) (continued) | Kewaskum Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 11,340<br>11,350<br>11,350<br>11,350<br>11,150<br>10,870       | 81,960<br>76,760<br>72,120<br>72,120<br>76,360<br>65,570       | 93,300<br>88,110<br>83,470<br>83,470<br>87,510<br>76,440       | 93,300<br>88,110<br>83,470<br>83,470<br>87,510<br>76,440       |
|                                                | Lake Fifteen Creek              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 7,770<br>7,760<br>7,760<br>7,760<br>7,760<br>7,440             | 41,080<br>40,510<br>39,300<br>39,300<br>40,530<br>37,330       | 48,850<br>48,270<br>47,060<br>47,060<br>48,290<br>44,770       | 48,850<br>48,270<br>47,060<br>47,060<br>48,290<br>44,770       |
|                                                | Lincoln Creek                   | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 15,210<br>15,210<br>15,210<br>15,210<br>15,210<br>15,210       | 1,440<br>1,280<br>1,230<br>2,360<br>1,950<br>1,950 | 720<br>80<br>10<br>160<br>10                          | 0<br>0<br>0<br>0<br>0                                          | 17,370<br>16,570<br>16,450<br>17,730<br>17,170                 | 216,100<br>188,380<br>188,380<br>188,380<br>153,370<br>143,380 | 1,840<br>2,050<br>2,050<br>2,050<br>1,160<br>1,090             | 217,940<br>190,430<br>190,430<br>190,430<br>154,530<br>144,470 | 235,310<br>207,000<br>206,880<br>208,160<br>171,700<br>161,640 |
|                                                | Lower Cedar Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 20<br>20<br>20<br>20<br>20<br>20<br>20                         | 40<br>40<br>40<br>40<br>40<br>40                   | 0<br>0<br>0<br>0<br>0                                 | 20,080<br>26,160<br>26,160<br>26,160<br>26,160<br>26,160       | 20,140<br>26,220<br>26,220<br>26,220<br>26,220<br>26,220       | 85,590<br>88,370<br>88,370<br>88,370<br>87,180<br>83,620       | 185,110<br>176,580<br>162,960<br>162,960<br>175,060<br>155,230 | 270,700<br>264,950<br>251,330<br>251,330<br>262,240<br>238,850 | 290,840<br>291,170<br>277,550<br>277,550<br>288,460<br>265,070 |
|                                                | Lower Milwaukee<br>River        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 259,990<br>259,990<br>259,990<br>259,990<br>259,990<br>259,990 | 3,830<br>6,080<br>1,400<br>4,700<br>7,400<br>7,400 | 22,550<br>16,640<br>12,290<br>7,400<br>5,060<br>5,060 | 0<br>0<br>0<br>0<br>0                                          | 286,370<br>282,710<br>273,680<br>272,090<br>272,450<br>272,450 | 388,570<br>354,170<br>354,170<br>354,170<br>320,920<br>302,270 | 234,560<br>178,680<br>166,030<br>166,030<br>173,720<br>148,970 | 623,130<br>532,850<br>520,200<br>520,200<br>494,640<br>451,240 | 909,500<br>815,560<br>793,880<br>792,290<br>767,090<br>723,690 |
|                                                | Middle Milwaukee<br>River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 20<br>20<br>20<br>20<br>20<br>20<br>20                         | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 296,770<br>390,710<br>390,710<br>390,710<br>390,710<br>390,710 | 296,790<br>390,730<br>390,730<br>390,730<br>390,730<br>390,730 | 108,290<br>116,790<br>116,790<br>116,790<br>111,100<br>106,250 | 220,120<br>200,880<br>190,370<br>190,370<br>196,170<br>176,210 | 328,410<br>317,670<br>307,160<br>307,160<br>307,270<br>282,460 | 625,200<br>708,400<br>697,890<br>697,890<br>698,000<br>673,190 |
|                                                | Mink Creek                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 10,490<br>10,460<br>10,460<br>10,460<br>10,470<br>10,030       | 56,310<br>54,640<br>51,610<br>51,610<br>54,660<br>49,570       | 66,800<br>65,100<br>62,070<br>62,070<br>65,130<br>59,600       | 66,800<br>65,100<br>62,070<br>62,070<br>65,130<br>59,600       |
|                                                | North Branch<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 7,020<br>7,020<br>7,020<br>7,020<br>7,020<br>7,020             | 20<br>20<br>20<br>20<br>20<br>20<br>20             | 0<br>0<br>0<br>0<br>0                                 | 6,080<br>6,700<br>6,700<br>6,700<br>6,700<br>6,700             | 13,120<br>13,740<br>13,740<br>13,740<br>13,740<br>13,740       | 50,380<br>50,410<br>50,410<br>50,410<br>50,120<br>47,990       | 267,240<br>256,550<br>240,080<br>240,080<br>256,040<br>228,790 | 317,620<br>306,960<br>290,490<br>290,490<br>306,160<br>276,780 | 330,740<br>320,700<br>304,230<br>304,230<br>319,900<br>290,520 |

|                                                |                                       |                                                            | Point Sources Industrial                                       |                                                    |                                                       |                                                                |                                                                | N                                                                          | onpoint Source                                                             | ea                                                                         |                                                                            |
|------------------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                          | Screening Alternative                                      | Industrial<br>Point<br>Sources                                 | SSOs <sup>a</sup>                                  | CSOs                                                  | WWTPs                                                          | Subtotal                                                       | Urban                                                                      | Rural <sup>b,c</sup>                                                       | Subtotal                                                                   | Total                                                                      |
| Biochemical Oxygen Demand (pounds) (continued) | Silver Creek<br>(Sheboygan<br>County) | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 4,330<br>4,330<br>4,330<br>4,330<br>4,330<br>4,330             | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 2,990<br>3,560<br>3,560<br>3,560<br>3,560<br>3,560             | 7,320<br>7,890<br>7,890<br>7,890<br>7,890<br>7,890             | 26,810<br>30,340<br>30,340<br>30,340<br>29,370<br>27,920                   | 63,180<br>60,620<br>56,530<br>56,530<br>59,990<br>53,160                   | 89,990<br>90,960<br>86,870<br>86,870<br>89,360<br>81,080                   | 97,310<br>98,850<br>94,760<br>94,760<br>97,250<br>88,970                   |
|                                                | Silver Creek<br>(West Bend)           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 36,060<br>40,570<br>40,570<br>40,570<br>40,230<br>38,400                   | 23,710<br>21,980<br>21,540<br>21,540<br>21,260<br>19,650                   | 59,770<br>62,550<br>62,110<br>62,110<br>61,490<br>58,050                   | 59,770<br>62,550<br>62,110<br>62,110<br>61,490<br>58,050                   |
|                                                | Stony Creek                           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 10,240<br>10,220<br>10,220<br>10,220<br>10,220<br>9,770                    | 51,490<br>50,450<br>48,060<br>48,060<br>50,470<br>45,840                   | 61,730<br>60,670<br>58,280<br>58,280<br>60,690<br>55,610                   | 61,730<br>60,670<br>58,280<br>58,280<br>60,690<br>55,610                   |
|                                                | Upper Lower<br>Milwaukee River        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 2,770<br>2,770<br>2,770<br>2,770<br>2,770<br>2,770             | 210<br>210<br>210<br>210<br>210<br>210<br>210      | 0<br>0<br>0<br>0<br>0                                 | 52,690<br>68,820<br>68,820<br>68,820<br>68,820<br>68,820       | 55,670<br>71,800<br>71,800<br>71,800<br>71,800<br>71,800       | 103,450<br>113,970<br>113,970<br>113,970<br>112,120<br>105,450             | 199,780<br>183,390<br>170,910<br>170,910<br>180,700<br>157,600             | 303,230<br>297,360<br>284,880<br>284,880<br>292,820<br>263,050             | 358,900<br>369,160<br>356,680<br>356,680<br>364,620<br>334,850             |
|                                                | Upper Milwaukee<br>River              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,030<br>1,030<br>1,030<br>1,030<br>1,030<br>1,030             | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 10,830<br>14,490<br>14,490<br>14,490<br>14,490                 | 11,860<br>15,520<br>15,520<br>15,520<br>15,520<br>15,520       | 44,460<br>47,010<br>47,010<br>47,010<br>46,720<br>45,290                   | 373,160<br>356,330<br>320,920<br>320,920<br>355,820<br>306,720             | 417,620<br>403,340<br>367,930<br>367,930<br>402,540<br>352,010             | 429,480<br>418,860<br>383,450<br>383,450<br>418,060<br>367,530             |
|                                                | Watercress Creek                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 10,130<br>10,130<br>10,130<br>10,130<br>10,130<br>9,830                    | 86,840<br>83,890<br>78,510<br>78,510<br>83,930<br>75,420                   | 96,970<br>94,020<br>88,640<br>88,640<br>94,060<br>85,250                   | 96,970<br>94,020<br>88,640<br>88,640<br>94,060<br>85,250                   |
|                                                | West Branch<br>Milwaukee River        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                                          | 42,450<br>42,090<br>42,090<br>42,090<br>42,110<br>41,090                   | 373,130<br>358,050<br>327,290<br>327,290<br>358,170<br>309,440             | 415,580<br>400,140<br>369,380<br>369,380<br>400,280<br>350,530             | 415,580<br>400,140<br>369,380<br>369,380<br>400,280<br>350,530             |
|                                                | Watershed Total                       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 290,450<br>290,450<br>290,450<br>290,450<br>290,450<br>290,450 | 5,540<br>7,630<br>2,900<br>7,330<br>9,620<br>9,620 | 23,270<br>16,720<br>12,300<br>7,560<br>5,070<br>5,070 | 399,810<br>524,520<br>524,520<br>524,520<br>524,520<br>524,520 | 719,070<br>839,320<br>830,170<br>829,860<br>829,660<br>829,660 | 1,303,560<br>1,282,030<br>1,282,030<br>1,282,030<br>1,199,290<br>1,139,690 | 3,210,530<br>3,016,290<br>2,780,960<br>2,780,960<br>2,996,600<br>2,616,610 | 4,514,090<br>4,298,320<br>4,062,990<br>4,062,990<br>4,195,890<br>3,756,300 | 5,233,160<br>5,137,640<br>4,893,160<br>4,892,850<br>5,025,550<br>4,585,960 |

Table B-3 (continued)

|                         |                                |                                                            |                                |                       | Point Sources         | 3                                |                                  | N                                      | onpoint Source                         | ea                                     |                                        |
|-------------------------|--------------------------------|------------------------------------------------------------|--------------------------------|-----------------------|-----------------------|----------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Water Quality Indicator | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources | SSOs <sup>a</sup>     | CSOs                  | WWTPs                            | Subtotal                         | Urban                                  | Rural <sup>b,c</sup>                   | Subtotal                               | Total                                  |
| Copper (pounds)         | Batavia Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0            | 7<br>7<br>7<br>7<br>7                  | 11<br>11<br>11<br>11<br>11             | 18<br>18<br>18<br>18<br>18             | 18<br>18<br>18<br>18<br>18             |
|                         | Cedar Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 46<br>63<br>63<br>63<br>63<br>63 | 46<br>63<br>63<br>63<br>63<br>63 | 190<br>206<br>206<br>206<br>200<br>189 | 187<br>189<br>189<br>189<br>186<br>177 | 377<br>395<br>395<br>395<br>386<br>366 | 423<br>458<br>458<br>458<br>449<br>429 |
|                         | Cedar Lake                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0            | 23<br>22<br>22<br>22<br>22<br>22<br>21 | 76<br>74<br>74<br>74<br>74<br>70       | 99<br>96<br>96<br>96<br>96<br>91       | 99<br>96<br>96<br>96<br>96<br>91       |
|                         | Chambers Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0            | 9<br>9<br>9<br>9<br>9                  | 13<br>13<br>13<br>13<br>13             | 22<br>22<br>22<br>22<br>22<br>22<br>21 | 22<br>22<br>22<br>22<br>22<br>22<br>21 |
|                         | East Branch<br>Milwaukee River | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0            | 27<br>27<br>27<br>27<br>27<br>27<br>26 | 61<br>62<br>62<br>62<br>61<br>58       | 88<br>89<br>89<br>89<br>88<br>88       | 88<br>89<br>89<br>89<br>88<br>88       |
|                         | Kettle Moraine Lake            | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0            | 16<br>16<br>16<br>16<br>16             | 47<br>47<br>47<br>47<br>47<br>47       | 63<br>63<br>63<br>63<br>63<br>60       | 63<br>63<br>63<br>63<br>63<br>60       |
|                         | Kewaskum Creek                 | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0            | 20<br>20<br>20<br>20<br>20<br>20<br>19 | 21<br>22<br>22<br>22<br>22<br>21<br>20 | 41<br>42<br>42<br>42<br>41<br>39       | 41<br>42<br>42<br>42<br>41<br>39       |
|                         | Lake Fifteen Creek             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0            | 14<br>14<br>14<br>14<br>14             | 30<br>30<br>30<br>30<br>30<br>30<br>28 | 44<br>44<br>44<br>44<br>44<br>42       | 44<br>44<br>44<br>44<br>44<br>42       |

|                             |                                       |                                                            |                                |                       | Point Sources            | ;                                      |                                        | N                                      | onpoint Source                                | e <sup>a</sup>                                |                                               |
|-----------------------------|---------------------------------------|------------------------------------------------------------|--------------------------------|-----------------------|--------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Water Quality Indicator     | Subwatershed                          | Screening Alternative                                      | Industrial<br>Point<br>Sources | SSOs <sup>a</sup>     | CSOs                     | WWTPs                                  | Subtotal                               | Urban                                  | Rural <sup>b,c</sup>                          | Subtotal                                      | Total                                         |
| Copper (pounds) (continued) | Lincoln Creek                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 1<br>1<br>1<br>2<br>1 | 2<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0                  | 3<br>1<br>1<br>2<br>1                  | 380<br>316<br>316<br>316<br>258<br>241 | 1<br>1<br>1<br>1<br>1                         | 381<br>317<br>317<br>317<br>259<br>242        | 384<br>318<br>318<br>319<br>260<br>243        |
|                             | Lower Cedar Creek                     | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0    | 97<br>127<br>127<br>127<br>127<br>127  | 97<br>127<br>127<br>127<br>127<br>127  | 146<br>150<br>150<br>150<br>148<br>140 | 83<br>83<br>83<br>83<br>81<br>77              | 229<br>233<br>233<br>233<br>229<br>217        | 326<br>360<br>360<br>360<br>356<br>344        |
|                             | Lower Milwaukee<br>River              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 2<br>4<br>1<br>3<br>5 | 50<br>37<br>9<br>2<br>11 | 0<br>0<br>0<br>0<br>0                  | 52<br>41<br>28<br>19<br>16<br>16       | 684<br>592<br>592<br>592<br>542<br>510 | 101<br>110<br>110<br>110<br>110<br>105<br>100 | 785<br>702<br>702<br>702<br>702<br>647<br>610 | 837<br>743<br>730<br>721<br>663<br>626        |
|                             | Middle Milwaukee<br>River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0    | 307<br>405<br>405<br>405<br>405<br>405 | 307<br>405<br>405<br>405<br>405<br>405 | 192<br>204<br>204<br>204<br>196<br>185 | 119<br>130<br>130<br>130<br>123<br>116        | 311<br>334<br>334<br>334<br>319<br>301        | 618<br>739<br>739<br>739<br>724<br>706        |
|                             | Mink Creek                            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 19<br>19<br>19<br>19<br>19             | 30<br>30<br>30<br>30<br>30<br>30<br>28        | 49<br>49<br>49<br>49<br>49                    | 49<br>49<br>49<br>49<br>49                    |
|                             | North Branch<br>Milwaukee River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0    | 18<br>18<br>18<br>18<br>18             | 18<br>18<br>18<br>18<br>18             | 93<br>93<br>93<br>93<br>92<br>87       | 144<br>145<br>145<br>145<br>144<br>137        | 237<br>238<br>238<br>238<br>238<br>236<br>224 | 255<br>256<br>256<br>256<br>256<br>254<br>242 |
|                             | Silver Creek<br>(Sheboygan<br>County) | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0    | 15<br>18<br>18<br>18<br>18             | 15<br>18<br>18<br>18<br>18             | 49<br>55<br>55<br>55<br>53<br>50       | 30<br>30<br>30<br>30<br>30<br>29<br>28        | 79<br>85<br>85<br>85<br>85<br>82<br>78        | 94<br>103<br>103<br>103<br>100<br>96          |
|                             | Silver Creek<br>(West Bend)           | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 62<br>69<br>69<br>69<br>68<br>65       | 19<br>21<br>21<br>21<br>20<br>19              | 81<br>90<br>90<br>90<br>88<br>84              | 81<br>90<br>90<br>90<br>88<br>84              |

Table B-3 (continued)

|                             |                                |                                                            |                                |                            | Point Sources            | 3                                      |                                        | N                                                  | onpoint Source                                     | ea                                                 |                                                    |
|-----------------------------|--------------------------------|------------------------------------------------------------|--------------------------------|----------------------------|--------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Water Quality Indicator     | Subwatershed                   | Screening Alternative                                      | Industrial<br>Point<br>Sources | SSOs <sup>a</sup>          | CSOs                     | WWTPs                                  | Subtotal                               | Urban                                              | Rural <sup>b,c</sup>                               | Subtotal                                           | Total                                              |
| Copper (pounds) (continued) | Stony Creek                    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 18<br>18<br>18<br>18<br>18                         | 30<br>30<br>30<br>30<br>30<br>30<br>29             | 48<br>48<br>48<br>48<br>48                         | 48<br>48<br>48<br>48<br>48                         |
|                             | Upper Lower<br>Milwaukee River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0    | 113<br>145<br>145<br>145<br>145<br>145 | 113<br>145<br>145<br>145<br>145<br>145 | 181<br>199<br>199<br>199<br>197<br>185             | 96<br>100<br>100<br>100<br>95<br>90                | 277<br>299<br>299<br>299<br>292<br>275             | 390<br>444<br>444<br>444<br>437<br>420             |
|                             | Upper Milwaukee<br>River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0    | 38<br>49<br>49<br>49<br>49             | 38<br>49<br>49<br>49<br>49             | 80<br>84<br>84<br>84<br>84<br>80                   | 99<br>100<br>100<br>100<br>99                      | 179<br>184<br>184<br>184<br>183<br>175             | 217<br>233<br>233<br>233<br>232<br>224             |
|                             | Watercress Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 18<br>18<br>18<br>18<br>18                         | 55<br>55<br>55<br>55<br>55<br>55                   | 73<br>73<br>73<br>73<br>73<br>73                   | 73<br>73<br>73<br>73<br>73<br>73<br>70             |
|                             | West Branch<br>Milwaukee River | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 77<br>76<br>76<br>76<br>76<br>77<br>73             | 99<br>99<br>99<br>99<br>99                         | 176<br>175<br>175<br>175<br>176<br>168             | 176<br>175<br>175<br>175<br>176<br>168             |
|                             | Watershed Total                | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 3<br>5<br>2<br>5<br>6<br>6 | 52<br>37<br>9<br>2<br>11 | 634<br>825<br>825<br>825<br>825<br>825 | 689<br>867<br>836<br>832<br>842<br>842 | 2,305<br>2,214<br>2,214<br>2,214<br>2,085<br>1,968 | 1,352<br>1,382<br>1,382<br>1,382<br>1,354<br>1,288 | 3,657<br>3,596<br>3,596<br>3,596<br>3,439<br>3,256 | 4,346<br>4,463<br>4,432<br>4,428<br>4,281<br>4,098 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint source subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table B-4

AVERAGE ANNUAL POLLUTANT LOADS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: OAK CREEK WATERSHED

|                                 |                               |                                             |                                                    | Point Sources                          |                                                    | N                                                              | Ionpoint Source                                     | a                                                              |                                                                  |
|---------------------------------|-------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
| Water Quality Indicator         | Subwatershed                  | Screening Alternative                       | Industrial<br>Point<br>Sources                     | SSOs                                   | Subtotal                                           | Urban                                                          | Rural <sup>b,c</sup>                                | Subtotal                                                       | Total                                                            |
| Total Phosphorus (pounds)       | Lower Oak Creek               | Existing 2020 Future (baseline) B1 B2 C1 C2 | 10<br>10<br>10<br>10<br>10                         | 10<br>10<br>10<br>10<br>10<br>10       | 20<br>20<br>20<br>20<br>20<br>20<br>20             | 2,200<br>1,820<br>1,820<br>1,820<br>1,700<br>1,700             | 40<br>20<br>20<br>20<br>20<br>20<br>20              | 2,240<br>1,840<br>1,840<br>1,840<br>1,720<br>1,720             | 2,260<br>1,860<br>1,860<br>1,860<br>1,740<br>1,740               |
|                                 | Middle Oak Creek              | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                              | 1,310<br>1,250<br>1,250<br>1,250<br>1,160<br>1,160             | 980<br>1,030<br>1,030<br>1,030<br>970<br>970        | 2,290<br>2,280<br>2,280<br>2,280<br>2,130<br>2,130             | 2,290<br>2,280<br>2,280<br>2,280<br>2,130<br>2,130               |
|                                 | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) B1 B2 C1 C2 | <10<br><10<br><10<br><10<br><10<br><10             | 0<br>0<br>0<br>0<br>0                  | <10<br><10<br><10<br><10<br><10<br><10             | 980<br>980<br>980<br>980<br>910<br>910                         | 410<br>330<br>330<br>330<br>310<br>310              | 1,390<br>1,310<br>1,310<br>1,310<br>1,220<br>1,220             | 1,390<br>1,310<br>1,310<br>1,310<br>1,220<br>1,220               |
|                                 | North Branch Oak Creek        | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                              | 2,650<br>2,400<br>2,400<br>2,400<br>2,230<br>2,230             | 510<br>500<br>500<br>500<br>470<br>470              | 3,160<br>2,900<br>2,900<br>2,900<br>2,700<br>2,700             | 3,160<br>2,900<br>2,900<br>2,900<br>2,700<br>2,700               |
|                                 | Upper Oak Creek               | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                              | 1,360<br>1,290<br>1,290<br>1,290<br>1,200<br>1,200             | 170<br>100<br>100<br>100<br>100<br>100              | 1,530<br>1,390<br>1,390<br>1,390<br>1,300<br>1,300             | 1,530<br>1,390<br>1,390<br>1,390<br>1,300<br>1,300               |
|                                 | Watershed Total               | Existing 2020 Future (baseline) B1 B2 C1 C2 | 10<br>10<br>10<br>10<br>10<br>10                   | 10<br>10<br>10<br>10<br>10<br>10       | 20<br>20<br>20<br>20<br>20<br>20<br>20             | 8,500<br>7,740<br>7,740<br>7,740<br>7,200<br>7,200             | 2,110<br>1,980<br>1,980<br>1,980<br>1,870<br>1,870  | 10,610<br>9,720<br>9,720<br>9,720<br>9,070<br>9,070            | 10,630<br>9,740<br>9,740<br>9,740<br>9,090<br>9,090              |
| Total Suspended Solids (pounds) | Lower Oak Creek               | Existing 2020 Future (baseline) B1 B2 C1 C2 | 1,930<br>1,930<br>1,930<br>1,930<br>1,930<br>1,930 | 500<br>500<br>500<br>500<br>500<br>500 | 2,430<br>2,430<br>2,430<br>2,430<br>2,430<br>2,430 | 974,250<br>691,950<br>691,950<br>691,950<br>691,950<br>691,950 | 23,560<br>3,890<br>3,890<br>3,890<br>3,890<br>3,890 | 997,810<br>695,840<br>695,840<br>695,840<br>695,840<br>695,840 | 1,000,240<br>698,270<br>698,270<br>698,270<br>698,270<br>698,270 |

Table B-4 (continued)

|                                              |                               |                                                            |                                                    | Point Sources                                |                                                    | N                                                                          | Nonpoint Source                                                | a                                                                          |                                                                            |
|----------------------------------------------|-------------------------------|------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                      | Subwatershed                  | Screening Alternative                                      | Industrial<br>Point<br>Sources                     | SSOs                                         | Subtotal                                           | Urban                                                                      | Rural <sup>b,c</sup>                                           | Subtotal                                                                   | Total                                                                      |
| Total Suspended Solids (pounds) (continued)  | Middle Oak Creek              | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                              | 685,780<br>546,490<br>546,490<br>546,490<br>546,490<br>546,490             | 387,670<br>101,010<br>99,170<br>99,170<br>100,580<br>99,820    | 1,073,450<br>647,500<br>645,660<br>645,660<br>647,070<br>646,310           | 1,073,450<br>647,500<br>645,660<br>645,660<br>647,070<br>646,310           |
|                                              | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) B1 B2 C1 C2                | <10<br><10<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                        | <10<br><10<br>0<br>0<br>0                          | 532,620<br>452,990<br>452,990<br>452,990<br>452,990<br>452,990             | 108,810<br>28,560<br>28,250<br>28,250<br>28,300<br>27,840      | 641,430<br>481,550<br>481,240<br>481,240<br>481,290<br>480,830             | 641,430<br>481,550<br>481,240<br>481,240<br>481,290<br>480,830             |
|                                              | North Branch Oak Creek        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                              | 1,558,560<br>1,203,130<br>1,203,130<br>1,203,130<br>1,203,130<br>1,203,130 | 212,030<br>47,930<br>47,060<br>47,060<br>47,700<br>47,300      | 1,770,590<br>1,251,060<br>1,250,190<br>1,250,190<br>1,250,830<br>1,250,430 | 1,770,590<br>1,251,060<br>1,250,190<br>1,250,190<br>1,250,830<br>1,250,430 |
|                                              | Upper Oak Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                              | 663,060<br>540,110<br>540,110<br>540,110<br>540,110<br>540,110             | 156,240<br>9,580<br>9,390<br>9,390<br>9,500<br>9,360           | 819,300<br>549,690<br>549,500<br>549,500<br>549,610<br>549,470             | 819,300<br>549,690<br>549,500<br>549,500<br>549,610<br>549,470             |
|                                              | Watershed Total               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,930<br>1,930<br>1,930<br>1,930<br>1,930<br>1,930 | 500<br>500<br>500<br>500<br>500<br>500       | 2,430<br>2,430<br>2,430<br>2,430<br>2,430<br>2,430 | 4,414,270<br>3,434,670<br>3,434,670<br>3,434,670<br>3,434,670<br>3,434,670 | 888,310<br>190,970<br>187,760<br>187,760<br>189,970<br>188,210 | 5,302,580<br>3,625,640<br>3,622,430<br>3,622,430<br>3,624,640<br>3,622,880 | 5,305,010<br>3,628,070<br>3,624,860<br>3,624,860<br>3,627,070<br>3,625,310 |
| Fecal Coliform Bacteria (trillions of cells) | Lower Oak Creek               | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 9.55<br>9.55<br>9.55<br>9.55<br>9.55<br>9.55 | 9.55<br>9.55<br>9.55<br>9.55<br>9.55<br>9.55       | 612.67<br>493.23<br>493.23<br>493.23<br>493.23<br>430.69                   | 0.33<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                   | 613.00<br>493.33<br>493.33<br>493.33<br>493.33<br>430.79                   | 622.55<br>502.88<br>502.88<br>502.88<br>502.88<br>440.34                   |
|                                              | Middle Oak Creek              | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 394.77<br>363.63<br>363.63<br>363.63<br>363.63<br>327.26                   | 96.09<br>99.81<br>99.76<br>99.76<br>99.76<br>89.83             | 490.86<br>463.44<br>463.39<br>463.39<br>463.39<br>417.09                   | 490.86<br>463.44<br>463.39<br>463.39<br>463.39<br>417.09                   |
|                                              | Mitchell Field Drainage Ditch | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 505.12<br>548.78<br>548.78<br>548.78<br>548.78<br>485.90                   | 36.28<br>27.74<br>27.68<br>27.68<br>27.68<br>24.72             | 541.40<br>576.52<br>576.46<br>576.46<br>576.46<br>510.62                   | 541.40<br>576.52<br>576.46<br>576.46<br>576.46<br>510.62                   |

|                                                          |                               |                                             |                                              | Point Sources                                |                                              | N                                                                    | Ionpoint Source                                          | а                                                                    |                                                                      |
|----------------------------------------------------------|-------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed                  | Screening Alternative                       | Industrial<br>Point<br>Sources               | SSOs                                         | Subtotal                                     | Urban                                                                | Rural <sup>b,c</sup>                                     | Subtotal                                                             | Total                                                                |
| Fecal Coliform Bacteria (trillions of cells) (continued) | North Branch Oak Creek        | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 735.48<br>656.52<br>656.52<br>656.52<br>656.52<br>578.02             | 39.60<br>46.20<br>46.18<br>46.18<br>46.18<br>41.59       | 775.08<br>702.72<br>702.70<br>702.70<br>702.70<br>619.61             | 775.08<br>702.72<br>702.70<br>702.70<br>702.70<br>619.61             |
|                                                          | Upper Oak Creek               | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 354.83<br>318.55<br>318.55<br>318.55<br>318.55<br>282.37             | 7.39<br>5.64<br>5.64<br>5.64<br>5.64<br>5.08             | 362.22<br>324.19<br>324.19<br>324.19<br>324.19<br>287.45             | 362.22<br>324.19<br>324.19<br>324.19<br>324.19<br>287.45             |
|                                                          | Watershed Total               | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 9.55<br>9.55<br>9.55<br>9.55<br>9.55<br>9.55 | 9.55<br>9.55<br>9.55<br>9.55<br>9.55<br>9.55 | 2,602.87<br>2,380.71<br>2,380.71<br>2,380.71<br>2,380.71<br>2,104.24 | 179.69<br>179.49<br>179.36<br>179.36<br>179.36<br>161.32 | 2,782.56<br>2,560.20<br>2,560.07<br>2,560.07<br>2,560.07<br>2,265.56 | 2,792.11<br>2,569.75<br>2,569.62<br>2,569.62<br>2,569.62<br>2,275.11 |
| Total Nitrogen (pounds)                                  | Lower Oak Creek               | Existing 2020 Future (baseline) B1 B2 C1 C2 | 340<br>340<br>340<br>340<br>340<br>340       | 20<br>20<br>20<br>20<br>20<br>20<br>20       | 360<br>360<br>360<br>360<br>360<br>360       | 15,280<br>13,260<br>13,260<br>13,260<br>12,850<br>12,850             | 1,010<br>370<br>370<br>370<br>370<br>370                 | 16,290<br>13,630<br>13,630<br>13,630<br>13,220<br>13,220             | 16,650<br>13,990<br>13,990<br>13,990<br>13,580<br>13,580             |
|                                                          | Middle Oak Creek              | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                        | 9,240<br>9,000<br>9,000<br>9,000<br>8,700<br>8,700                   | 13,810<br>8,160<br>8,150<br>8,150<br>7,980<br>7,960      | 23,050<br>17,160<br>17,150<br>17,150<br>16,680<br>16,660             | 23,050<br>17,160<br>17,150<br>17,150<br>16,680<br>16,660             |
|                                                          | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) B1 B2 C1 C2 | <10<br><10<br><10<br><10<br><10<br><10       | 0<br>0<br>0<br>0<br>0                        | <10<br><10<br><10<br><10<br><10<br><10       | 9,360<br>9,190<br>9,190<br>9,190<br>8,870<br>8,870                   | 7,580<br>4,410<br>4,410<br>4,410<br>4,290<br>4,260       | 16,940<br>13,600<br>13,600<br>13,600<br>13,160<br>13,130             | 16,940<br>13,600<br>13,600<br>13,600<br>13,160<br>13,130             |
|                                                          | North Branch Oak Creek        | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                        | 17,590<br>16,550<br>16,550<br>16,550<br>16,000<br>16,000             | 8,790<br>4,310<br>4,310<br>4,310<br>4,220<br>4,210       | 26,380<br>20,860<br>20,860<br>20,860<br>20,220<br>20,210             | 26,380<br>20,860<br>20,860<br>20,860<br>20,220<br>20,210             |
|                                                          | Upper Oak Creek               | Existing 2020 Future (baseline) B1 B2 C1 C2 | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                        | 9,180<br>9,080<br>9,080<br>9,080<br>8,780<br>8,780                   | 4,910<br>1,020<br>1,020<br>1,020<br>1,000<br>1,000       | 14,090<br>10,100<br>10,100<br>10,100<br>9,780<br>9,780               | 14,090<br>10,100<br>10,100<br>10,100<br>9,780<br>9,780               |

Table B-4 (continued)

|                                     |                               |                                                            |                                                    | Point Sources                          |                                                    | N                                                              | Nonpoint Source                                             | а                                                              |                                                                    |
|-------------------------------------|-------------------------------|------------------------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                  | Screening Alternative                                      | Industrial<br>Point<br>Sources                     | SSOs                                   | Subtotal                                           | Urban                                                          | Rural <sup>b,c</sup>                                        | Subtotal                                                       | Total                                                              |
| Total Nitrogen (pounds) (continued) | Watershed Total               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 340<br>340<br>340<br>340<br>340<br>340             | 20<br>20<br>20<br>20<br>20<br>20<br>20 | 360<br>360<br>360<br>360<br>360<br>360             | 60,650<br>57,080<br>57,080<br>57,080<br>57,080<br>55,200       | 36,100<br>18,270<br>18,260<br>18,260<br>17,860<br>17,800    | 96,750<br>75,350<br>75,340<br>75,340<br>73,060<br>73,000       | 97,110<br>75,710<br>75,700<br>75,700<br>75,700<br>73,420<br>73,360 |
| Biochemical Oxygen Demand (pounds)  | Lower Oak Creek               | Existing 2020 Future (baseline) B1 B2 C1 C2                | 3,440<br>3,440<br>3,440<br>3,440<br>3,440<br>3,440 | 120<br>120<br>120<br>120<br>120<br>120 | 3,560<br>3,560<br>3,560<br>3,560<br>3,560<br>3,560 | 56,390<br>45,680<br>45,680<br>45,680<br>45,680<br>45,680       | 1,970<br>1,180<br>1,180<br>1,180<br>1,180<br>1,180          | 58,360<br>46,860<br>46,860<br>46,860<br>46,860<br>46,860       | 61,920<br>50,420<br>50,420<br>50,420<br>50,420<br>50,420           |
|                                     | Middle Oak Creek              | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                              | 37,820<br>36,720<br>36,720<br>36,720<br>36,720<br>36,720       | 26,670<br>19,170<br>19,020<br>19,020<br>19,140<br>19,100    | 64,490<br>55,890<br>55,740<br>55,740<br>55,860<br>55,820       | 64,490<br>55,890<br>55,740<br>55,740<br>55,860<br>55,820           |
|                                     | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) B1 B2 C1 C2                | <10<br><10<br><10<br><10<br><10<br><10             | 0<br>0<br>0<br>0<br>0                  | <10<br><10<br><10<br><10<br><10<br><10             | 28,860<br>32,340<br>32,340<br>32,340<br>32,340<br>32,340       | 9,150<br>5,180<br>5,180<br>5,180<br>5,170<br>5,160          | 38,010<br>37,520<br>37,520<br>37,520<br>37,510<br>37,500       | 38,010<br>37,520<br>37,520<br>37,520<br>37,510<br>37,500           |
|                                     | North Branch Oak Creek        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                              | 79,090<br>75,750<br>75,750<br>75,750<br>75,750<br>75,750       | 15,680<br>8,940<br>8,910<br>8,910<br>8,930<br>8,930         | 94,770<br>84,690<br>84,660<br>84,660<br>84,680<br>84,680       | 94,770<br>84,690<br>84,660<br>84,660<br>84,680<br>84,680           |
|                                     | Upper Oak Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                              | 35,580<br>38,330<br>38,330<br>38,330<br>38,330<br>38,330       | 7,690<br>2,210<br>2,210<br>2,210<br>2,210<br>2,210<br>2,210 | 43,270<br>40,540<br>40,540<br>40,540<br>40,540<br>40,540       | 43,270<br>40,540<br>40,540<br>40,540<br>40,540<br>40,540           |
|                                     | Watershed Total               | Existing 2020 Future (baseline) B1 B2 C1 C2                | 3,440<br>3,440<br>3,440<br>3,440<br>3,440<br>3,440 | 120<br>120<br>120<br>120<br>120<br>120 | 3,560<br>3,560<br>3,560<br>3,560<br>3,560<br>3,560 | 237,740<br>228,820<br>228,820<br>228,820<br>228,820<br>228,820 | 61,160<br>36,680<br>36,500<br>36,500<br>36,630<br>36,580    | 298,900<br>265,500<br>265,320<br>265,320<br>265,450<br>265,400 | 302,460<br>269,060<br>268,880<br>268,880<br>269,010<br>268,960     |
| Copper (pounds)                     | Lower Oak Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                              | <1<br><1<br><1<br><1<br><1<br><1       | <1<br><1<br><1<br><1<br><1<br><1                   | 105<br>80<br>80<br>80<br>80<br>80                              | <1<br><1<br><1<br><1<br><1<br><1                            | 105<br>80<br>80<br>80<br>80<br>80                              | 105<br>80<br>80<br>80<br>80<br>80                                  |

|                             |                               |                                                            |                                | Point Sources              |                                  | 1                                      | Nonpoint Source                        | a                                             |                                               |
|-----------------------------|-------------------------------|------------------------------------------------------------|--------------------------------|----------------------------|----------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Water Quality Indicator     | Subwatershed                  | Screening Alternative                                      | Industrial<br>Point<br>Sources | SSOs                       | Subtotal                         | Urban                                  | Rural <sup>b,c</sup>                   | Subtotal                                      | Total                                         |
| Copper (pounds) (continued) | Middle Oak Creek              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0            | 70<br>63<br>63<br>63<br>63<br>63       | 25<br>24<br>24<br>24<br>24<br>24<br>24 | 95<br>87<br>87<br>87<br>87<br>87              | 95<br>87<br>87<br>87<br>87<br>87              |
|                             | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0            | 56<br>54<br>54<br>54<br>54<br>54       | 11<br>7<br>7<br>7<br>7<br>7            | 67<br>61<br>61<br>61<br>61                    | 67<br>61<br>61<br>61<br>61                    |
|                             | North Branch Oak Creek        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0            | 148<br>128<br>128<br>128<br>128<br>128 | 13<br>11<br>11<br>11<br>11             | 161<br>139<br>139<br>139<br>139<br>139        | 161<br>139<br>139<br>139<br>139<br>139        |
|                             | Upper Oak Creek               | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0            | 66<br>63<br>63<br>63<br>63<br>63       | 3<br>2<br>2<br>2<br>2<br>2<br>2        | 69<br>65<br>65<br>65<br>65                    | 69<br>65<br>65<br>65<br>65                    |
|                             | Watershed Total               | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0          | <1<br><1<br><1<br><1<br><1 | <1<br><1<br><1<br><1<br><1<br><1 | 445<br>388<br>388<br>388<br>388<br>388 | 52<br>44<br>44<br>44<br>44<br>44       | 497<br>432<br>432<br>432<br>432<br>432<br>432 | 497<br>432<br>432<br>432<br>432<br>432<br>432 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint source subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table B-5

AVERAGE ANNUAL POLLUTANT LOADS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: ROOT RIVER WATERSHED

|                           |                              |                                                            |                                        | Point S                            | Sources                                            |                                                    | N                                                  | Ionpoint Source                                          | e <sup>a</sup>                                           |                                                          |
|---------------------------|------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                           |                              |                                                            | Industrial<br>Point                    |                                    |                                                    |                                                    |                                                    |                                                          |                                                          |                                                          |
| Water Quality Indicator   | Subwatershed                 | Alternative Plan                                           | Sources                                | SSOs <sup>a</sup>                  | WWTPs                                              | Subtotal                                           | Urban                                              | Rural <sup>b,c</sup>                                     | Subtotal                                                 | Total                                                    |
| Total Phosphorus (pounds) | Lower Root River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 130<br>130<br>130<br>130<br>130<br>130 | 10<br>10<br>10<br>10<br>10<br>10   | 0<br>0<br>0<br>0<br>0                              | 140<br>140<br>140<br>140<br>140<br>140             | 8,750<br>7,730<br>7,730<br>7,730<br>7,180<br>7,180 | 14,670<br>11,700<br>10,070<br>10,070<br>10,920<br>10,350 | 23,420<br>19,430<br>17,800<br>17,800<br>18,100<br>17,530 | 23,560<br>19,570<br>17,940<br>17,940<br>18,240<br>17,670 |
|                           | Middle Root River            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                              | 3,780<br>3,670<br>3,670<br>3,670<br>3,410<br>3,410 | 5,130<br>4,410<br>4,150<br>4,150<br>4,130<br>4,030       | 8,910<br>8,080<br>7,820<br>7,820<br>7,540<br>7,440       | 8,910<br>8,080<br>7,820<br>7,820<br>7,540<br>7,440       |
|                           | Upper Root River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | <10<br>10<br>10<br><10<br>20<br>20 | 0<br>0<br>0<br>0<br>0                              | <10<br>10<br>10<br><10<br>20<br>20                 | 6,000<br>4,470<br>4,470<br>4,470<br>4,160<br>4,160 | 170<br>120<br>120<br>120<br>120<br>120                   | 6,170<br>4,590<br>4,590<br>4,590<br>4,280<br>4,280       | 6,170<br>4,600<br>4,600<br>4,590<br>4,300<br>4,300       |
|                           | Hoods Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0              | 940<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350   | 940<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350   | 1,020<br>990<br>990<br>990<br>920<br>920           | 5,610<br>4,420<br>3,730<br>3,730<br>4,120<br>3,900       | 6,630<br>5,410<br>4,720<br>4,720<br>5,040<br>4,820       | 7,570<br>6,760<br>6,070<br>6,070<br>6,390<br>6,170       |
|                           | Root River Canal             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                              | 180<br>170<br>170<br>170<br>170<br>160             | 4,720<br>4,260<br>3,970<br>3,970<br>3,940<br>3,620       | 4,900<br>4,430<br>4,140<br>4,140<br>4,100<br>3,780       | 4,900<br>4,430<br>4,140<br>4,140<br>4,100<br>3,780       |
|                           | East Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0              | 220<br>220<br>220<br>220<br>220<br>220<br>220      | 220<br>220<br>220<br>220<br>220<br>220<br>220      | 430<br>500<br>500<br>500<br>440<br>440             | 6,880<br>6,010<br>5,560<br>5,560<br>5,560<br>5,020       | 7,310<br>6,510<br>6,060<br>6,060<br>6,000<br>5,460       | 7,530<br>6,730<br>6,280<br>6,280<br>6,220<br>5,680       |
|                           | West Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0              | 1,990<br>2,620<br>2,620<br>2,620<br>2,620<br>2,620 | 1,990<br>2,620<br>2,620<br>2,620<br>2,620<br>2,620 | 1,040<br>1,050<br>1,050<br>1,050<br>960<br>960     | 15,890<br>13,940<br>12,890<br>12,890<br>12,960<br>11,700 | 16,930<br>14,990<br>13,940<br>13,940<br>13,920<br>12,660 | 18,920<br>17,610<br>16,560<br>16,560<br>16,540<br>15,280 |

|                                       |                        |                                                            |                                        | Point S                                | Sources                                            |                                                    | N                                                                          | onpoint Source                                                                | ea                                                                             |                                                                                |
|---------------------------------------|------------------------|------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed           | Alternative Plan                                           | Industrial<br>Point<br>Sources         | SSOs <sup>a</sup>                      | WWTPs                                              | Subtotal                                           | Urban                                                                      | Rural <sup>b,c</sup>                                                          | Subtotal                                                                       | Total                                                                          |
| Total Phosphorus (pounds) (continued) | East Branch Root River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>10<br>10<br>20<br>30<br>30        | 0<br>0<br>0<br>0<br>0                              | 0<br>10<br>10<br>20<br>30<br>30                    | 1,660<br>1,470<br>1,470<br>1,470<br>1,370<br>1,370                         | 180<br>50<br>50<br>50<br>50<br>50                                             | 1,840<br>1,520<br>1,520<br>1,520<br>1,520<br>1,420<br>1,420                    | 1,840<br>1,530<br>1,530<br>1,540<br>1,450<br>1,450                             |
|                                       | Whitnall Park Creek    | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                  | <10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0                              | <10<br><10<br><10<br><10<br><10<br><10             | 3,650<br>3,000<br>3,000<br>3,000<br>2,790<br>2,790                         | 1,010<br>720<br>720<br>720<br>720<br>680<br>680                               | 4,660<br>3,720<br>3,720<br>3,720<br>3,470<br>3,470                             | 4,660<br>3,720<br>3,720<br>3,720<br>3,470<br>3,470                             |
|                                       | Watershed Total        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 130<br>130<br>130<br>130<br>130<br>130 | 10<br>30<br>30<br>30<br>60<br>60       | 3,150<br>4,190<br>4,190<br>4,190<br>4,190<br>4,190 | 3,290<br>4,350<br>4,350<br>4,350<br>4,380<br>4,380 | 26,510<br>23,050<br>23,050<br>23,050<br>21,390<br>21,390                   | 54,260<br>45,630<br>41,260<br>41,260<br>42,480<br>39,470                      | 80,770<br>68,680<br>64,310<br>64,310<br>63,870<br>60,860                       | 84,060<br>73,030<br>68,660<br>68,660<br>68,250<br>65,240                       |
| Total Suspended Solids (pounds)       | Lower Root River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 480<br>480<br>480<br>480<br>480<br>480 | 710<br>710<br>710<br>710<br>710<br>710 | 0<br>0<br>0<br>0<br>0                              | 1,190<br>1,190<br>1,190<br>1,190<br>1,190<br>1,190 | 2,781,990<br>2,084,320<br>2,084,320<br>2,084,320<br>2,069,730<br>2,069,730 | 18,169,680<br>11,913,280<br>7,217,930<br>7,217,930<br>10,770,520<br>8,743,240 | 20,951,670<br>13,997,600<br>9,302,250<br>9,302,250<br>12,840,250<br>10,812,970 | 20,952,860<br>13,998,790<br>9,303,440<br>9,303,440<br>12,841,440<br>10,814,160 |
|                                       | Middle Root River      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                              | 1,290,740<br>1,093,100<br>1,093,100<br>1,093,100<br>1,087,730<br>1,087,730 | 5,439,900<br>2,217,110<br>1,427,010<br>1,427,010<br>2,017,560<br>1,666,010    | 6,730,640<br>3,310,210<br>2,520,110<br>2,520,110<br>3,105,290<br>2,753,740     | 6,730,640<br>3,310,210<br>2,520,110<br>2,520,110<br>3,105,290<br>2,753,740     |
|                                       | Upper Root River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 80<br>380<br>520<br>80<br>860<br>860   | 0<br>0<br>0<br>0<br>0                              | 80<br>380<br>520<br>80<br>860<br>860               | 1,918,200<br>1,304,810<br>1,304,810<br>1,304,810<br>1,304,790<br>1,304,790 | 18,970<br>7,980<br>7,980<br>7,980<br>7,980<br>7,980                           | 1,937,170<br>1,312,790<br>1,312,790<br>1,312,790<br>1,312,770<br>1,312,770     | 1,937,250<br>1,313,170<br>1,313,310<br>1,312,870<br>1,313,630<br>1,313,630     |
|                                       | Hoods Creek            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 1,060<br>1,520<br>1,520<br>1,520<br>1,520<br>1,520 | 1,060<br>1,520<br>1,520<br>1,520<br>1,520<br>1,520 | 536,060<br>395,060<br>395,060<br>395,060<br>395,060<br>395,060             | 7,409,050<br>4,980,580<br>2,975,190<br>2,975,190<br>4,499,690<br>3,641,750    | 7,945,110<br>5,375,640<br>3,370,250<br>3,370,250<br>4,894,750<br>4,036,810     | 7,946,170<br>5,377,160<br>3,371,770<br>3,371,770<br>4,896,270<br>4,038,330     |
|                                       | Root River Canal       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0                              | 114,030<br>105,930<br>105,930<br>105,930<br>98,260<br>98,260               | 7,048,210<br>6,051,940<br>4,806,650<br>4,806,650<br>5,455,510<br>4,402,270    | 7,162,240<br>6,157,870<br>4,912,580<br>4,912,580<br>5,553,770<br>4,500,530     | 7,162,240<br>6,157,870<br>4,912,580<br>4,912,580<br>5,553,770<br>4,500,530     |

Table B-5 (continued)

|                                              |                              |                                                            |                                              | Point S                                            | Sources                                                  |                                                          | N                                                                          | Ionpoint Source                                                                  | e <sup>a</sup>                                                                   |                                                                                  |
|----------------------------------------------|------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Water Quality Indicator                      | Subwatershed                 | Alternative Plan                                           | Industrial<br>Point<br>Sources               | SSOs <sup>a</sup>                                  | WWTPs                                                    | Subtotal                                                 | Urban                                                                      | Rural <sup>b,c</sup>                                                             | Subtotal                                                                         | Total                                                                            |
| Total Suspended Solids (pounds) (continued)  | East Branch Root River Canal | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                              | 450<br>450<br>450<br>450<br>450<br>450                   | 450<br>450<br>450<br>450<br>450<br>450                   | 271,250<br>296,030<br>296,030<br>296,030<br>274,700<br>274,700             | 10,618,210<br>9,004,670<br>7,149,360<br>7,149,360<br>8,114,680<br>6,539,280      | 10,889,460<br>9,300,700<br>7,445,390<br>7,445,390<br>8,389,380<br>6,813,980      | 10,889,910<br>9,301,150<br>7,445,840<br>7,445,840<br>8,389,830<br>6,814,430      |
|                                              | West Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                              | 8,890<br>11,730<br>11,730<br>11,730<br>11,730<br>11,730  | 8,890<br>11,730<br>11,730<br>11,730<br>11,730<br>11,730  | 468,430<br>415,390<br>415,390<br>415,390<br>400,200<br>400,200             | 25,202,610<br>21,557,740<br>17,105,200<br>17,105,200<br>19,435,120<br>15,663,370 | 25,671,040<br>21,973,130<br>17,520,590<br>17,520,590<br>19,835,320<br>16,063,570 | 25,679,930<br>21,984,860<br>17,532,320<br>17,532,320<br>19,847,050<br>16,075,300 |
|                                              | East Branch Root River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                        | 0<br>340<br>520<br>900<br>1,640<br>1,640           | 0<br>0<br>0<br>0<br>0                                    | 0<br>340<br>520<br>900<br>1,640<br>1,640                 | 494,130<br>375,600<br>375,600<br>375,600<br>375,590<br>375,590             | 229,360<br>4,080<br>4,080<br>4,080<br>4,080<br>4,080                             | 723,490<br>379,680<br>379,680<br>379,680<br>379,670<br>379,670                   | 723,490<br>380,020<br>380,200<br>380,580<br>381,310<br>381,310                   |
|                                              | Whitnall Park Creek          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                        | 240<br>240<br>240<br>240<br>240<br>240<br>240      | 0<br>0<br>0<br>0<br>0                                    | 240<br>240<br>240<br>240<br>240<br>240                   | 1,112,640<br>801,550<br>801,550<br>801,550<br>801,540<br>801,540           | 636,060<br>65,210<br>65,210<br>65,210<br>65,210<br>65,210                        | 1,748,700<br>866,760<br>866,760<br>866,760<br>866,750<br>866,750                 | 1,748,940<br>867,000<br>867,000<br>867,000<br>866,990<br>866,990                 |
|                                              | Watershed Total              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 480<br>480<br>480<br>480<br>480<br>480       | 1,030<br>1,670<br>1,990<br>1,930<br>3,450<br>3,450 | 10,400<br>13,700<br>13,700<br>13,700<br>13,700<br>13,700 | 11,910<br>15,850<br>16,170<br>16,110<br>17,630<br>17,630 | 8,987,470<br>6,871,790<br>6,871,790<br>6,871,790<br>6,807,600<br>6,807,600 | 74,772,050<br>55,802,590<br>40,758,610<br>40,758,610<br>50,370,350<br>40,733,190 | 83,759,520<br>62,674,380<br>47,630,400<br>47,630,400<br>57,177,950<br>47,540,790 | 83,771,430<br>62,690,230<br>47,646,570<br>47,646,510<br>57,195,580<br>47,558,420 |
| Fecal Coliform Bacteria (trillions of cells) | Lower Root River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 13.58<br>13.58<br>13.58<br>13.58<br>13.58<br>13.58 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 13.58<br>13.58<br>13.58<br>13.58<br>13.58<br>13.58       | 2,641.12<br>2,156.05<br>2,156.05<br>2,156.05<br>1,932.99<br>1,932.99       | 853.13<br>735.14<br>735.14<br>735.14<br>618.84<br>610.98                         | 3,494.25<br>2,891.19<br>2,891.19<br>2,891.19<br>2,551.83<br>2,543.97             | 3,507.83<br>2,904.77<br>2,904.77<br>2,904.77<br>2,565.41<br>2,557.55             |
|                                              | Middle Root River            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 1,323.10<br>1,266.52<br>1,266.52<br>1,266.52<br>1,137.49<br>1,137.49       | 317.14<br>336.20<br>336.20<br>336.20<br>294.20<br>292.94                         | 1,640.24<br>1,602.72<br>1,602.72<br>1,602.72<br>1,431.69<br>1,430.43             | 1,640.24<br>1,602.72<br>1,602.72<br>1,602.72<br>1,431.69<br>1,430.43             |
|                                              | Upper Root River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 1.55<br>7.24<br>9.92<br>1.55<br>16.46<br>16.46     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 1.55<br>7.24<br>9.92<br>1.55<br>16.46<br>16.46           | 2,202.96<br>1,664.81<br>1,664.81<br>1,664.81<br>1,500.66<br>1,500.66       | 0.75<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                                     | 2,203.71<br>1,665.09<br>1,665.09<br>1,665.09<br>1,500.94<br>1,500.94             | 2,205.26<br>1,672.33<br>1,675.01<br>1,666.64<br>1,517.40<br>1,517.40             |

|                                                          |                              |                                                            |                                              | Point S                                            | Sources                                      |                                                    | N                                                                    | onpoint Source                                                       | e <sup>a</sup>                                                           |                                                                          |
|----------------------------------------------------------|------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed                 | Alternative Plan                                           | Industrial<br>Point<br>Sources               | SSOs <sup>a</sup>                                  | WWTPs                                        | Subtotal                                           | Urban                                                                | Rural <sup>b,c</sup>                                                 | Subtotal                                                                 | Total                                                                    |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Hoods Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.30<br>0.43<br>0.43<br>0.43<br>0.43         | 0.30<br>0.43<br>0.43<br>0.43<br>0.43               | 418.83<br>361.82<br>361.82<br>361.82<br>325.64<br>325.64             | 276.59<br>243.26<br>243.26<br>243.26<br>206.22<br>203.57             | 695.42<br>605.08<br>605.08<br>605.08<br>531.86<br>529.21                 | 695.72<br>605.51<br>605.51<br>605.51<br>532.29<br>529.64                 |
|                                                          | Root River Canal             | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 96.48<br>91.50<br>91.50<br>91.50<br>77.80<br>77.80                   | 180.79<br>181.29<br>181.29<br>181.29<br>139.33<br>135.77             | 277.27<br>272.79<br>272.79<br>272.79<br>217.13<br>213.57                 | 277.27<br>272.79<br>272.79<br>272.79<br>217.13<br>213.57                 |
|                                                          | East Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.14<br>0.14<br>0.14<br>0.14<br>0.14         | 0.14<br>0.14<br>0.14<br>0.14<br>0.14               | 215.12<br>228.91<br>228.91<br>228.91<br>194.86<br>194.86             | 251.23<br>237.03<br>237.03<br>237.03<br>178.65<br>173.04             | 466.35<br>465.94<br>465.94<br>465.94<br>373.51<br>367.90                 | 466.49<br>466.08<br>466.08<br>466.08<br>373.65<br>368.04                 |
|                                                          | West Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 2.85<br>3.76<br>3.76<br>3.76<br>3.76<br>3.76 | 2.85<br>3.76<br>3.76<br>3.76<br>3.76<br>3.76       | 451.94<br>423.71<br>423.71<br>423.71<br>371.22<br>371.22             | 560.80<br>529.13<br>529.13<br>529.13<br>405.76<br>392.79             | 1,012.74<br>952.84<br>952.84<br>952.84<br>776.98<br>764.01               | 1,015.59<br>956.60<br>956.60<br>956.60<br>780.74<br>767.77               |
|                                                          | East Branch Root River       | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>6.54<br>9.99<br>17.11<br>31.36<br>31.36    | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>6.54<br>9.99<br>17.11<br>31.36<br>31.36    | 554.63<br>484.35<br>484.35<br>484.35<br>435.91<br>435.91             | 2.49<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13                         | 557.12<br>484.48<br>484.48<br>484.48<br>436.04<br>436.04                 | 557.12<br>491.02<br>494.47<br>501.59<br>467.40<br>467.40                 |
|                                                          | Whitnall Park Creek          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 4.52<br>4.52<br>4.52<br>4.52<br>4.52<br>4.52       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 4.52<br>4.52<br>4.52<br>4.52<br>4.52<br>4.52       | 1,309.52<br>1,066.05<br>1,066.05<br>1,066.05<br>959.45<br>959.45     | 100.59<br>92.55<br>92.55<br>92.55<br>83.33<br>83.33                  | 1,410.11<br>1,158.60<br>1,158.60<br>1,158.60<br>1,042.78<br>1,042.78     | 1,414.63<br>1,163.12<br>1,163.12<br>1,163.12<br>1,047.30<br>1,047.30     |
|                                                          | Watershed Total              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 19.65<br>31.88<br>38.01<br>36.76<br>65.92<br>65.92 | 3.29<br>4.33<br>4.33<br>4.33<br>4.33<br>4.33 | 22.94<br>36.21<br>42.34<br>41.09<br>70.25<br>70.25 | 9,213.70<br>7,743.72<br>7,743.72<br>7,743.72<br>6,936.02<br>6,936.02 | 2,543.51<br>2,355.01<br>2,355.01<br>2,355.01<br>1,926.74<br>1,892.83 | 11,757.21<br>10,098.73<br>10,098.73<br>10,098.73<br>8,862.76<br>8,828.85 | 11,780.15<br>10,134.94<br>10,141.07<br>10,139.82<br>8,933.01<br>8,899.10 |
| Total Nitrogen (pounds)                                  | Lower Root River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 540<br>540<br>540<br>540<br>540<br>540       | 30<br>30<br>30<br>30<br>30<br>30                   | 0<br>0<br>0<br>0<br>0                        | 570<br>570<br>570<br>570<br>570<br>570             | 48,810<br>44,820<br>44,820<br>44,820<br>43,180<br>43,180             | 232,290<br>170,470<br>148,340<br>148,340<br>166,420<br>143,330       | 281,100<br>215,290<br>193,160<br>193,160<br>209,600<br>186,510           | 281,670<br>215,860<br>193,730<br>193,730<br>210,170<br>187,080           |

Table B-5 (continued)

|                                     |                              |                                                            |                                        | Point S                            | Sources                                                  |                                                          | N                                                        | Ionpoint Source                                                | e <sup>a</sup>                                                 |                                                                    |
|-------------------------------------|------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                 | Alternative Plan                                           | Industrial<br>Point<br>Sources         | SSOs <sup>a</sup>                  | WWTPs                                                    | Subtotal                                                 | Urban                                                    | Rural <sup>b,c</sup>                                           | Subtotal                                                       | Total                                                              |
| Total Nitrogen (pounds) (continued) | Middle Root River            | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 24,170<br>24,470<br>24,470<br>24,470<br>23,660<br>23,660 | 76,660<br>43,480<br>39,840<br>39,840<br>42,390<br>38,350       | 100,830<br>67,950<br>64,310<br>64,310<br>66,050<br>62,010      | 100,830<br>67,950<br>64,310<br>64,310<br>66,050<br>62,010          |
|                                     | Upper Root River             | Existing 2020 Future (baseline) B1 B2 C1 C2                | 0<br>0<br>0<br>0<br>0                  | <10<br>10<br>20<br><10<br>30<br>30 | 0<br>0<br>0<br>0<br>0                                    | <10<br>10<br>20<br><10<br>30<br>30                       | 38,610<br>30,000<br>30,000<br>30,000<br>29,050<br>29,050 | 1,220<br>770<br>770<br>770<br>770<br>770                       | 39,830<br>30,770<br>30,770<br>30,770<br>29,820<br>29,820       | 39,830<br>30,780<br>30,790<br>30,770<br>29,850<br>29,850           |
|                                     | Hoods Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0              | 3,980<br>5,690<br>5,690<br>5,690<br>5,690<br>5,690       | 3,980<br>5,690<br>5,690<br>5,690<br>5,690<br>5,690       | 6,060<br>5,940<br>5,940<br>5,940<br>5,710<br>5,710       | 97,320<br>72,550<br>62,940<br>62,940<br>70,930<br>60,530       | 103,380<br>78,490<br>68,880<br>68,880<br>76,640<br>66,240      | 107,360<br>84,180<br>74,570<br>74,570<br>82,330<br>71,930          |
|                                     | Root River Canal             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 1,180<br>1,150<br>1,150<br>1,150<br>1,070<br>1,070       | 89,940<br>80,550<br>76,650<br>76,650<br>78,580<br>65,970       | 91,120<br>81,700<br>77,800<br>77,800<br>79,650<br>67,040       | 91,120<br>81,700<br>77,800<br>77,800<br>79,650<br>67,040           |
|                                     | East Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0              | 1,820<br>1,820<br>1,820<br>1,820<br>1,820<br>1,820       | 1,820<br>1,820<br>1,820<br>1,820<br>1,820<br>1,820       | 2,600<br>2,960<br>2,960<br>2,960<br>2,760<br>2,760       | 132,080<br>116,320<br>110,380<br>110,380<br>113,410<br>94,560  | 134,680<br>119,280<br>113,340<br>113,340<br>116,170<br>97,320  | 136,500<br>121,100<br>115,160<br>115,160<br>117,990<br>99,140      |
|                                     | West Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0              | 20,720<br>27,340<br>27,340<br>27,340<br>27,340<br>27,340 | 20,720<br>27,340<br>27,340<br>27,340<br>27,340<br>27,340 | 6,720<br>6,800<br>6,800<br>6,800<br>6,460<br>6,460       | 305,720<br>271,210<br>257,160<br>257,160<br>264,650<br>220,570 | 312,440<br>278,010<br>263,960<br>263,960<br>271,110<br>227,030 | 333,160<br>305,350<br>291,300<br>291,300<br>298,450<br>254,370     |
|                                     | East Branch Root River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>10<br>20<br>30<br>60          | 0<br>0<br>0<br>0<br>0                                    | 0<br>10<br>20<br>30<br>60                                | 10,570<br>9,900<br>9,900<br>9,900<br>9,600<br>9,600      | 4,030<br>400<br>400<br>400<br>400<br>400<br>400                | 14,600<br>10,300<br>10,300<br>10,300<br>10,000<br>10,000       | 14,600<br>10,310<br>10,320<br>10,330<br>10,060<br>10,060           |
|                                     | Whitnall Park Creek          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 10<br>10<br>10<br>10<br>10         | 0<br>0<br>0<br>0<br>0                                    | 10<br>10<br>10<br>10<br>10<br>10                         | 23,440<br>20,030<br>20,030<br>20,030<br>19,410<br>19,410 | 14,650<br>5,010<br>5,010<br>5,010<br>4,920<br>4,920            | 38,090<br>25,040<br>25,040<br>25,040<br>24,330<br>24,330       | 38,100<br>25,050<br>25,050<br>25,050<br>25,050<br>24,340<br>24,340 |

|                                     |                              |                                                            |                                        | Point S                                | Sources                                                  |                                                          | N                                                              | Ionpoint Source                                                    | ea                                                                 |                                                                    |
|-------------------------------------|------------------------------|------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                 | Alternative Plan                                           | Industrial<br>Point<br>Sources         | SSOs <sup>a</sup>                      | WWTPs                                                    | Subtotal                                                 | Urban                                                          | Rural <sup>b,c</sup>                                               | Subtotal                                                           | Total                                                              |
| Total Nitrogen (pounds) (continued) | Watershed Total              | Existing 2020 Future (baseline) B1 B2 C1 C2                | 540<br>540<br>540<br>540<br>540<br>540 | 40<br>60<br>80<br>70<br>130<br>130     | 26,520<br>34,850<br>34,850<br>34,850<br>34,850<br>34,850 | 27,100<br>35,450<br>35,470<br>35,460<br>35,520<br>35,520 | 162,160<br>146,070<br>146,070<br>146,070<br>140,900<br>140,900 | 953,910<br>760,760<br>701,490<br>701,490<br>742,470<br>629,400     | 1,116,070<br>906,830<br>847,560<br>847,560<br>883,370<br>770,300   | 1,143,170<br>942,280<br>883,030<br>883,020<br>918,890<br>805,820   |
| Biochemical Oxygen Demand (pounds)  | Lower Root River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 820<br>820<br>820<br>820<br>820<br>820 | 180<br>180<br>180<br>180<br>180<br>180 | 0<br>0<br>0<br>0<br>0                                    | 1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000       | 215,660<br>197,370<br>197,370<br>197,370<br>196,580<br>196,580 | 577,910<br>525,540<br>413,360<br>413,360<br>494,090<br>430,210     | 793,570<br>722,910<br>610,730<br>610,730<br>690,670<br>626,790     | 794,570<br>723,910<br>611,730<br>611,730<br>691,670<br>627,790     |
|                                     | Middle Root River            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 105,600<br>113,860<br>113,860<br>113,860<br>113,580<br>113,580 | 186,700<br>125,680<br>107,740<br>107,740<br>120,090<br>109,020     | 292,300<br>239,540<br>221,600<br>221,600<br>233,670<br>222,600     | 292,300<br>239,540<br>221,600<br>221,600<br>233,670<br>222,600     |
|                                     | Upper Root River             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 20<br>90<br>130<br>20<br>210<br>210    | 0<br>0<br>0<br>0<br>0                                    | 20<br>90<br>130<br>20<br>210<br>210                      | 169,850<br>126,890<br>126,890<br>126,890<br>126,890<br>126,890 | 6,380<br>4,570<br>4,570<br>4,570<br>4,570<br>4,570                 | 176,230<br>131,460<br>131,460<br>131,460<br>131,460<br>131,460     | 176,250<br>131,550<br>131,590<br>131,480<br>131,670<br>131,670     |
|                                     | Hoods Creek                  | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 990<br>1,410<br>1,410<br>1,410<br>1,410<br>1,410         | 990<br>1,410<br>1,410<br>1,410<br>1,410<br>1,410         | 37,740<br>35,610<br>35,610<br>35,610<br>35,610<br>35,610       | 214,960<br>198,010<br>153,580<br>153,580<br>185,790<br>161,050     | 252,700<br>233,620<br>189,190<br>189,190<br>221,400<br>196,660     | 253,690<br>235,030<br>190,600<br>190,600<br>222,810<br>198,070     |
|                                     | Root River Canal             | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 8,330<br>8,010<br>8,010<br>8,010<br>7,600<br>7,600             | 230,680<br>246,990<br>268,090<br>268,090<br>230,270<br>196,540     | 239,010<br>255,000<br>276,100<br>276,100<br>237,870<br>204,140     | 239,010<br>255,000<br>276,100<br>276,100<br>237,870<br>204,140     |
|                                     | East Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 750<br>750<br>750<br>750<br>750<br>750<br>750            | 750<br>750<br>750<br>750<br>750<br>750<br>750            | 19,720<br>23,540<br>23,540<br>23,540<br>22,380<br>22,380       | 383,470<br>407,750<br>444,260<br>444,260<br>379,230<br>319,080     | 403,190<br>431,290<br>467,800<br>467,800<br>401,610<br>341,460     | 403,940<br>432,040<br>468,550<br>468,550<br>402,360<br>342,210     |
|                                     | West Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 10<br>10<br>10<br>10<br>10             | 0<br>0<br>0<br>0<br>0                  | 11,280<br>14,890<br>14,890<br>14,890<br>14,890<br>14,890 | 11,290<br>14,900<br>14,900<br>14,900<br>14,900<br>14,900 | 36,630<br>35,170<br>35,170<br>35,170<br>34,290<br>34,290       | 870,200<br>931,950<br>1,015,080<br>1,015,080<br>867,880<br>731,780 | 906,830<br>967,120<br>1,050,250<br>1,050,250<br>902,170<br>766,070 | 918,120<br>982,020<br>1,065,150<br>1,065,150<br>917,070<br>780,970 |

Table B-5 (continued)

|                                                |                        |                                                            |                                        | Point S                                | Sources                                                  |                                                          | N                                                              | Ionpoint Source                                                            | e <sup>a</sup>                                                             |                                                                            |
|------------------------------------------------|------------------------|------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed           | Alternative Plan                                           | Industrial<br>Point<br>Sources         | SSOs <sup>a</sup>                      | WWTPs                                                    | Subtotal                                                 | Urban                                                          | Rural <sup>b,c</sup>                                                       | Subtotal                                                                   | Total                                                                      |
| Biochemical Oxygen Demand (pounds) (continued) | East Branch Root River | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>80<br>130<br>220<br>400<br>400    | 0<br>0<br>0<br>0<br>0                                    | 0<br>80<br>130<br>220<br>400<br>400                      | 42,060<br>37,340<br>37,340<br>37,340<br>37,340<br>37,340       | 8,260<br>1,990<br>1,990<br>1,990<br>1,990<br>1,990                         | 50,320<br>39,330<br>39,330<br>39,330<br>39,330<br>39,330                   | 50,320<br>39,410<br>39,460<br>39,550<br>39,730<br>39,730                   |
|                                                | Whitnall Park Creek    | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 60<br>60<br>60<br>60<br>60             | 0<br>0<br>0<br>0<br>0                                    | 60<br>60<br>60<br>60<br>60                               | 99,220<br>83,330<br>83,330<br>83,330<br>83,330<br>83,330       | 31,140<br>14,280<br>14,280<br>14,280<br>14,280<br>14,280                   | 130,360<br>97,610<br>97,610<br>97,610<br>97,610<br>97,610                  | 130,420<br>97,670<br>97,670<br>97,670<br>97,670<br>97,670                  |
|                                                | Watershed Total        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 830<br>830<br>830<br>830<br>830<br>830 | 260<br>410<br>500<br>480<br>850<br>850 | 13,020<br>17,050<br>17,050<br>17,050<br>17,050<br>17,050 | 14,110<br>18,290<br>18,380<br>18,360<br>18,730<br>18,730 | 734,810<br>661,120<br>661,120<br>661,120<br>657,600<br>657,600 | 2,509,700<br>2,456,760<br>2,422,950<br>2,422,950<br>2,298,190<br>1,968,520 | 3,244,510<br>3,117,880<br>3,084,070<br>3,084,070<br>2,955,790<br>2,626,120 | 3,258,620<br>3,136,170<br>3,102,450<br>3,102,430<br>2,974,520<br>2,644,850 |
| Copper (pounds)                                | Lower Root River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 3<br>3<br>3<br>3<br>3                  | <1<br><1<br><1<br><1<br><1<br><1       | 0<br>0<br>0<br>0<br>0                                    | 3<br>3<br>3<br>3<br>3                                    | 404<br>340<br>340<br>340<br>338<br>338                         | 171<br>145<br>145<br>145<br>141<br>141                                     | 575<br>485<br>485<br>485<br>479<br>479                                     | 578<br>488<br>488<br>488<br>482<br>482                                     |
|                                                | Middle Root River      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 194<br>189<br>189<br>189<br>188<br>188                         | 70<br>71<br>71<br>71<br>70<br>70                                           | 264<br>260<br>260<br>260<br>258<br>258                                     | 264<br>260<br>260<br>260<br>258<br>258                                     |
|                                                | Upper Root River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | <1<br><1<br><1<br><1<br><1             | 0<br>0<br>0<br>0<br>0                                    | <1<br><1<br><1<br><1<br><1<br><1                         | 305<br>218<br>218<br>218<br>218<br>218                         | 2<br>1<br>1<br>1<br>1<br>1                                                 | 307<br>219<br>219<br>219<br>219<br>219                                     | 307<br>219<br>219<br>219<br>219<br>219                                     |
|                                                | Hoods Creek            | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 4<br>5<br>5<br>5<br>5<br>5                               | 4<br>5<br>5<br>5<br>5<br>5                               | 69<br>59<br>59<br>59<br>59                                     | 64<br>54<br>54<br>54<br>53<br>53                                           | 133<br>113<br>113<br>113<br>112<br>112                                     | 137<br>118<br>118<br>118<br>117<br>117                                     |
|                                                | Root River Canal       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                    | 15<br>14<br>14<br>14<br>14                                     | 42<br>41<br>41<br>41<br>38<br>38                                           | 57<br>55<br>55<br>55<br>55<br>52<br>52                                     | 57<br>55<br>55<br>55<br>52<br>52                                           |

|                             |                              |                                                            |                                | Point S                         | Sources                          |                                  | N                                                  | onpoint Source                                | <sub>e</sub> a                                     |                                                    |
|-----------------------------|------------------------------|------------------------------------------------------------|--------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Water Quality Indicator     | Subwatershed                 | Alternative Plan                                           | Industrial<br>Point<br>Sources | SSOs <sup>a</sup>               | WWTPs                            | Subtotal                         | Urban                                              | Rural <sup>b,c</sup>                          | Subtotal                                           | Total                                              |
| Copper (pounds) (continued) | East Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0           | 1<br>1<br>1<br>1<br>1            | 1<br>1<br>1<br>1<br>1            | 36<br>42<br>42<br>42<br>39<br>39                   | 55<br>51<br>51<br>51<br>48<br>48              | 91<br>93<br>93<br>93<br>87<br>87                   | 92<br>94<br>94<br>94<br>88<br>88                   |
|                             | West Branch Root River Canal | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0           | 35<br>47<br>47<br>47<br>47<br>47 | 35<br>47<br>47<br>47<br>47<br>47 | 67<br>63<br>63<br>63<br>61<br>61                   | 122<br>112<br>112<br>112<br>112<br>106<br>106 | 189<br>175<br>175<br>175<br>167<br>167             | 224<br>222<br>222<br>222<br>214<br>214             |
|                             | East Branch Root River       | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | 0<br><1<br><1<br><1<br><1<br><1 | 0<br>0<br>0<br>0<br>0            | 0<br><1<br><1<br><1<br><1<br><1  | 77<br>63<br>63<br>63<br>63<br>63                   | 2<br>1<br>1<br>1<br>1                         | 79<br>64<br>64<br>64<br>64                         | 79<br>64<br>64<br>64<br>64<br>64                   |
|                             | Whitnall Park Creek          | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 0<br>0<br>0<br>0<br>0          | <1<br><1<br><1<br><1<br><1      | 0<br>0<br>0<br>0<br>0            | <1<br><1<br><1<br><1<br><1<br><1 | 181<br>142<br>142<br>142<br>142<br>142             | 20<br>16<br>16<br>16<br>16<br>16              | 201<br>158<br>158<br>158<br>158<br>158             | 201<br>158<br>158<br>158<br>158<br>158             |
|                             | Watershed Total              | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 3<br>3<br>3<br>3<br>3          | <1<br><1<br><1<br><1<br><1      | 40<br>53<br>53<br>53<br>53<br>53 | 43<br>56<br>56<br>56<br>56<br>56 | 1,348<br>1,130<br>1,130<br>1,130<br>1,122<br>1,122 | 548<br>492<br>492<br>492<br>474<br>474        | 1,896<br>1,622<br>1,622<br>1,622<br>1,596<br>1,596 | 1,939<br>1,678<br>1,678<br>1,678<br>1,652<br>1,652 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint source subtotal column generally exhibit the anticipated relationships between conditions.

Source: Tetra Tech, Inc., Brown and Caldwell, and SEWRPC.

<sup>&</sup>lt;sup>b</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table B-6

AVERAGE ANNUAL POLLUTANT LOADS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: NEARSHORE LAKE MICHIGAN AREA

|                                 |                                       |                                                            |                                        | Point S                                              | Sources                                                                    |                                                                            | N                                                                          | lonpoint Source                                                | e <sup>a</sup>                                                             |                                                                            |
|---------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator         | Location                              | Screening Alternative                                      | SSOs <sup>a</sup>                      | CSOs                                                 | WWTPs                                                                      | Subtotal                                                                   | Urban                                                                      | Rural <sup>b,c</sup>                                           | Subtotal                                                                   | Total                                                                      |
| Total Phosphorus (pounds)       | Ozaukee County                        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 10<br>10<br>10<br>10<br>10<br>10       | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                                      | 10<br>10<br>10<br>10<br>10                                                 | 2,370<br>2,120<br>2,070<br>2,070<br>1,990<br>1,990                         | 630<br>560<br>510<br>510<br>520<br>520                         | 3,000<br>2,680<br>2,580<br>2,580<br>2,510<br>2,510                         | 3,010<br>2,690<br>2,590<br>2,590<br>2,520<br>2,520                         |
|                                 | Milwaukee County                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 30<br>10<br>0<br><10<br>10             | 160<br>120<br>70<br><10<br>110                       | 316,550<br>371,700<br>371,700<br>371,700<br>371,700<br>371,700             | 316,740<br>371,830<br>371,770<br>371,700<br>371,820<br>371,820             | 5,930<br>5,180<br>5,040<br>5,040<br>4,870<br>4,870                         | 720<br>700<br>600<br>600<br>610<br>610                         | 6,650<br>5,880<br>5,640<br>5,640<br>5,480<br>5,480                         | 323,390<br>377,710<br>377,410<br>377,340<br>377,300<br>377,300             |
|                                 | Racine County                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                                      | <10<br><10<br><10<br><10<br><10<br><10                                     | 4,880<br>4,290<br>3,770<br>3,770<br>3,880<br>3,880                         | 890<br>530<br>550<br>550<br>620<br>610                         | 5,770<br>4,820<br>4,320<br>4,320<br>4,500<br>4,490                         | 5,770<br>4,820<br>4,320<br>4,320<br>4,500<br>4,490                         |
|                                 | Nearshore Lake<br>Michigan Area Total | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 40<br>20<br>10<br>10<br>20<br>20       | 160<br>120<br>70<br><10<br>110<br>110                | 316,550<br>371,700<br>371,700<br>371,700<br>371,700<br>371,700             | 316,750<br>371,840<br>371,780<br>371,710<br>371,830<br>371,830             | 13,180<br>11,590<br>10,880<br>10,880<br>10,740<br>10,740                   | 2,240<br>1,790<br>1,660<br>1,660<br>1,750<br>1,740             | 15,420<br>13,380<br>12,540<br>12,540<br>12,490<br>12,480                   | 332,170<br>385,220<br>384,320<br>384,250<br>384,320<br>384,310             |
| Total Suspended Solids (pounds) | Ozaukee County                        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 310<br>430<br>620<br>570<br>360<br>360 | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                                      | 310<br>430<br>620<br>570<br>360<br>360                                     | 838,280<br>659,900<br>652,640<br>652,640<br>676,650<br>676,650             | 397,340<br>361,640<br>227,240<br>227,240<br>317,730<br>270,590 | 1,235,620<br>1,021,540<br>879,880<br>879,880<br>994,380<br>947,240         | 1,235,930<br>1,021,970<br>880,500<br>880,450<br>994,740<br>947,600         |
|                                 | Milwaukee County                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,160<br>200<br>0<br>190<br>230<br>230 | 16,040<br>11,750<br>7,100<br>270<br>10,630<br>10,630 | 6,926,460<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720 | 6,943,660<br>7,770,670<br>7,765,820<br>7,759,180<br>7,769,580<br>7,769,580 | 2,770,770<br>2,066,830<br>2,043,050<br>2,043,050<br>2,132,150<br>2,132,150 | 126,260<br>140,430<br>62,130<br>62,130<br>73,650<br>71,500     | 2,897,030<br>2,207,260<br>2,105,180<br>2,105,180<br>2,205,800<br>2,203,650 | 9,840,690<br>9,977,930<br>9,871,000<br>9,864,360<br>9,975,380<br>9,973,230 |
|                                 | Racine County                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 130<br>130<br>130<br>130<br>130<br>130 | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                                      | 130<br>130<br>130<br>130<br>130<br>130                                     | 1,932,680<br>1,650,890<br>1,273,100<br>1,273,100<br>1,426,310<br>1,426,310 | 703,620<br>325,090<br>288,690<br>288,690<br>499,930<br>412,280 | 2,636,300<br>1,975,980<br>1,561,790<br>1,561,790<br>1,926,240<br>1,838,590 | 2,636,430<br>1,976,110<br>1,561,920<br>1,561,920<br>1,926,370<br>1,838,720 |

|                                              |                                       |                                                            |                                                    | Point S                                              | Sources                                                                                 |                                                                            | N                                                                          | lonpoint Source                                                  | ea                                                                         |                                                                                  |
|----------------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Water Quality Indicator                      | Location                              | Screening Alternative                                      | SSOs <sup>a</sup>                                  | CSOs                                                 | WWTPs                                                                                   | Subtotal                                                                   | Urban                                                                      | Rural <sup>b,c</sup>                                             | Subtotal                                                                   | Total                                                                            |
| Total Suspended Solids (pounds) (continued)  | Nearshore Lake<br>Michigan Area Total | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 1,600<br>760<br>750<br>890<br>720<br>720           | 16,040<br>11,750<br>7,100<br>270<br>10,630<br>10,630 | 6,926,460<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720 | 6,944,100<br>7,771,230<br>7,766,570<br>7,759,880<br>7,770,070<br>7,770,070 | 5,541,730<br>4,377,620<br>3,968,790<br>3,968,790<br>4,235,110<br>4,235,110 | 1,227,220<br>827,160<br>578,060<br>578,060<br>891,310<br>754,370 | 6,768,950<br>5,204,780<br>4,546,850<br>4,546,850<br>5,126,420<br>4,989,480 | 13,713,050<br>12,976,010<br>12,313,420<br>12,306,730<br>12,896,490<br>12,759,550 |
| Fecal Coliform Bacteria (trillions of cells) | Ozaukee County                        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 5.87<br>8.24<br>11.84<br>10.81<br>6.87<br>6.87     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                            | 5.87<br>8.24<br>11.84<br>10.81<br>6.87<br>6.87                             | 682.50<br>561.25<br>576.49<br>576.49<br>530.88<br>530.88                   | 60.95<br>80.21<br>48.32<br>48.32<br>44.94<br>44.65               | 743.45<br>641.46<br>624.81<br>624.81<br>575.82<br>575.53                   | 749.32<br>649.70<br>636.65<br>635.62<br>582.69<br>582.40                         |
|                                              | Milwaukee County                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 25.07<br>4.22<br>0.00<br>4.02<br>4.87<br>4.87      | 132.23<br>96.91<br>58.58<br>2.20<br>87.64<br>87.64   | 2,043.01<br>2,345.05<br>2345.05<br>2345.05<br>2,345.05<br>2,345.05                      | 2,200.31<br>2,446.18<br>2403.63<br>2351.27<br>2,437.56<br>2,437.56         | 1,971.96<br>1,615.25<br>1627.11<br>1627.11<br>1,512.08<br>1,512.08         | 43.48<br>114.57<br>45.13<br>45.13<br>44.71<br>44.70              | 2,015.44<br>1,729.82<br>1672.24<br>1672.24<br>1,556.79<br>1,556.78         | 4,215.75<br>4,176.00<br>4075.87<br>4023.51<br>3,994.35<br>3,994.34               |
|                                              | Racine County                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 2.88<br>2.88<br>2.88<br>2.88<br>2.88<br>2.88       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                            | 2.88<br>2.88<br>2.88<br>2.88<br>2.88<br>2.88                               | 1,252.98<br>1,002.16<br>923.33<br>923.33<br>929.05<br>929.05               | 50.70<br>70.11<br>34.48<br>34.48<br>34.25<br>33.92               | 1,303.68<br>1,072.27<br>957.81<br>957.81<br>963.30<br>962.97               | 1,306.56<br>1,075.15<br>960.69<br>960.69<br>966.18<br>965.85                     |
|                                              | Nearshore Lake<br>Michigan Area Total | Existing 2020 Future (baseline) B1 B2 C1 C2                | 33.82<br>15.34<br>14.72<br>18.74<br>14.62<br>14.62 | 132.23<br>96.91<br>58.58<br>2.20<br>87.64<br>87.64   | 2,043.01<br>2,345.05<br>2345.05<br>2345.05<br>2,345.05<br>2,345.05                      | 2,209.06<br>2,457.30<br>2418.35<br>2365.99<br>2,447.31<br>2,447.31         | 3,907.44<br>3,178.66<br>3126.93<br>3126.93<br>2,972.01<br>2,972.01         | 155.13<br>264.89<br>127.93<br>127.93<br>123.90<br>123.27         | 4,062.57<br>3,443.55<br>3254.86<br>3254.86<br>3,095.91<br>3,095.28         | 6,271.63<br>5,900.85<br>5,673.21<br>5,620.85<br>5,543.22<br>5,542.59             |
| Total Nitrogen (pounds)                      | Ozaukee County                        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 10<br>20<br>20<br>20<br>20<br>10                   | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                                                   | 10<br>20<br>20<br>20<br>20<br>10                                           | 15,310<br>14,700<br>13,880<br>13,880<br>13,730<br>13,730                   | 9,910<br>8,810<br>8,880<br>8,880<br>9,240<br>8,310               | 25,220<br>23,510<br>22,760<br>22,760<br>22,970<br>22,040                   | 25,230<br>23,530<br>22,780<br>22,780<br>22,980<br>22,050                         |
|                                              | Milwaukee County                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 60<br>10<br>0<br>10<br>10                          | 1,120<br>820<br>500<br>20<br>740<br>740              | 8,261,880<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380              | 8,263,060<br>9,648,210<br>9,647,880<br>9,647,410<br>9,648,130<br>9,648,130 | 38,940<br>35,890<br>34,300<br>34,300<br>34,250<br>34,250                   | 7,650<br>5,520<br>5,650<br>5,650<br>5,960<br>5,920               | 46,590<br>41,410<br>39,950<br>39,950<br>40,210<br>40,170                   | 8,309,650<br>9,689,620<br>9,687,830<br>9,687,360<br>9,688,340<br>9,688,300       |
|                                              | Racine County                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 10<br>10<br>10<br>10<br>10<br>10                   | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                                                   | 10<br>10<br>10<br>10<br>10<br>10                                           | 33,130<br>35,330<br>26,880<br>26,880<br>28,740<br>28,740                   | 20,450<br>9,120<br>12,470<br>12,470<br>14,550<br>12,770          | 53,580<br>44,450<br>39,350<br>39,350<br>43,290<br>41,510                   | 53,590<br>44,460<br>39,360<br>39,360<br>43,300<br>41,520                         |

Table B-6 (continued)

|                                     |                                       |                                                            |                                        | Point S                                         | Sources                                                                    |                                                                            | N                                                              | Ionpoint Source                                          | a                                                              |                                                                            |
|-------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|
| Water Quality Indicator             | Location                              | Screening Alternative                                      | SSOs <sup>a</sup>                      | CSOs                                            | WWTPs                                                                      | Subtotal                                                                   | Urban                                                          | Rural <sup>b,c</sup>                                     | Subtotal                                                       | Total                                                                      |
| Total Nitrogen (pounds) (continued) | Nearshore Lake<br>Michigan Area Total | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 80<br>40<br>30<br>40<br>30<br>30       | 1,120<br>820<br>500<br>20<br>740<br>740         | 8,261,880<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380 | 8,263,080<br>9,648,240<br>9,647,910<br>9,647,440<br>9,648,150<br>9,648,150 | 87,380<br>85,920<br>75,060<br>75,060<br>76,720<br>76,720       | 38,010<br>23,450<br>27,000<br>27,000<br>29,750<br>27,000 | 125,390<br>109,370<br>102,060<br>102,060<br>106,470<br>103,720 | 8,388,470<br>9,757,610<br>9,749,970<br>9,749,500<br>9,754,620<br>9,751,870 |
| Biochemical Oxygen Demand (pounds)  | Ozaukee County                        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 80<br>110<br>150<br>140<br>90<br>90    | 0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                                                      | 80<br>110<br>150<br>140<br>90<br>90                                        | 52,360<br>46,160<br>44,710<br>44,710<br>46,010                 | 16,560<br>21,640<br>16,020<br>16,020<br>20,910<br>19,340 | 68,920<br>67,800<br>60,730<br>60,730<br>66,920<br>65,350       | 69,000<br>67,910<br>60,880<br>60,870<br>67,010<br>65,440                   |
|                                     | Milwaukee County                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 320<br>50<br>0<br>50<br>60             | 2,980<br>2,190<br>1,320<br>50<br>1,980<br>1,980 | 7,380,790<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960 | 7,384,090<br>8,398,200<br>8,397,280<br>8,396,060<br>8,398,000<br>8,398,000 | 162,330<br>136,190<br>133,540<br>133,540<br>138,690<br>138,690 | 15,420<br>15,080<br>11,510<br>11,510<br>12,430<br>12,360 | 177,750<br>151,270<br>145,050<br>145,050<br>151,120<br>151,050 | 7,561,840<br>8,549,470<br>8,542,330<br>8,541,110<br>8,549,120<br>8,549,050 |
|                                     | Racine County                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 40<br>40<br>40<br>40<br>40<br>40       | 0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                                                      | 40<br>40<br>40<br>40<br>40<br>40                                           | 119,170<br>113,800<br>86,800<br>86,800<br>96,820<br>96,820     | 31,920<br>20,060<br>21,640<br>21,640<br>34,930<br>31,140 | 151,090<br>133,860<br>108,440<br>108,440<br>131,750<br>127,960 | 151,130<br>133,900<br>108,480<br>108,480<br>131,790<br>128,000             |
|                                     | Nearshore Lake<br>Michigan Area Total | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | 440<br>200<br>190<br>230<br>190<br>190 | 2,980<br>2,190<br>1,320<br>50<br>1,980<br>1,980 | 7,380,790<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960 | 7,384,210<br>8,398,350<br>8,397,470<br>8,396,240<br>8,398,130<br>8,398,130 | 333,860<br>296,150<br>265,050<br>265,050<br>281,520<br>281,520 | 63,900<br>56,780<br>49,170<br>49,170<br>68,270<br>62,840 | 397,760<br>352,930<br>314,220<br>314,220<br>349,790<br>344,360 | 7,781,970<br>8,751,280<br>8,711,690<br>8,710,460<br>8,747,920<br>8,742,490 |
| Copper (pounds)                     | Ozaukee County                        | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <1<br><1<br><1<br><1<br><1<br><1       | 0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                                                      | <1<br><1<br><1<br><1<br><1<br><1                                           | 96<br>78<br>79<br>79<br>82<br>82                               | 13<br>15<br>11<br>11<br>11                               | 109<br>93<br>90<br>90<br>93<br>93                              | 109<br>93<br>90<br>90<br>93<br>93                                          |
|                                     | Milwaukee County                      | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <1<br><1<br>0<br><1<br><1<br><1        | 4<br>3<br>2<br><1<br>2<br>2                     | 10,445<br>11,843<br>11,843<br>11,843<br>11,843<br>11,843                   | 10,449<br>11,846<br>11,845<br>11,843<br>11,845<br>11,845                   | 298<br>234<br>234<br>234<br>243<br>243                         | 17<br>24<br>13<br>13<br>14<br>14                         | 315<br>258<br>247<br>247<br>257<br>257                         | 10,764<br>12,104<br>12,092<br>12,090<br>12,102<br>12,102                   |
|                                     | Racine County                         | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <1<br><1<br><1<br><1<br><1<br><1       | 0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                                                      | <1<br><1<br><1<br><1<br><1<br><1                                           | 228<br>175<br>160<br>160<br>177<br>177                         | 18<br>15<br>12<br>12<br>13<br>13                         | 246<br>190<br>172<br>172<br>190<br>190                         | 246<br>190<br>172<br>172<br>190<br>190                                     |

|                             |                                       |                                                            | Point Sources              |                        |                                                |                                                          | Ν                                      |                                  |                                        |                                                          |
|-----------------------------|---------------------------------------|------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------|----------------------------------------------------------|
| Water Quality Indicator     | Location                              | Screening Alternative                                      | SSOs <sup>a</sup>          | CSOs                   | WWTPs                                          | Subtotal                                                 | Urban                                  | Rural <sup>b,c</sup>             | Subtotal                               | Total                                                    |
| Copper (pounds) (continued) | Nearshore Lake<br>Michigan Area Total | Existing<br>2020 Future (baseline)<br>B1<br>B2<br>C1<br>C2 | <1<br><1<br><1<br><1<br><1 | 4<br>3<br>2<br><1<br>2 | 10,445<br>11,843<br>11,843<br>11,843<br>11,843 | 10,449<br>11,846<br>11,845<br>11,843<br>11,845<br>11,845 | 622<br>487<br>473<br>473<br>502<br>502 | 48<br>54<br>36<br>36<br>38<br>38 | 670<br>541<br>509<br>509<br>540<br>540 | 11,119<br>12,387<br>12,354<br>12,352<br>12,385<br>12,385 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint source subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; HydroQual, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

## Appendix C

## HYDROLOGIC CALIBRATION AND VALIDATION RESULTS

NOTE: Appendix C is on a CD located at the back of this report.

**link to Appendix C** 

## Appendix D

## WATER QUALITY CALIBRATION AND VALIDATION RESULTS

NOTE: Appendix D is on a CD located at the back of this report.

link to Appendix D

## Appendix E

# ESTUARY HYDRODYNAMIC MODEL CALIBRATION/VALIDATION

NOTE: Appendix E is on a CD located at the back of this report.

link to Appendix E

## Appendix F

# ESTUARY WATER QUALITY MODEL CALIBRATION/VALIDATION

NOTE: Appendix F is on a CD located at the back of this report.

link to Appendix F

## Appendix G

## **OBJECTIVES, PRINCIPLES, AND STANDARDS**

#### **Appendix G-1**

# LAND USE DEVELOPMENT OBJECTIVES, PRINCIPLES, AND STANDARDS FOR THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

(Note: The land use development standards to support the land use objectives were developed for the southeastern Wisconsin regional land use and comprehensive watershed planning programs. It is expected that these standards will form a framework and point of departure for subsequent county and local land use and comprehensive planning. For land use planning purposes in the Dodge, Fond du Lac, and Sheboygan areas, reliance will be placed upon local plans wherever available.)

#### **OBJECTIVE NO. 1**

A balanced allocation of space to the various land use categories which meets the social, physical, and economic needs of the study area population.

#### 1. URBAN LAND USE

#### **PRINCIPLE**<sup>a</sup>

The planned supply of land set aside for any given use should approximate the known and anticipated demand for that use.

#### **STANDARDS**

A. For each additional 100 dwelling units to be accommodated within the study area at each residential density, the following amounts of residential and related land should be allocated:

| Urban Residential Density Category <sup>b</sup>                     | Residential Area <sup>C</sup><br>(acres per 100 dwelling units) | Residential Area, Plus<br>Supporting Land Uses <sup>d</sup><br>(acres per 100 dwelling units) |
|---------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| High-Density (7.0 or more dwelling units per net acre) <sup>e</sup> | Less than 15<br>15-44<br>45-144                                 | Less than 20<br>20-59<br>60-169                                                               |

B. For each additional 1,000 persons to be accommodated within the study area, at least five acres of land should be set aside in major public parks of at least 250 acres in size, and at least nine acres should be set aside in other public parks.

- C. For each additional 1,000 persons to be accommodated within the study area, approximately 12 acres of governmental and institutional land should be allocated.<sup>f</sup>
- D. For each additional 100 industrial employees to be accommodated within the study area, approximately 12 acres of industrial land should be allocated. f,g
- E. For each additional 100 commercial employees to be accommodated in retail and service settings within the study area, approximately six acres of retail and service land should be allocated.<sup>f</sup>
- F. For each additional 100 commercial employees to be accommodated in office settings within the study area, approximately 2.5 acres of commercial office land should be allocated. f,h

#### 2. SUBURBAN-DENSITY RESIDENTIAL DEVELOPMENT

Suburban density residential development—defined as a development at a density between 0.2 and 0.6 dwelling unit per acre, equivalent to between 1.5 and 4.9 acres per dwelling unit—is neither truly urban nor rural in character. Development at this density generally precludes the provision of centralized sanitary sewer and water supply facilities and other urban amenities. Development at this density can place excessive demands on streets and highways and public safety services in otherwise rural areas and result in a loss of rural character.

#### **STANDARD**

A. New suburban density residential development should be limited to that which is already committed in approved subdivision plats and certified surveys.

#### 3. RURAL-DENSITY RESIDENTIAL DEVELOPMENT

#### **PRINCIPLE**

The demand for residential dwellings in an open space setting can best be accommodated at a density of no more than one dwelling unit per five acres. Development at this density can help minimize the impacts of such development on the natural resource base, on the demand for public facilities and services, and on the overall character of the rural environment.

#### **STANDARD**

A. Rural-density residential development—defined as development at a density of no more than one dwelling unit per five acres—should be accommodated on a limited basis, in response to market demands for residential development in an open space setting, where consistent with other land use objectives, as determined in county and local plans.

#### **OBJECTIVE NO. 2**

A geographic distribution of the various land uses which will result in the protection and wise use of the natural resources of the study area, including its soils; inland lakes and streams, including floodwater storage areas, groundwater, wetlands, woodlands, prairies, and wildlife habitats, natural floodwater storage areas, and natural areas and critical species habitat.

#### 1. ENVIRONMENTAL CORRIDORS AND ISOLATED NATURAL RESOURCE AREAS

#### **PRINCIPLE**

The preservation of environmental corridors and isolated natural resource in essentially natural, open use yields many benefits, including recharge and discharge of groundwater; maintenance of surface water and groundwater quality; attenuation of flood flows and flood stages; maintenance of base flows of streams and watercourses; reduction of soil erosion; abatement of air and noise pollution; provision of wildlife habitat; protection of plant and animal diversity; protection of rare and endangered species; maintenance of scenic beauty; and provision of opportunities for recreational, educational, and scientific pursuits. Conversely, since the environmental corridors and isolated natural resource areas are frequently poorly suited for urban development, their preservation can help avoid serious and costly development problems.

#### **STANDARDS**

- A. Primary environmental corridors should be preserved in essentially natural, open uses.
- B. Secondary environmental corridors and isolated natural resource areas should be preserved in essentially natural, open uses to the extent practicable, as determined in county and local plans.

Uses considered to be compatible with the preservation of environmental corridors and isolated natural resource areas are indicated in Table G-1.

#### 2. OTHER ENVIRONMENTALLY SENSITIVE AREAS

#### **PRINCIPLE**

Care in locating urban and rural development in relation to other environmentally sensitive areas can help to maintain the overall environmental quality of the study area and to avoid developmental problems.

#### **STANDARDS**

- A. Small wetlands, woodlands, and prairies not identified as part of an environmental corridor or isolated natural resource area should be preserved to the extent practicable, as determined in county and local plans.<sup>k</sup>
- B. All natural areas and critical species habitat sites as identified in the regional natural areas and critical species habitat protection and management plan should be preserved.
- C. One hundred-year recurrence interval floodlands should not be allocated to any development which would cause or be subject to flood damage; and no unauthorized structure should be allowed to encroach upon and obstruct the flow of water in perennial stream channels and floodways.
- D. Urban and rural development should be directed away from areas which are covered by soils with severe limitations for the use concerned, to the extent practicable.
- E. Potentially contaminating land uses should not be located in areas where the potential for groundwater contamination is the highest.
- F. Land use development patterns and practices should be designed to preserve important groundwater recharge areas and should support maintaining the natural surface and groundwater hydrology to the extent practicable.<sup>M</sup>

#### 3. RESTORATION/ENHANCEMENT OF NATURAL CONDITIONS

#### **PRINCIPLE**

The restoration of farmland and other open space land to more natural conditions, resulting in the reestablishment or enhancement of wetlands, woodlands, prairies, grasslands, and forest interiors, can increase biodiversity and contribute to the overall environmental quality of the study area by providing additional functional values as set forth in No. 1 above.

#### **STANDARD**

A. Carefully planned efforts to restore farmland and other open space land to more natural conditions should be encouraged.

#### **OBJECTIVE NO. 3**

A geographic distribution of the various land uses which is properly related to the supporting transportation, utility, and public facility systems, including stormwater management and sewerage, in order to provide these systems in as economical a manner as practical.

#### **PRINCIPLE**

The transportation and public utility facilities and the land use pattern which these facilities serve and support are mutually interdependent in that the land use pattern determines the demand for, and loadings upon, transportation and utility facilities; and these facilities, in turn, are essential to, and form a basic framework for, land use development.

#### **STANDARDS**

- 1. Urban development should be located and designed so as to maximize the use of existing transportation and utility systems.
- 2. The transportation system should be located and designed to serve not only all land presently devoted to urban development but to land planned to be used for such urban development.
- 3. The transportation system should be located and designed to minimize the penetration of existing and planned residential neighborhood units by through traffic.
- 4. Transportation terminal facilities, such as off-street parking, off-street truck loading, and public transit stops, should be located in proximity to the principal land uses to which they are accessory.
- 5. Land developed or planned to be developed for urban high-, medium-, and low-density residential use should be located in areas serviceable by an existing or planned public sanitary sewerage system and preferably within the gravity drainage area tributary to such a system.
- 6. Land developed or planned to be developed for urban high-, medium-, and low-density residential use should be located in areas serviceable by an existing or planned public water supply system.
- 7. Land developed or planned to be developed for urban high- and medium- density residential use should be located in areas serviceable by existing or planned public transit facilities.
- 8. Mixed use development should be encouraged to accommodate multi-purpose trips, including pedestrian trips, as a matter of convenience and efficiency.
- 9. In the absence of public sanitary sewer service, onsite sewage disposal systems should be utilized only in accordance with the following:
  - A. Onsite soil absorption sewage disposal systems should be sited and designed in accordance with Chapter Comm 83 of the Wisconsin Administrative Code.
  - B. The use of onsite sewage disposal systems should be limited to the following types of development:
    - Rural density residential development.
    - Suburban density residential development, limited, however, to areas already committed to such use through subdivision plats or certified surveys.
    - Urban land uses which may be required in unsewered areas such as transportation-related businesses, agriculture-related businesses, communication facilities, utility installations, and park and recreation sites.
  - C. New urban development served by onsite sewage disposal systems in areas planned to receive sanitary sewer service should be discouraged. Where such development is permitted, it should be designed so that the public and private costs of conversion to public sanitary sewer service are minimized.

#### **OBJECTIVE NO. 4**

The preservation of land areas to provide for agriculture, provide a reserve or holding area for future urban and rural needs, and ensure the preservation of those rural areas which provide wildlife habitat and which are essential to shape and order urban development.

## **PRINCIPLE**

The preservation of productive agricultural land is important for meeting future needs for food and fiber. Agricultural areas, in addition to providing food and fiber, can provide wildlife habitat and contribute to the maintenance of an ecological balance between plants and animals. Moreover, the preservation of agricultural areas also contributes immeasurably to the maintenance of the scenic beauty and cultural heritage of the study area. Maintaining agricultural lands near urban areas can facilitate desirable and efficient production-distribution relationships, including community-supported agriculture operations. The preservation of agricultural lands can maximize return on investments in agricultural soil and water conservation practices;

minimize conflicts between farming operations and urban land uses; and help maintain an important component of the economic base of the study area.

#### **STANDARD**

1. The most productive soils, those designated by the U.S. Natural Resources Conservation Service as comprising agricultural soil capability Classes I and II, should be preserved for agricultural use, to the extent practicable, recognizing that certain Class I and Class II farmland will have to be converted to urban use in order to accommodate the orderly expansion of urban service areas within the study area.

<sup>a</sup>These standards are intended to be applied at the regional level of planning. It is recognized that these standards may be refined for application in county and community planning efforts.

<sup>b</sup>For purposes of this plan, residential densities are intended to be applied on an overall neighborhood, rather than a parcelby-parcel, basis. The density categories represent overall densities that may be achieved within developing and redeveloping areas through various combinations of lot sizes and housing structure types over entire neighborhoods. The density ranges are broadly defined so as to provide flexibility to local units of government as they prepare local land use plans and administer local land use regulations within the framework provided by the regional plan. It is incumbent upon each community to determine at which point within the recommended density range that it wants development to occur.

<sup>C</sup>Residential area is defined as the actual site area devoted to residential use, and consists of the ground floor site area occupied by housing units and accessory structures plus the required yards and site area, but excludes streets. This definition does not preclude communities from considering open space land to be preserved in the calculation of housing unit yields for development projects.

<sup>d</sup>Supporting land uses include streets and utilities, neighborhood parks and playgrounds, elementary schools, and neighborhood institutional and commercial uses.

<sup>e</sup>For purposes of this plan, the high-density category includes residential development at densities of 7.0 dwelling units per acre or greater. Communities may chose to accommodate residential neighborhoods at densities substantially greater than the minimum threshold for the high-density range, particularly in redevelopment situations. In order to provide flexibility in this respect, no maximum density—or upper bound—is specified for the high-density category.

<sup>f</sup>Commercial, industrial, and governmental and institutional area includes the area devoted to the given use, consisting of the ground floor site area occupied by any building, required yards and open space, and parking and loading areas.

<sup>9</sup>The industrial standard is intended to be representative of typical new single-story industrial development. It should be recognized that the number of industrial employees per acre can vary considerably from site-to-site, depending upon the nature of the manufacturing activity, the level of automation, the extent to which warehousing or office functions are located at the site, and other factors.

<sup>h</sup>The office standard is equivalent to a floor area ratio of 30 percent and a gross building area of about 325 square feet per employee. In situations where high-rise office buildings are common, such as in the Milwaukee central business district, the ratio of land area allocated for office use to the related office employment would be significantly lower—or, stated another way, the number of office employees per acre would be significantly higher.

<sup>1</sup>Environmental corridors are elongated areas in the landscape which contain concentrations of natural resource features (lakes, rivers, streams, and their associated shorelands and floodlands; wetlands; woodlands; prairies; wildlife habitat areas; wet, poorly drained, and organic soils; and rugged terrain and high-relief topography) and natural resource-related features (existing park and open space sites; potential park and open space sites; historic sites; scenic areas and vistas; and natural areas and critical species habitat sites). Primary environmental corridors include a variety of these features and are at least 400 acres in size, two miles long, and 200 feet in width. Secondary environmental corridors also contain a variety of these features and are at least 100 acres in size and one mile in length. Isolated natural resource areas are smaller concentrations of natural resource features that are physically separated from the environmental corridors by intensive urban or agricultural uses; by definition, such areas are at least five acres in size.

JAs used herein, the term "preserve" generally means to retain existing conditions. In some cases—for example, when used in relation to environmental corridors or isolated natural resource areas—this term has been specifically defined to indicate certain types of uses that are able to be accommodated while maintaining the overall integrity of the existing resources. The objectives and standards presented in this table indicate that certain areas should be preserved; they do not indicate the

measures—such as public interest ownership, conservation easements, or land use regulation—that may be used to help assure the desired preservation. Such measures are dealt with in the plan and plan implementation chapters of this report.

<sup>k</sup>The following definitions are used throughout this report:

**Wetlands** are areas that are inundated or saturated by surface water or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions.

**Woodlands** are upland areas having 17 or more deciduous trees per acre each measuring at least four inches in diameter at breast height and having at least a 50 percent canopy cover. In addition, coniferous tree plantations and reforestation projects are defined as woodlands. Lowland wooded areas, such as tamarack swamps, are defined as wetlands because the water table in such areas is located at, near, or above the land surface and because such areas are generally characterized by hydric soils which support hydrophytic trees and shrubs.

**Prairies** are open, generally treeless areas which are dominated by native grasses. In southeastern Wisconsin, there are three types of prairies corresponding to soil moisture conditions: dry prairies, mesic prairies, and wet prairies. For purposes of this report, savannas, which are defined as areas dominated by native grasses but having between one and 17 trees per acre, are classified as prairies. In southeastern Wisconsin, there are two types of savannas: oak openings and cedar glades.

Natural areas are tracts of land or water so little modified by human activity, or which have sufficiently recovered from the effects of such activity, that they contain intact native plant and animal communities believed to be representative of the pre-European-settlement landscape. Critical species habitat sites consist of areas, located outside natural areas, which support endangered, threatened, or rare plant or animal species. Most of the identified natural areas and critical species habitat sites are located within the environmental corridors and isolated natural resource areas of the study area.

<sup>M</sup>The regional water supply planning effort initiated in 2005 will identify important groundwater recharge areas and provide recommendations for their protection, as appropriate.

Table G-1

GUIDELINES FOR DEVELOPMENT CONSIDERED COMPATIBLE WITH ENVIRONMENTAL CORRIDORS AND ISOLATED NATURAL RESOURCE AREAS

|                                                                                                         |                            |                                               |                                                      |                                              |                     |                 |                                | Perm                | nitted Develop | oment                    |             |                |                            |            |                     |                                                                                                    |                                                              |
|---------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------|---------------------|-----------------|--------------------------------|---------------------|----------------|--------------------------|-------------|----------------|----------------------------|------------|---------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                         |                            |                                               | and Utility Facili                                   |                                              |                     |                 |                                |                     | Recreation     | al Facilities            | (see Gen    | eral Developme | ent Guideline              | s below)   |                     |                                                                                                    |                                                              |
| Component Natural<br>Resource and<br>Related Features<br>within Environmental<br>Corridors <sup>a</sup> | Streets<br>and<br>Highways | Utility<br>Lines and<br>Related<br>Facilities | Engineered<br>Stormwater<br>Management<br>Facilities | Engineered<br>Flood<br>Control<br>Facilities | Trails <sup>C</sup> | Picnic<br>Areas | Family<br>Camping <sup>d</sup> | Swimming<br>Beaches | Boat<br>Access | Ski<br>Hills             | Golf        | Playfields     | Hard-<br>Surface<br>Courts | Parking    | Buildings           | Rural-Density<br>Residential<br>Development<br>(see General<br>Development<br>Guidelines<br>below) | Other Development (see General Development Guidelines below) |
| Lakes, Rivers, and<br>Streams<br>Shoreland                                                              | e<br>X                     | f,g<br>X                                      | <br>X                                                | h<br>X                                       | i<br>X              | <br>X           |                                | X<br>X              | X<br>X         |                          | <br>X       |                |                            | <br>X      | <br>X <sup>J</sup>  |                                                                                                    |                                                              |
| Floodplain                                                                                              | K<br>K<br>X                | X<br>X<br>X                                   | X<br><br>X                                           | X<br><br>X                                   | X                   | X<br>           |                                | X<br><br>X          | X<br>X         |                          | X<br>0<br>X | X<br>          |                            | X<br><br>X | X <sup>1</sup>      |                                                                                                    |                                                              |
| Woodland                                                                                                | X<br>X<br>X                | X                                             | X <sub>b</sub>                                       |                                              | X                   | X<br>X          | X<br>X                         |                     | X              | X<br>X<br>X <sup>S</sup> | X<br>X<br>X | X<br>X         | X<br>X                     | X<br>X     | X <sup>q</sup><br>X | X<br>X                                                                                             | X<br>X                                                       |
| Prairie                                                                                                 | × ×                        | g<br>X                                        | <br>X                                                | <br>X                                        | '<br>X              | ×               | <br>X                          | X                   | X              | × ×                      | <br>X       | X              | X                          | X          | X                   |                                                                                                    |                                                              |
| Historic Site<br>Scenic Viewpoint<br>Natural Area or Critical                                           | X                          | g<br>X                                        |                                                      |                                              | X                   | X               | X                              |                     | X              | X                        | X           |                |                            | X          | X                   | X                                                                                                  | X                                                            |
| Species Habitat Site                                                                                    |                            |                                               |                                                      |                                              | q                   |                 |                                |                     |                |                          |             |                |                            |            |                     |                                                                                                    |                                                              |

NOTE: An "X" indicates that facility development is permitted within the specified natural resource feature. In those portions of the environmental corridors having more than one of the listed natural resource features, the natural resource feature with the most restrictive development limitation should take precedence.

#### APPLICABILITY

These guidelines indicate the types of development that can be accommodated within primary and secondary environmental corridors and isolated natural resource areas while maintaining the basic integrity of those areas. Throughout this table, the term "environmental corridors" refers to primary and secondary environmental corridors and isolated natural resource areas.

#### Under the plan:

- As regionally significant resource areas, primary environmental corridors should be preserved in essentially natural, open use—in accordance with the guidelines in this table.
- Secondary environmental corridors and isolated natural resource areas warrant consideration for preservation in essentially natural open use, as determined in county and local plans and in a manner consistent with State and Federal regulations. County and local units of government may choose to apply the guidelines in this table to secondary environmental corridors and isolated natural resource areas.

#### GENERAL DEVELOPMENT GUIDELINES

• <u>Transportation and Utility Facilities</u>: All transportation and utility facilities proposed to be located within the important natural resources should be evaluated on a case-by-case basis to consider alternative locations for such facilities. If it is determined that such facilities should be located within natural resources, development activities should be sensitive to, and minimize disturbance of, these resources, and, to the extent possible following construction, such resources should be restored to preconstruction conditions.

The above table presents development quidelines for major transportation and utility facilities. These quidelines may be extended to other similar facilities not specifically listed in the table.

Recreational Facilities: In general, no more than 20 percent of the total environmental corridor area should be developed for recreational facilities. Furthermore, no more than 20 percent of the environmental corridor area consisting of upland wildlife habitat and woodlands should be developed for recreational facilities. It is recognized, however, that in certain cases these percentages may be exceeded in efforts to accommodate needed public recreational and game and fish management facilities within appropriate natural settings.

The above table presents development guidelines for major recreational facilities. These guidelines may be extended to other similar facilities not specifically listed in the table.

- Rural Density Residential Development: Rural density residential development may be accommodated in upland environmental corridors, provided that buildings are kept off steep slopes. The maximum number of housing units accommodated at a proposed development site within the environmental corridor should be limited to the number determined by dividing the total corridor acreage within the site, less the acreage covered by surface water and wetlands, by five. The permitted housing units may be in single-family or multi-family structures. When rural residential development is accommodated, conservation subdivision designs are strongly encouraged.
- Other Development: In lieu of recreational or rural density residential development, up to 10 percent of the upland corridor area in a parcel may be disturbed in order to accommodate urban residential, commercial, or other urban development under the following conditions: 1) the area to be disturbed is compact rather than scattered in nature; 2) the disturbance area is located on the edge of a corridor or on marginal resources within a corridor; 3) the development does not threaten the integrity of the remaining corridor; and 4) the development does not result in significant adverse water quality impacts; 5) development of the remaining corridor lands is prohibited by a conservation easement or deed restriction. Each such proposal must be reviewed on a site-by-site basis.

#### Table G-1 (continued)

Under this arrangement, while the developed area would no longer be part of the environmental corridor, the entirety of the remaining corridor would be permanently preserved from disturbance. From a resource protection point of view, preserving a minimum of 90 percent of the environmental corridor in this manner may be preferable to accommodating scattered homesites and attendant access roads at an overall density of one dwelling unit per five acres throughout the upland corridor areas.

- Pre-Existing Lots: Single-family development on existing lots of record should be permitted as provided for under county or local zoning at the time of adoption of the land use plan.
- · All permitted development presumes that sound land and water management practices are utilized.

<sup>a</sup>The natural resource and related features are defined as follows:

Lakes, Rivers, and Streams: Includes all lakes greater than five acres in area and all perennial and intermittent streams as shown on U. S. Geological Survey quadrangle maps.

Shoreland: Includes a band 50 feet in depth along both sides of intermittent streams; a band 75 feet in depth along both sides of perennial streams; a band 75 feet in depth around lakes; and a band 200 feet in depth along the Lake Michigan shoreline. Floodplain: Includes areas, excluding stream channels and lakebeds, subject to inundation by the 100-year recurrence interval flood event.

Wetlands: Includes areas that are inundated or saturated by surface water or groundwater at a frequency, and with a duration sufficient to support, and under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions.

Wet Soils: Includes areas covered by wet, poorly drained, and organic soils.

Woodlands: Includes areas one acre or more in size having 17 or more deciduous trees per acre with at least a 50 percent canopy cover as well as coniferous tree plantations and reforestation projects; excludes lowland woodlands, such as tamarack swamps. which are classified as wetlands.

Wildlife Habitat: Includes areas devoted to natural open uses of a size and with a vegetative cover capable of supporting a balanced diversity of wildlife

Steep Slope: Includes areas with land slopes of 12 percent or greater.

Prairies: Includes open, generally treeless areas which are dominated by native grasses; also includes savannas.

Park: Includes public and nonpublic park and open space sites.

Historic Site: Includes sites listed on the National Register of Historic Places. Most historic sites located within environmental corridors are archeological features such as American Indian settlements and effigy mounds and cultural features such as small, old cemeteries. On a limited basis, small historic buildings may also be encompassed within delineated corridors.

Scenic Viewpoint: Includes vantage points from which a diversity of natural features such as surface waters, wetlands, woodlands, and agricultural lands can be observed.

Natural Area and Critical Species Habitat Sites: Includes natural areas and critical species habitat sites as identified in the regional natural areas and critical species habitat protection and management plan.

<sup>b</sup>Includes such improvements as stream channel modifications and such facilities as dams.

<sup>C</sup>Includes trails for such activities as hiking, bicycling, cross-country skiing, nature study, and horseback riding, and excludes all motorized trail activities. It should be recognized that trails for motorized activities such as snowmobiling that are located outside the environmental corridors may of necessity have to cross environmental corridor lands. Proposals for such crossings should be evaluated on a case-by-case basis, and if it is determined that they are necessary, such trail crossings should be designed to ensure minimum disturbance of the natural resources.

d Includes areas intended to accommodate camping in tents, trailers, or recreational vehicles which remain at the site for short periods of time, typically ranging from an overnight stay to a two-week stay.

<sup>e</sup>Certain transportation facilities such as bridges may be constructed over such resources.

fUtility facilities such as sanitary sewers may be located in or under such resources.

<sup>9</sup>Electric power transmission lines and similar lines may be suspended over such resources.

hCertain flood control facilities such as dams and channel modifications may need to be provided in such resources to reduce or eliminate flood damage to existing development.

<sup>I</sup>Bridges for trail facilities may be constructed over such resources.

<sup>J</sup>Consistent with Chapter NR 115 of the Wisconsin Administrative Code.

KStreets and highways may cross such resources. Where this occurs, there should be no net loss of flood storage capacity or wetlands. Guidelines for mitigation of impacts on wetlands by Wisconsin Department of Transportation facility projects are set forth in Chapter Trans 400 of the Wisconsin Administrative Code.

<sup>I</sup>Consistent with Chapter NR 116 of the Wisconsin Administrative Code.

<sup>m</sup>Any development affecting wetlands must adhere to the water quality standards for wetlands established under Chapter NR 103 of the Wisconsin Administrative Code.

<sup>n</sup>Only an appropriately designed boardwalk/trail should be permitted.

<sup>O</sup>Wetlands may be incorporated as part of a golf course, provided there is no disturbance of the wetlands.

<sup>P</sup>Generally excludes detention, retention, and infiltration basins. Such facilities should be permitted only if no reasonable alternative is available.

<sup>q</sup>Only if no alternative is available.

<sup>r</sup>Only appropriately designed and located hiking and cross-country ski trails should be permitted.

<sup>S</sup>Only an appropriately designed, vegetated, and maintained ski hill should be permitted.

#### **Appendix G-2**

# WATER QUALITY MANAGEMENT OBJECTIVES, PRINCIPLES, AND STANDARDS FOR THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

#### **OBJECTIVE NO. 1**

The development of land management and water quality control facilities, programs, operational improvements, and policies, including land management and nonpoint pollution controls, sewerage and stormwater management systems—which will effectively serve the existing and planned future study area development pattern and meet wastewater disposal and stormwater runoff control needs.

#### **PRINCIPLE**

Sanitary sewerage and stormwater management systems are essential to the development and maintenance of a safe, healthy, and attractive urban environment. The extension of existing sanitary sewerage and stormwater management systems and the creation of new systems can be effectively used to guide and shape urban development both spatially and temporally.

- 1. Sanitary sewer service should be provided to all existing areas of medium-<sup>a</sup> or high-density<sup>b</sup> urban development and to all areas proposed for such development in the appropriate adopted regional, county, and local land use plans.
- 2. Sanitary sewer service should be provided to all existing areas of low-density<sup>C</sup> urban development and to all areas proposed for such development in the appropriate adopted regional, county, and local land use plans where such areas are contiguous to areas of medium- or high-density urban development. Where noncontiguous low-density development already exists, the provision of sanitary sewer service should be contingent upon the inability of the underlying soil resource base to properly support onsite absorption waste disposal systems.
- 3. Engineered and partially engineered stormwater management facilities<sup>d</sup> should be provided to all existing areas of low-, medium, and high-density urban development and to all areas proposed for such development in the appropriate adopted regional, county, and local land use plans.
- 4. Where cognizant public health authorities declare that public health hazards exist because of the inability of the soil resource base to properly support onsite soil absorption waste disposal systems, sanitary sewer service should be provided.
- 5. Lands designated as primary environmental corridors, and certain secondary environmental corridors and isolated natural areas containing lands with steep slopes and/or wetlands, should not be served by sanitary sewers except in those cases where it is necessary to serve development incidental to the preservation and protection of the corridors and isolated natural areas, such as parks and related outdoor recreation areas, and existing clusters of urban development in such corridors and isolated natural areas. Engineering analyses relating to the sizing of sanitary sewerage and stormwater management facilities should assume the permanent preservation of all undeveloped primary environmental corridor lands, and certain portions of secondary corridors and isolated natural areas containing lands with steep slopes and wetlands, in natural open space uses.
- 6. Floodlands<sup>e</sup> should not be served by sanitary sewers except that development incidental to the preservation in open space uses of floodlands, such as parks and related outdoor recreation areas, and existing urban development in floodlands that is not recommended for eventual removal in comprehensive plans. Engineering analyses relating to the sizing of sanitary sewerage or stormwater management facilities should not assume ultimate development of floodlands for urban use.
- 7. The timing of the extension of sanitary sewerage facilities should, insofar as possible, seek to promote urban development in a series of complete neighborhood units. To achieve this, communities should encourage the provision of service to existing development and the development of new areas that have been included within the currently adopted sewer service area before adding new areas to a given municipal sewer service area.
- 8. The sizing of sanitary sewerage and stormwater management facility components should be based upon an assumption that future land use development will occur in general accordance with the appropriate adopted regional, county, and local land use plans.

- 9. To the extent feasible, industrial wastes except noncontact cooling waters, as well as the sanitary wastes generated at industrial plants, should be discharged to municipal sanitary sewerage systems for ultimate treatment and disposal. The necessity to provide pretreatment for industrial wastes should be determined on an individual case-by-case basis and should consider any regulations relating thereto.
- 10. Rural land management practices should be given priority in areas which are designated as prime agricultural lands to be preserved in long-term use for the production of food and fiber.

#### **OBJECTIVE NO. 2**

The development of land management and water quality control facilities, programs, operational improvements, and policies, so as to meet the recommended water use objectives and supporting water quality standards, as set forth on Maps 51 through 56 and in Table 70 in Chapter VII of this report.

#### **PRINCIPLE**

Rural and urban runoff, sewage treatment plant effluent, and industrial wastewater discharges are major contributors of pollutants to the streams and lakes of the study area; the location, design, construction, operation, and maintenance of stormwater management facilities, sewage treatment plants, and industrial wastewater outfalls, and the quality and quantity of the discharges from such facilities and of untreated runoff has a major effect on stream and lake water and sediment quality and on the ability of streams and lakes to support the established water uses. Urban stormwater runoff degrades surface water and sediment quality through the additions of conventional and potentially toxic pollutants. Urban stormwater runoff degrades surface water and sediment quality through the additions of conventional and potentially toxic pollutants. Urban stormwater runoff can degrade instream habitat quality by increasing channel scour, erosion, and sedimentation through increases in both the peak rate and the total volume of runoff.

- 1. The level of treatment to be provided at each sewage treatment plant and industrial wastewater outfall should be determined by water quality analyses directly related to the established water use objectives for the receiving surface waterbody. These analyses should demonstrate that the proposed treatment level will aid in achieving the water quality standards supporting each major water use objective, as set forth on Maps 51 through 56 and in Table 70 in Chapter VII of this report, as well as the related standards and criteria set forth in Chapter VI.
- 2. The type and extent of stormwater treatment or associated preventive land management practices to be applied within a hydrologic unit should be determined by water quality analyses directly related to the established water use objectives for the receiving surface waterbody. These analyses should demonstrate that the proposed treatment level or land management practices will aid in achieving the water quality standards and criteria supporting each major water use objective or classification, as set forth on Maps 51 through 56 and in Table 70 in Chapter VII of this report.
- 3. Domestic livestock should be fenced out, or otherwise excluded from, all lakes, perennial streams, and wetlands, and direct stormwater runoff from the associated feeding areas to the lakes, perennial streams, and wetlands should be avoided so as to contribute to the achievement of the established water use objectives and standards.
- 4. The discharge of sewage treatment plant effluent directly to inland lakes should be avoided and sewage treatment plant discharges to streams flowing into inland lakes should be located and treated so as to contribute to the achievement of the established water use objectives and standards for those lakes.
- 5. Interim sewage treatment plants deemed necessary to be constructed prior to implementation of the long-range plan should provide levels of treatment determined by water quality analyses directly related to the established water use objectives and standards for the receiving surface waterbody.
- 6. Bypassing of sanitary sewage to storm sewer systems, open channel drainage courses, and streams should be avoided.
- 7. Bypassing of combined sewage to the surface waters should be minimized to the extent needed to meet the established plan objectives.
- 8. Sewage treatment plants should be designed to perform their intended function and to provide their specified level of treatment under adverse conditions of inflow, should have sufficient standby capacity to allow maintenance to be performed without bypassing influent sewage, and should not be designed to bypass any flow delivered by the inflowing sewers, but may

incorporate an emergency bypass facility sufficient to protect sewage treatment equipment in cases of unforeseen equipment failure or the unforeseen occurrence of flows in excess of the design hydraulic capacity of the plant.

- 9. No pollutants should be discharged by sanitary or industrial sewage treatment plants in amounts which would preclude the achievement of the recommended water use objectives or the supporting standards.
- 10. The orderly transition of lands from open space, agricultural, or other rural uses to urban uses through excavation, landscaping, and construction should be planned, designed, and conducted so as to contribute to the achievement of the established water use objectives and standards.

#### **OBJECTIVE NO. 3**

The development of land management and water quality control facilities, programs, operational improvements, and policies, which enhance the overall quality of the natural and man-made environments.

#### **PRINCIPLE**

The improper design, installation, application, or maintenance of land management practices, sanitary sewerage system components, and stormwater management components can adversely affect the natural and man-made environments; therefore, every effort should be made in such actions to properly relate to these environments and minimize any disruption or harm thereto.

- 1. New and replacement sewage treatment plants, as well as additions to existing plants, should, wherever possible, be located on sites lying outside of the 1 percent probability floodplain. When it is necessary to use floodplain lands for sewage treatment plants, the facilities should be located outside of the floodway so as to not increase the 1 percent probability flood stage, and should be floodproofed to a flood protection elevation of two feet above the 1 percent probability flood stage so as to assure adequate protection against flood damage and avoid disruption of treatment and consequent bypassing of sewage during flood periods.
- 2. Existing sewage treatment plants located in the 1 percent probability floodplain should be floodproofed to a flood protection elevation of two feet above the 1 percent probability flood stage so as to assure adequate protection against flood damage and avoid disruption of treatment and consequent bypassing of sewage during flood periods.
- 3. The location of new and replacement of old sewage treatment plants or stormwater storage and treatment facilities should be properly related to the existing and proposed future urban development pattern as reflected in the appropriate adopted regional, county, and local land use plans and to any related community or neighborhood unit development plans.
- 4. New and replacement sewage treatment plants, as well as additions to existing plants, should be located on sites large enough to provide for adequate open space between the plant and existing or planned future urban land uses; should provide adequate area for expansion to ultimate capacity and should be located, oriented, and architecturally designed so as to complement their environs and to present an attractive appearance consistent with their status as public works.
- 5. The disposal of sludge from sewage treatment plants should be accomplished in the most efficient manner possible, consistent, however, with any adopted rules and regulations pertaining to air quality control and solid waste disposal.
- 6. Devices used for long-term or short-term storage of pollutants which are collected through treatment of wastewater or through the application of land management practices should, wherever possible, be located on sites lying outside of the 1 percent probability floodplain. When it is necessary to use floodplain lands for such facilities, such devices should be located outside of the floodway so as not to increase the 1 percent probability flood stage, and should be floodproofed to a flood protection elevation of two feet above the 1 percent probability flood stage so as to assure adequate protection against flood damage and to avoid redispersal of the pollutants into natural waters during flood periods.
- 7. There should be no known wastewater or stormwater discharges of heavy metals, chlorinated hydrocarbons, industrial chemicals, or other substances at levels known to be bioaccumulative, acutely or chronically toxic or hazardous to fish or other aquatic life, human health, wildlife, and domestic animals.
- 8. Water quality; sediment quality; and wildlife, fish, and aquatic life habitat should not be degraded beyond existing levels except where compelling economic hardship or social need is demonstrated and there are no technically and environmentally sound alternatives.

#### **OBJECTIVE NO. 4**

The attainment of soil and water conservation and urban stormwater management practices which reduce stormwater runoff and control nonpoint source pollution in the form of soil erosion, nutrient enrichment, stream and lake sedimentation, other pollution, and resulting eutrophication.

#### **PRINCIPLE**

Soil erosion and stream sedimentation, resulting from inadequate soil conservation and management practices for rural land and developing urban land, are significant problems within certain subwatersheds within the study area. Soil erosion reduces agricultural productivity through the loss of fertile topsoil and it also impairs or destroys aquatic habitat through the excessive deposition of sediment in wetlands and on streambeds.

#### **STANDARDS**

- 1. The soil erosion rate on individual cropland fields should not exceed the T-value; f nor should sediment delivery to waterbodies exceed one ton per acre per year (as determined by the Natural Resources Conservation Service Revised Universal Soil Loss Equation).
- 2. Land disturbing activities associated with urban development and redevelopment and utility construction should include provisions to minimize the loss of sediment from the site so as to contribute to the achievement of the surface water use objectives.

<sup>&</sup>lt;sup>a</sup>Medium-density development is defined as that development having an average dwelling unit density of 4.4 dwelling units per net residential acre, and a net lot area per dwelling unit ranging from 6,231 to 18,980 square feet.

bHigh-density development is defined as that development having an average dwelling unit density of 12.0 dwelling units per net residential acre, and a net lot area per dwelling unit ranging from 2,430 to 6,230 square feet.

<sup>&</sup>lt;sup>C</sup>Low-density development is defined as that development having an average dwelling unit density of 1.2 dwelling units per net residential acre, and a net lot area per dwelling unit ranging from 18.981 to 62.680 square feet.

<sup>&</sup>lt;sup>d</sup>Engineered stormwater management facilities are defined herein as the systems or subsystems of stormwater catchment, conveyance, storage, and treatment facilities comprised of structural and nonstructural controls including natural and manmade surface drains, subsurface piped drains, or combinations thereof, and of pumping stations, surface or subsurface storage or wet and dry detention basins, infiltration systems, and other appurtenances associated therewith, and sized to accommodate estimated flows or quantities from the tributary drainage area as a result of a specified meteorologic or hydrologic event.

<sup>&</sup>lt;sup>e</sup>Floodlands are defined as those lands, including floodplains, floodways, and channels, subject to inundation by the flood event with a 1 percent probability flood or where such data are not available, the maximum flood of record.

f"T-value" is the tolerable soil loss rate—the maximum level of soil erosion that will permit a high level of crop productivity to be sustained economically and indefinitely, as determined by the U.S. Natural Resource Conservation Service. "Excessive" cropland erosion refers to erosion in excess of the tolerable rate, or T-value.

#### Appendix G-3

# OUTDOOR RECREATION AND OPEN SPACE PRESERVATION OBJECTIVES, PRINCIPLES, AND STANDARDS FOR THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

(Note: The outdoor recreation and open space preservation objectives, principles, and standards were developed for use in park and open space planning in the Southeastern Wisconsin Region. It is expected that these objectives, principles, and standards will form a framework and point of departure for subsequent county and local comprehensive plans. For planning purposes in Dodge, Fond du Lac, and Sheboygan Counties, reliance will be placed upon local plans wherever available.)

#### **OBJECTIVE NO. 1**

The provision of an integrated system of public general-use outdoor recreation sites and related open space areas which will allow the resident population of the watersheds involved adequate opportunity to participate in a wide range of outdoor recreation activities.

#### **PRINCIPLE**

Open space is the fundamental element required for the preservation and wise use of such natural resources as soil, water, woodlands, wetlands, native vegetation, and wildlife; it provides the opportunity to add to the physical, intellectual, and spiritual growth of the population; it enhances the economic and aesthetic value of certain types of development; and it is essential to outdoor recreational pursuits.

#### **STANDARDS**

- 1. Attainment of the standards pertaining to the preservation of environmentally significant lands under Land Use Development Objective No. 2 and the preservation of agricultural lands under Land Use Development Objective No. 4, would ensure the maintenance of an integrated system of open space lands within the study area. In addition, the following standards should be met:
  - A. Major park and recreation sites providing opportunities for a variety of resource-oriented outdoor recreational activities should be provided within a 10-mile service radius of every dwelling unit in the study area, and should have a minimum gross site area of 250 acres.
  - B. Other park and recreation sites should be provided within a maximum service radius of one mile of every dwelling unit in an urban area, and should have a minimum gross site area of five acres.
  - C. Areas having unique scientific, cultural, scenic, or educational value should not be allocated to any urban or agricultural land uses; adjacent surrounding areas should be retained in open space use, such as agricultural or limited recreational uses.

#### **OBJECTIVE NO. 2**

The preservation of sufficient high-quality open-space lands for protection of the underlying and sustaining natural resource base to give form to and sustainability to urban development and to enhance the social and economic well-being and environmental quality of the watersheds involved.

#### **PRINCIPLE**

Ecological balance and natural beauty within the study area are primary determinants of the ability to provide a pleasant and habitable environment for all forms of life and to maintain the social and economic well being of the study area. Preservation of the most significant aspects of the natural resource base, that is, primary environmental corridors and prime agricultural lands, contributes to the maintenance of ecological balance, natural beauty, and economic well being of the study area.

#### **STANDARDS**

1. Attainment of the standards pertaining to the preservation of environmentally significant lands under Land Use Development Objective No. 2 and the preservation of agricultural lands under Land Use Development Objective No. 4, would ensure the preservation of sufficient, high-quality open space uses achieve this objective.

#### Appendix G-4

# WATER CONTROL FACILITY DEVELOPMENT OBJECTIVES, PRINCIPLES, AND STANDARDS FOR THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

(Note: The water control facility development objective and standards set forth herein are largely related to floodland management planning. The focus of the regional water quality management plan update is water quality management, including stormwater management. However, because of the interrelationship of floodland management and stormwater management, as well as land use, the floodland management water control facility objective, principles, and standards are presented as background and supporting information.)

#### **OBJECTIVE NO. 1**

The development of an integrated system of stormwater management and flood control facilities, programs, operational improvements, and policies, which will efficiently and cost-effectively reduce flood damage and stormwater damage problems under the existing and future land use patterns and promote the implementation of the land use and comprehensive plans in the watersheds involved.

#### **PRINCIPLE**

Reliable local municipal stormwater management facilities cannot be properly planned, designed, or constructed except as integral parts of an areawide system of floodwater conveyance and storage facilities centered on major waterways and designed so that the hydraulic capacity of each waterway opening and channel reach abets the common aim of providing for the storage, as well as the movement, of floodwaters. Not only does the land use pattern of the tributary drainage area affect the required hydraulic capacity of the drainage and flood control facilities, but the effectiveness of the floodwater conveyance and storage facilities affects the uses to which land within the tributary watershed, and particularly within the riverine areas of the watershed, may properly be put.

- 1. All new and replacement bridges and culverts over waterways shall be designed so as to accommodate, according to the categories listed below, the designated flood events without overtopping of the related roadway or railway track and resultant disruption of traffic by floodwaters.
  - A. Minor and collector streets used or intended to be used primarily for access to abutting properties: a 10 percent probability of occurrence flood discharge.
  - B. Arterial streets and highways, other than freeways and expressways, used or intended to be used primarily to carry heavy volumes of fast, through traffic: a 2 percent probability of occurrence flood discharge.
  - C. Freeways and expressways: a 1 percent probability of occurrence flood discharge.
  - D. Railways: a 1 percent probability of occurrence flood discharge.
- 2. All new and replacement bridges and culverts over waterways, including pedestrian and other minor bridges, in addition to meeting the applicable requirements of paragraph number 1 above, shall be designed so as to accommodate the 1 percent probability flood event with a 1 percent probability of occurrence, without raising the peak stage, either upstream or downstream, 0.01 foot or more above the peak stage for the 1 percent probability of occurrence flood Larger permissible flood stage increases may be acceptable for reaches having topographic or land use conditions which could accommodate the increased stage without creating additional flood damage potential upstream or downstream of the proposed structure, and if appropriate legal arrangements are made with all affected local units of government and property owners.
- 3. The waterway opening of all new and replacement bridges shall be designed so as to readily facilitate the passage of ice floes and other floating debris, and thereby avoid blockages often associated with bridge failure and with unpredictable backwater effects and flood damages. In this respect, it should be recognized that clear spans and rectangular openings are more efficient than interrupted spans and curvilinear openings in allowing the passage of ice floes and other floating debris.
- 4. Certain new or replacement bridges and culverts over waterways, including pedestrian and other minor bridges, so located with respect to the stream system that the accumulation of floating ice or other debris may cause significant backwater effects with attendant danger to life, public health, or safety, or attendant serious damage to homes, industrial and commercial

buildings, and important public utilities, shall be designed so as to pass the 1 percent probability flood with at least 2.0 feet of freeboard between the peak stage and the low concrete or steel in the bridge span.

- 5. Standards 1, 3, and 4 shall also be used as the criteria for assessing the adequacy of the hydraulic capacity and structural safety of existing bridges or culverts over waterways and thereby serve as the basis for crossing modification or replacement recommendations designed to alleviate flooding and other problems.
- 6. All new and replacement bridges and culverts over waterways shall be designed so as not to inhibit fish passage in areas that are supporting, or which are capable of supporting, valuable recreational sport and forage fish species.
- 7. Channel modifications, dikes, and floodwalls should be restricted to the minimum number and extent necessary for the protection of existing and proposed land use development, consistent with the land use and water quality management elements of the regional water quality management plan update. The upstream and downstream effect of such structural works on flood discharges and stages shall be determined, and any such structural works which may significantly increase upstream or downstream peak flood discharges should be used only in conjunction with complementary facilities for the storage and/or conveyance of the incremental floodwaters through the watershed stream system. Channel modifications, dikes, or floodwalls shall not increase the height of the 1 percent probability flood 0.01 foot or more in any unprotected upstream or downstream stream reaches. Increases in flood stages that are equal to or greater than 0.01 foot resulting from any channel, dike, or floodwall construction shall be contained within the upstream or downstream extent of the channel, dike, or floodwall, except where topographic or land use conditions could accommodate the increased stage without creating additional flood damage potential and where appropriate legal arrangements are made with all affected local units of government and property owners.
- 8. In cases where a dike or floodwall is intended to protect human life, the minimum dike or floodwall top elevation shall be determined using whichever of the following produces the highest profile.
  - A. The 1 percent probability flood profile plan, plus three feet of freeboard, increasing to four feet at bridges, or
  - B. The 0.2 percent probability flood profile.

The height of low dikes or floodwalls that are not intended to protect human life shall be based on the high-water surface profiles for the 1 percent probability flood, and shall be capable of passing the 1 percent probability flood with a freeboard of at least 2.0 feet.

- 9. The construction of channel modifications, dikes, or floodwalls shall be deemed to change the limits and extent of the associated floodways and floodplains. However, no such change in the extent of the associated floodways and floodplains shall become effective for the purposes of land use regulation until such time as the channel modifications, dikes, or floodwalls are actually constructed and operative. Any development in a former floodway or floodplain located to the landward side of any dike or floodwall shall be provided with adequate drainage so as to avoid ponding and associated damages.
- 10. Reduced regulatory flood protection elevations and accompanying reduced floodway or floodplain areas resulting from any proposed dams or diversion channels shall not become effective for the purposes of land use regulation until the reservoirs or channels are actually constructed and operative.
- 11. All water control facilities should be compatible with existing local stormwater management plans and as flexible as practical to accommodate future local stormwater management planning.

#### **PRINCIPLE**

Floodlands that are unoccupied by, and not committed to, urban development should be retained in an essentially natural open space condition supplemented with the development of selected areas for public recreational uses or other open space uses. Maintaining floodlands in open uses will serve to protect downstream riverine communities from the adverse effects of the actions of upstream riverine communities by discouraging floodland development that would significantly aggravate existing flood problems or create new flood problems; will preserve natural floodwater conveyance and storage capacities; will avoid increased peak flood discharges and stages; will contribute to the preservation of wetland, woodland, fish and aquatic life, and wildlife habitat as part of a continuous linear system of open space will protect and enhance water and sediment quality; and will enhance the quality of life for both the urban and rural population by preserving and protecting the recreational, aesthetic, ecological, and cultural values of riverine and floodland areas.

#### **STANDARDS**

- 1. All public land acquisitions, easements, floodland use regulations, and other measures intended to eliminate the need for water control facilities shall, in all areas not already in intensive urban use or committed to such use, encompass at least all of the riverine areas lying within the 1 percent probability flood inundation line under planned land use conditions.
- 2. Where hydraulic floodways are to be delineated, they shall to the maximum extent feasible accommodate existing and committed floodplain land uses.
- 3. In the determination of a hydraulic floodway, the hydraulic effect of potential floodplain encroachment shall be limited so that the peak stage of the 1 percent probability flood is not raised by 0.01 foot or more. Larger stage increases may be acceptable if appropriate legal arrangements are made with all affected local units of government and property owners.
- 4. The placement of fill within the limits of the 1 percent probability of occurrence floodplain shall be compensated for through the provision of an equal amount of floodwater storage volume within the floodplain. The compensatory storage volume shall be provided in close proximity to the area filled and the compensatory storage zone shall drain freely to the adjacent stream, enabling the volume to be available during successive floods. Where practical, the compensatory storage volume should be provided such that its elevation-volume relationship approximates the relationship existing for the area to be filled. That will ensure that the placement of fill will not result in increases in peak flood flows for floods which would occur more frequently than a 1 percent probability flood.
- 5. Floodlands should not be modified through alteration of existing stream channels for the sole purpose of accommodating planned urban land uses.

<sup>&</sup>lt;sup>a</sup>Chapter NR 116 of the Wisconsin Administrative Code sets forth the conditions under which lands protected by dikes or floodwalls may be removed from the floodplain. Those conditions include: 1) the dike or floodwall meets the freeboard requirements given in Standard No. 8; 2) the dike or floodwall meets U.S. Army Corps of Engineers (USCOE) standards for design and construction; 3) interior drainage shall be provided in accordance with USCOE standards (see Standard No. 9); 4) an emergency action plan shall be in effect for the area protected by the dike or floodwall; 5) all persons receiving construction permits in the protected area shall be notified that their property would be located in the 1 percent probability of occurrence floodplain if the levee or dike were not in place; and 6) the levee or floodwall should be annually inspected by a professional engineer registered in the State of Wisconsin.

#### **Appendix G-5**

# PLAN STRUCTURE AND MONITORING OBJECTIVES, PRINCIPLES, AND STANDARDS FOR THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

#### **OBJECTIVE NO. 1**

The development of land management and water quality control facilities, programs, operational improvements, and policies, that are both economical and efficient, meeting all other objectives at the lowest practical cost, considering both long-term capital and operation and maintenance costs.

#### **PRINCIPLE**

The total resources of the study area are limited and any undue investment in water pollution control systems must occur at the expense of other public and private investment; total pollution abatement costs, therefore, should be minimized while meeting and achieving all water quality standards and objectives.

#### **STANDARDS**

- 1. The sum of sanitary sewerage system operating and capital investment costs should be minimized.
- 2. The sum of stormwater control facility and related land management practice operating and capital investment costs should be minimized through proper stormwater management planning and design.
- 3. The total number of sanitary sewerage systems and sewage treatment facilities should be minimized in order to effect economies of scale and concentrate responsibility for water quality management. Where physical consolidation of sanitary sewer systems is uneconomical, administrative and operational consolidation should be considered in order to obtain economy in manpower utilization and to minimize duplication of administrative, laboratory, storage, and other necessary services, facilities, and equipment. The total number of diffuse pollution control facilities should be minimized in order to concentrate the responsibility for water quality management.
- 4. Maximum feasible use should be made of all existing and committed pollution control facilities, which should be supplemented with additional facilities only as necessary to serve the anticipated wastewater and stormwater management needs generated by substantial implementation of the appropriate adopted regional, county, and local land use plans, while meeting pertinent water quality use objectives and standards.
- 5. The use of new or improved materials and management practices should be allowed and encouraged if such materials and practices offer economies in materials or construction costs or by their superior performance lead to the achievement of water quality objectives at a lesser cost.
- 6. Sanitary sewerage systems, sewage treatment plants, and stormwater management facilities should be designed for staged or incremental construction where feasible and economical so as to limit total investment in such facilities and to permit maximum flexibility to accommodate changes in the rate of population growth and the rate of economic activity growth, changes in water use objectives and standards, or changes in the technology for wastewater management.
- 7. When technically feasible and otherwise acceptable, alignments for new sewer construction should coincide with existing public rights-of-way in order to minimize land acquisition or easement costs and disruption to the natural resource base.
- 8. Clearwater infiltration and inflows to the sanitary sewerage system should be reduced to the cost-effective level.
- 9. Sanitary sewerage systems and stormwater management systems should be designed and developed concurrently to effect engineering and construction economies as well as to assure the separate function and integrity of each of the two systems; to immediately achieve the pollution abatement and drainage benefits of the integrated design; and to minimize disruption of the natural resource base and existing urban development.

#### **OBJECTIVE NO. 2**

The development or use of land management and water quality management institutions—inclusive of the governmental units and their responsibilities, authorities, policies, procedures, and resources—and supporting revenue-raising mechanisms which are effective and locally acceptable, allowing the flexibility to provide a sound basis for plan implementation.

#### **PRINCIPLE**

The activities necessary for the achievement of the established water use objectives and supporting standards are expensive; technically, administratively, and legally complex; and important to the economic and social well being of the residents of the study area. Such activities require a continuing, long-term commitment and attention from public and private entities. The conduct of such activities requires that the groups designated as responsible for plan implementation have sufficient financial and technical capabilities, legal authorities, and general public support to accomplish the specific tasks identified.

#### **STANDARDS**

- 1. Each designated management agency should develop and establish a system of user charges and industrial cost recovery to maintain accounts to support the necessary operation, maintenance, and replacement expenditures.
- 2. Maximum utilization should be made of existing institutional structures in order to minimize the number of agencies designated to implement the recommended water quality control measures, and the creation of new institutions should be recommended only where necessary.
- 3. To the greatest extent possible, the responsibility for water pollution control and abatement should be assigned to the most immediate local public agency or to the most directly involved private entity.
- 4. Each designated management group should have legal authority, financial resources, technical capability, and practical autonomy sufficient to assure the timely accomplishment of its responsibilities in the achievement of the plan objectives.

#### **OBJECTIVE NO. 3**

The development of land management and water quality control facilities, programs, operational improvements, and policies which are consistent with the expected study area economic development and attendant job creation.

#### **PRINCIPLE**

The study area economy and its related employment is dependent upon the maintenance, growth, and development of business and industry which rely upon the provision of public facilities and infrastructure providing predictable opportunities that sustain and facilitate the economy

#### **STANDARDS**

- 1. Recommend efficient water quality management plan components of an infrastructure system designed to serve the projected economy of the study area with flexibility to accommodate unanticipated economic development and job-creation opportunities.
- 2. Support the selection of plan components and facility construction which are accessible to local employers to the extent practicable.
- 3. Evaluate the potential economic development and workforce impacts of major water quality protection and improvement projects from the standpoints of both of costs or hardships borne and of opportunities stemming from quality of life improvements and relative competitiveness of the study area as a place to reside or site business.

#### **OBJECTIVE NO. 4**

The development of land management and water quality facilities, programs, operational improvements, and policies which are flexible, adaptive, and robust in response to changing conditions.

#### **PRINCIPLE**

As human understanding of the factors affecting water quality improves, the activities necessary for the achievement of the established water use objectives and supporting standards may require modification for responding to varying short- and long-term changes in conditions and emerging challenges. The conduct of such activities requires that the adopted plan and the designated management agencies have sufficient operational flexibility to respond to changing conditions.

#### **STANDARDS**

- 1. The recommended plan components should be adaptable to change in scope, capacity, and effectiveness to the extent practical.
- 2. The recommended regional water quality management plan update should be periodically reviewed and each designated management agency should develop and establish mechanisms for reviewing the land management and water quality plan components and their associated responsibilities, both in support of the achievement of the recommended plan objectives and supporting standards and in the light of changing conditions.
- 3. The plan components should be designed for staged or incremental construction to the extent practical, so as to permit maximum flexibility to accommodate changes in expected future conditions.

#### **OBJECTIVE NO. 5**

Improvement of the abilities to assess the state of water resources, to detect changes in these states, to evaluate the overall environmental and economic impacts of these changes, and to prescribe remedies for improving undesirable states.

#### **PRINCIPLE**

Managerial practice should reflect changes in scientific understanding and technological capabilities which continue to improve human abilities to characterize the state of water resources and develop and implement remedies for undesirable states.

#### **STANDARDS**

- 1. To the extent practicable, assessment of the state of water resources, the broader environmental context, and remedies prescribed for improving undesirable states should reflect the current level scientific understanding and practice.
- 2. As plan implementation and monitoring proceeds, the designated management agencies should be continually involved in evaluating and refining the plan components to reflect new state-of-the-art techniques directed toward efficiency and improved performance.
- 3. The designated management agencies should either collaboratively, or within their given mission, seek to identify and resolve discrete knowledge gaps relating to water quality and this plan, then share findings within the professional/scientific community.

#### **OBJECTIVE NO. 6**

The development of mechanisms for fostering cooperation and collaboration among governmental units, organizations, the public, and other parties concerned with the quality of the land and water resources in the study area, in support of the other objectives.

#### **PRINCIPLE**

The challenges posed in maintaining the quality of land and water resources and the activities necessary for the achievement of the established water use objectives and supporting standards often extend beyond the boundaries of any single political division and affect a variety of stakeholders, requiring the involvement and cooperation of multiple governmental units and agencies, private organizations, and members of the public.

### **STANDARDS**

- 1. Each designated management agency should develop and maintain linkages to other agencies and interested parties to encourage communication and coordination among institutions responsible for management, promote conservation of agency resources, and promote community involvement in the achievement of the recommended water use objectives and supporting standards.
- 2. Include integrated plan components, recognizing that citizens, as well as State, county, and local agencies; nongovernmental groups; agriculture; and other members of the business community to all serve a vital role in plan implementation.
- 3. As appropriate, and given staffing resources, designated management agencies should encourage and be supportive of water resource partnership groups, coalitions of governmental units or their officials, and professional associations designed to further dialogue and collectively act on behalf of water quality.

#### **Appendix G-6**

# EDUCATIONAL AND INFORMATIONAL PROGRAMMING OBJECTIVES, PRINCIPLES, AND STANDARDS FOR THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

#### **OBJECTIVE NO. 1**

The development of informational and educational mechanisms which will inform and educate the public and decision makers on water quality problems, needs, policies, and corrective actions, in support of the objectives above.

#### **PRINCIPLE**

Since certain behaviors by study area residents and businesses may be linked to water quality problems, successful achievement of the plan objectives and supporting standards will require the awareness, understanding, and involvement of informed decision makers and an informed public.

#### **STANDARDS**

- 1. The public should be provided with opportunities to use the water resources and to monitor the water quality conditions of the study area in ways that enhance understanding and appreciation of water quality.
- 2. Selected appropriate designated management agencies should develop and establish mechanisms to promote public awareness and involvement in the achievement of the recommended water use objectives and supporting standards.
- 3. The designated management agencies, working as appropriate with educational institutions, should regularly seek to measure the level of public awareness, understanding, and willingness to act for water quality protection, using such instruments as surveys, focus groups, or alternative means of assessment.

## **Appendix H**

# COMPARISON OF AVERAGE ANNUAL POLLUTANT LOADS FOR SCREENING ALTERNATIVES

Table H-1

AVERAGE ANNUAL POLLUTANT LOADS FOR SCREENING ALTERNATIVES: KINNICKINNIC RIVER WATERSHED

|                           |                     |                                               |                                                      | Point S                                             | Sources                                   |                                                      | N                                                           | Ionpoint Source                                    | <sub>e</sub> a                                              |                                                             |
|---------------------------|---------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Water Quality Indicator   | Subwatershed        | Screening Alternative                         | Industrial<br>Point<br>Sources                       | SSOs <sup>b</sup>                                   | CSOs                                      | Subtotal                                             | Urban                                                       | Rural <sup>c</sup>                                 | Subtotal                                                    | Total                                                       |
| Total Phosphorus (pounds) | Kinnickinnic River  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>220 | 880<br>1,130<br>0<br>0<br>0<br>0<br>0<br>0<br>1,350 | 490<br>320<br>0<br>0<br>570<br>570<br>230 | 1,590<br>1,670<br>220<br>220<br>790<br>790<br>1,800  | 2,790<br>2,440<br>2,750<br>2,440<br>2,440<br>2,440<br>2,270 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 2,810<br>2,460<br>2,770<br>2,460<br>2,460<br>2,460<br>2,290 | 4,400<br>4,130<br>2,990<br>2,680<br>3,250<br>3,250<br>4,090 |
|                           | Wilson Park Creek   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 320<br>320<br>320<br>320<br>320<br>320<br>320<br>320 | 10<br>10<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0                | 330<br>330<br>320<br>320<br>320<br>320<br>320<br>330 | 3,390<br>3,040<br>3,040<br>3,040<br>3,040<br>3,040<br>2,830 | 50<br>30<br>30<br>30<br>30<br>30<br>30<br>30       | 3,440<br>3,070<br>3,070<br>3,070<br>3,070<br>3,070<br>2,860 | 3,770<br>3,400<br>3,390<br>3,390<br>3,390<br>3,390<br>3,190 |
|                           | Holmes Avenue Creek | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 440<br>440<br>440<br>440<br>440<br>440<br>440        | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                | 440<br>440<br>440<br>440<br>440<br>440<br>440        | 1,000<br>870<br>870<br>870<br>870<br>870<br>870<br>810      | <10<br><10<br><10<br><10<br><10<br><10<br><10      | 1,000<br>870<br>870<br>870<br>870<br>870<br>870<br>810      | 1,440<br>1,310<br>1,310<br>1,310<br>1,310<br>1,310<br>1,250 |
|                           | Villa Mann Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0                                | 730<br>630<br>630<br>630<br>630<br>630<br>590               | <10<br><10<br><10<br><10<br><10<br><10<br><10      | 730<br>630<br>630<br>630<br>630<br>630<br>590               | 730<br>630<br>630<br>630<br>630<br>630<br>590               |
|                           | Cherokee Park Creek | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0                           | 440<br>390<br>390<br>390<br>390<br>390<br>390<br>360        | <10<br><10<br><10<br><10<br><10<br><10<br><10      | 440<br>390<br>390<br>390<br>390<br>390<br>390<br>360        | 440<br>390<br>390<br>390<br>390<br>390<br>390<br>360        |
|                           | Lyons Park Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                           | <10<br><10<br>0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0                | <10<br><10<br>0<br>0<br>0<br>0<br>0<br>0             | 620<br>550<br>550<br>550<br>550<br>550<br>550               | <10<br><10<br><10<br><10<br><10<br><10<br><10      | 620<br>550<br>550<br>550<br>550<br>550<br>550               | 620<br>550<br>550<br>550<br>550<br>550<br>550<br>510        |

Table H-1 (continued)

|                                       |                      |                                               |                                                                      | Point S                                             | Sources                                                  |                                                                  | N                                                                                       | Ionpoint Source                                                      | a                                                                                       |                                                                                         |
|---------------------------------------|----------------------|-----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed         | Screening Alternative                         | Industrial<br>Point<br>Sources                                       | SSOs <sup>b</sup>                                   | CSOs                                                     | Subtotal                                                         | Urban                                                                                   | Rural <sup>C</sup>                                                   | Subtotal                                                                                | Total                                                                                   |
| Total Phosphorus (pounds) (continued) | S. 43rd Street Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 460<br>460<br>460<br>460<br>460<br>460<br>460                        | <10<br><10<br>0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0                               | 460<br>460<br>460<br>460<br>460<br>460<br>460                    | 890<br>790<br>790<br>790<br>790<br>790<br>790<br>730                                    | <10<br><10<br><10<br><10<br><10<br><10<br><10                        | 890<br>790<br>790<br>790<br>790<br>790<br>790                                           | 1,350<br>1,250<br>1,250<br>1,250<br>1,250<br>1,250<br>1,190                             |
|                                       | Watershed Total      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 1,440<br>1,440<br>1,440<br>1,440<br>1,440<br>1,440<br>1,440          | 890<br>1,140<br>0<br>0<br>0<br>0<br>0<br>1,360      | 490<br>320<br>0<br>0<br>570<br>570<br>230                | 2,820<br>2,900<br>1,440<br>1,440<br>2,010<br>2,010<br>3,030      | 9,860<br>8,710<br>9,020<br>8,710<br>8,710<br>8,710<br>8,100                             | 70<br>50<br>50<br>50<br>50<br>50<br>50                               | 9,930<br>8,760<br>9,070<br>8,760<br>8,760<br>8,760<br>8,150                             | 12,750<br>11,660<br>10,510<br>10,200<br>10,770<br>10,770<br>11,180                      |
| Total Suspended Solids (pounds)       | Kinnickinnic River   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 2,230<br>2,230<br>2,230<br>2,230<br>2,230<br>2,230<br>2,230<br>2,230 | 50,280<br>64,810<br>0<br>0<br>0<br>0<br>0<br>77,420 | 42,810<br>28,270<br>0<br>0<br>49,860<br>49,860<br>18,750 | 95,320<br>95,310<br>2,230<br>2,230<br>52,090<br>52,090<br>98,400 | 1,400,580<br>1,106,590<br>1,246,370<br>1,106,590<br>1,106,590<br>1,106,590<br>1,106,590 | 2,900<br>2,800<br>2,800<br>2,800<br>2,800<br>2,800<br>2,800<br>2,800 | 1,403,480<br>1,109,390<br>1,249,170<br>1,109,390<br>1,109,390<br>1,109,390<br>1,109,390 | 1,498,800<br>1,204,700<br>1,251,400<br>1,111,620<br>1,161,480<br>1,161,480<br>1,207,790 |
|                                       | Wilson Park Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 6,300<br>6,300<br>6,300<br>6,300<br>6,300<br>6,300<br>6,300          | 850<br>380<br>0<br>0<br>0<br>0<br>0<br>390          | 0<br>0<br>0<br>0<br>0                                    | 7,150<br>6,680<br>6,300<br>6,300<br>6,300<br>6,300<br>6,690      | 1,681,280<br>1,365,030<br>1,365,030<br>1,365,030<br>1,365,030<br>1,365,030<br>1,365,030 | 24,830<br>3,070<br>3,070<br>3,070<br>3,070<br>3,070<br>3,070         | 1,706,110<br>1,368,100<br>1,368,100<br>1,368,100<br>1,368,100<br>1,368,100<br>1,368,100 | 1,713,260<br>1,374,780<br>1,374,400<br>1,374,400<br>1,374,400<br>1,374,400<br>1,374,790 |
|                                       | Holmes Avenue Creek  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 800<br>800<br>800<br>800<br>800<br>800<br>800                        | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                               | 800<br>800<br>800<br>800<br>800<br>800<br>800                    | 643,010<br>499,250<br>499,250<br>499,250<br>499,250<br>499,250<br>499,250               | 530<br>330<br>330<br>330<br>330<br>330<br>330                        | 643,540<br>499,580<br>499,580<br>499,580<br>499,580<br>499,580<br>499,580               | 644,340<br>500,380<br>500,380<br>500,380<br>500,380<br>500,380<br>500,380               |
|                                       | Villa Mann Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                       | 380,220<br>289,850<br>289,850<br>289,850<br>289,850<br>289,850<br>289,850               | 220<br>120<br>120<br>120<br>120<br>120<br>120                        | 380,440<br>289,970<br>289,970<br>289,970<br>289,970<br>289,970<br>289,970               | 380,440<br>289,970<br>289,970<br>289,970<br>289,970<br>289,970<br>289,970               |

## Table H-1 (continued)

|                                              |                      |                                               |                                                                    | Point S                                                        | Sources                                                        |                                                                       | N                                                                                       | Ionpoint Source                                                       | a                                                                                       |                                                                                         |
|----------------------------------------------|----------------------|-----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                      | Subwatershed         | Screening Alternative                         | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                                              | CSOs                                                           | Subtotal                                                              | Urban                                                                                   | Rural <sup>c</sup>                                                    | Subtotal                                                                                | Total                                                                                   |
| Total Suspended Solids (pounds) (continued)  | Cherokee Park Creek  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0<br>0                                            | 216,410<br>170,560<br>170,560<br>170,560<br>170,560<br>170,560<br>170,560               | 600<br>490<br>490<br>490<br>490<br>490<br>490                         | 217,010<br>171,050<br>171,050<br>171,050<br>171,050<br>171,050<br>171,050               | 217,010<br>171,050<br>171,050<br>171,050<br>171,050<br>171,050<br>171,050               |
|                                              | Lyons Park Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 30<br>30<br>0<br>0<br>0<br>0<br>0<br>30                        | 0<br>0<br>0<br>0<br>0                                          | 30<br>30<br>0<br>0<br>0<br>0<br>0<br>30                               | 283,620<br>225,650<br>225,650<br>225,650<br>225,650<br>225,650<br>225,650               | 250<br>210<br>210<br>210<br>210<br>210<br>210<br>210                  | 283,870<br>225,860<br>225,860<br>225,860<br>225,860<br>225,860<br>225,860               | 283,900<br>225,890<br>225,860<br>225,860<br>225,860<br>225,860<br>225,890               |
|                                              | S. 43rd Street Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 3,080<br>3,080<br>3,080<br>3,080<br>3,080<br>3,080<br>3,080        | 110<br>110<br>0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                                          | 3,190<br>3,190<br>3,080<br>3,080<br>3,080<br>3,080<br>3,190           | 557,400<br>428,650<br>428,650<br>428,650<br>428,650<br>428,650<br>428,650               | 430<br>160<br>160<br>160<br>160<br>160<br>160                         | 557,830<br>428,810<br>428,810<br>428,810<br>428,810<br>428,810<br>428,810               | 561,020<br>432,000<br>431,890<br>431,890<br>431,890<br>431,890<br>432,000               |
|                                              | Watershed Total      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 12,410<br>12,410<br>12,410<br>12,410<br>12,410<br>12,410<br>12,410 | 51,270<br>65,330<br>0<br>0<br>0<br>0<br>0<br>77,950            | 42,810<br>28,270<br>0<br>0<br>49,860<br>49,860<br>18,750       | 106,490<br>106,010<br>12,410<br>12,410<br>62,270<br>62,270<br>109,110 | 5,162,520<br>4,085,580<br>4,225,360<br>4,085,580<br>4,085,580<br>4,085,580<br>4,085,580 | 29,760<br>7,180<br>7,180<br>7,180<br>7,180<br>7,180<br>7,180<br>7,180 | 5,192,280<br>4,092,760<br>4,232,540<br>4,092,760<br>4,092,760<br>4,092,760<br>4,092,760 | 5,298,770<br>4,198,770<br>4,244,950<br>4,105,170<br>4,155,030<br>4,155,030<br>4,201,870 |
| Fecal Coliform Bacteria (trillions of cells) | Kinnickinnic River   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00               | 959.33<br>1,236.62<br>0.00<br>0.00<br>0.00<br>0.00<br>1,477.12 | 554.79<br>366.38<br>0.00<br>0.00<br>646.18<br>646.18<br>303.71 | 1,514.12<br>1,603.00<br>0.00<br>0.00<br>646.18<br>646.18<br>1,780.83  | 1,031.94<br>861.35<br>966.48<br>861.35<br>861.35<br>861.35<br>775.21                    | 0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06                  | 1,032.00<br>861.41<br>966.54<br>861.41<br>861.41<br>861.41<br>775.27                    | 2,546.12<br>2,464.41<br>966.54<br>861.41<br>1,507.59<br>1,507.59<br>2,556.10            |
|                                              | Wilson Park Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00               | 16.14<br>7.35<br>0.00<br>0.00<br>0.00<br>0.00<br>7.40          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 16.14<br>7.35<br>0.00<br>0.00<br>0.00<br>0.00<br>7.40                 | 996.39<br>860.49<br>860.49<br>860.49<br>860.49<br>860.49<br>774.44                      | 0.20<br>0.08<br>0.08<br>0.08<br>0.08<br>0.08                          | 996.59<br>860.57<br>860.57<br>860.57<br>860.57<br>860.57<br>774.52                      | 1,012.73<br>867.92<br>860.57<br>860.57<br>860.57<br>860.57<br>781.92                    |

Table H-1 (continued)

|                                                          |                      |                                               |                                                      | Point S                                                        | Sources                                                        |                                                                      | N                                                                    | Ionpoint Source                                      | <sub>,</sub> a                                                                   |                                                                                  |
|----------------------------------------------------------|----------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed         | Screening Alternative                         | Industrial<br>Point<br>Sources                       | SSOs <sup>b</sup>                                              | CSOs                                                           | Subtotal                                                             | Urban                                                                | Rural <sup>c</sup>                                   | Subtotal                                                                         | Total                                                                            |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Holmes Avenue Creek  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 361.85<br>298.64<br>298.64<br>298.64<br>298.64<br>298.64<br>268.78   | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 361.86<br>298.65<br>298.65<br>298.65<br>298.65<br>298.65<br>268.79               | 361.86<br>298.65<br>298.65<br>298.65<br>298.65<br>298.65<br>268.79               |
|                                                          | Villa Mann Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 247.97<br>203.64<br>203.64<br>203.64<br>203.64<br>203.64<br>183.27   | 0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 247.98<br>203.64<br>203.64<br>203.64<br>203.64<br>203.64<br>183.27               | 247.98<br>203.64<br>203.64<br>203.64<br>203.64<br>203.64<br>183.27               |
|                                                          | Cherokee Park Creek  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 145.02<br>121.71<br>121.71<br>121.71<br>121.71<br>121.71<br>109.54   | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01         | 145.03<br>121.72<br>121.72<br>121.72<br>121.72<br>121.72<br>121.72<br>109.55     | 145.03<br>121.72<br>121.72<br>121.72<br>121.72<br>121.72<br>121.72<br>109.55     |
|                                                          | Lyons Park Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.52<br>0.52<br>0.00<br>0.00<br>0.00<br>0.00<br>0.52           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.52<br>0.52<br>0.00<br>0.00<br>0.00<br>0.00<br>0.52                 | 247.09<br>208.42<br>208.42<br>208.42<br>208.42<br>208.42<br>187.58   | 0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 247.10<br>208.42<br>208.42<br>208.42<br>208.42<br>208.42<br>187.58               | 247.62<br>208.94<br>208.42<br>208.42<br>208.42<br>208.42<br>188.10               |
|                                                          | S. 43rd Street Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 2.07<br>2.07<br>0.00<br>0.00<br>0.00<br>0.00<br>2.07           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 2.07<br>2.07<br>0.00<br>0.00<br>0.00<br>0.00<br>2.07                 | 327.94<br>277.19<br>277.19<br>277.19<br>277.19<br>277.19<br>249.47   | 0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 327.95<br>277.19<br>277.19<br>277.19<br>277.19<br>277.19<br>249.47               | 330.02<br>279.26<br>277.19<br>277.19<br>277.19<br>277.19<br>251.54               |
|                                                          | Watershed Total      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 978.06<br>1,246.56<br>0.00<br>0.00<br>0.00<br>0.00<br>1,487.11 | 554.79<br>366.38<br>0.00<br>0.00<br>646.18<br>646.18<br>303.71 | 1,532.85<br>1,612.94<br>0.00<br>0.00<br>646.18<br>646.18<br>1,790.82 | 3,358.20<br>2,831.44<br>2,936.57<br>2,831.44<br>2,831.44<br>2,548.29 | 0.31<br>0.16<br>0.16<br>0.16<br>0.16<br>0.16<br>0.16 | 3,358.51<br>2,831.60<br>2,936.73<br>2,831.60<br>2,831.60<br>2,831.60<br>2,548.45 | 4,891.36<br>4,444.54<br>2,936.73<br>2,831.60<br>3,477.78<br>3,477.78<br>4,339.27 |

Table H-1 (continued)

|                         |                     |                                               |                                                                      | Point S                                          | Sources                                             |                                                             | N                                                                    | Ionpoint Source                                      | <sub>,</sub> a                                                       |                                                                      |
|-------------------------|---------------------|-----------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Water Quality Indicator | Subwatershed        | Screening Alternative                         | Industrial<br>Point<br>Sources                                       | SSOs <sup>b</sup>                                | CSOs                                                | Subtotal                                                    | Urban                                                                | Rural <sup>c</sup>                                   | Subtotal                                                             | Total                                                                |
| Total Nitrogen (pounds) | Kinnickinnic River  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 3,800<br>3,800<br>3,800<br>3,800<br>3,800<br>3,800<br>3,800<br>3,800 | 1,840<br>2,370<br>0<br>0<br>0<br>0<br>0<br>2,830 | 2,290<br>1,510<br>0<br>0<br>2,670<br>2,670<br>1,120 | 7,930<br>7,680<br>3,800<br>3,800<br>6,470<br>6,470<br>7,750 | 17,730<br>15,880<br>17,480<br>15,880<br>15,880<br>15,880<br>15,370   | 220<br>210<br>210<br>210<br>210<br>210<br>210<br>210 | 17,950<br>16,090<br>17,690<br>16,090<br>16,090<br>16,090<br>15,580   | 25,880<br>23,770<br>21,490<br>19,890<br>22,560<br>22,560<br>23,330   |
|                         | Wilson Park Creek   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 980<br>980<br>980<br>980<br>980<br>980<br>980                        | 30<br>10<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                               | 1,010<br>990<br>980<br>980<br>980<br>980<br>980<br>990      | 21,270<br>19,570<br>19,570<br>19,570<br>19,570<br>19,570<br>18,950   | 980<br>250<br>250<br>250<br>250<br>250<br>250<br>250 | 22,250<br>19,820<br>19,820<br>19,820<br>19,820<br>19,820<br>19,200   | 23,260<br>20,810<br>20,800<br>20,800<br>20,800<br>20,800<br>20,190   |
|                         | Holmes Avenue Creek | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 1,460<br>1,460<br>1,460<br>1,460<br>1,460<br>1,460<br>1,460          | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                               | 1,460<br>1,460<br>1,460<br>1,460<br>1,460<br>1,460<br>1,460 | 6,090<br>5,450<br>5,450<br>5,450<br>5,450<br>5,450<br>5,260          | 50<br>30<br>30<br>30<br>30<br>30<br>30<br>30         | 6,140<br>5,480<br>5,480<br>5,480<br>5,480<br>5,480<br>5,290          | 7,600<br>6,940<br>6,940<br>6,940<br>6,940<br>6,940<br>6,750          |
|                         | Villa Mann Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                  | 4,480<br>3,980<br>3,980<br>3,980<br>3,980<br>3,980<br>3,980<br>3,850 | 20<br>10<br>10<br>10<br>10<br>10                     | 4,500<br>3,990<br>3,990<br>3,990<br>3,990<br>3,990<br>3,860          | 4,500<br>3,990<br>3,990<br>3,990<br>3,990<br>3,990<br>3,860          |
|                         | Cherokee Park Creek | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                  | 2,750<br>2,490<br>2,490<br>2,490<br>2,490<br>2,490<br>2,490<br>2,420 | 50<br>40<br>40<br>40<br>40<br>40<br>40               | 2,800<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,460 | 2,800<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,460 |
|                         | Lyons Park Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                                                | <10<br><10<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0                          | <10<br><10<br>0<br>0<br>0<br>0                              | 3,980<br>3,600<br>3,600<br>3,600<br>3,600<br>3,600<br>3,490          | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20         | 4,000<br>3,620<br>3,620<br>3,620<br>3,620<br>3,620<br>3,510          | 4,000<br>3,620<br>3,620<br>3,620<br>3,620<br>3,620<br>3,510          |

Table H-1 (continued)

|                                     |                      |                                               |                                                                      | Point S                                             | Sources                                             |                                                                      | N                                                                         | Ionpoint Source                                             | <sub>j</sub> a                                                            |                                                                           |
|-------------------------------------|----------------------|-----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed         | Screening Alternative                         | Industrial<br>Point<br>Sources                                       | SSOs <sup>b</sup>                                   | CSOs                                                | Subtotal                                                             | Urban                                                                     | Rural <sup>C</sup>                                          | Subtotal                                                                  | Total                                                                     |
| Total Nitrogen (pounds) (continued) | S. 43rd Street Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 490<br>490<br>490<br>490<br>490<br>490<br>490                        | <10<br><10<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                               | 490<br>490<br>490<br>490<br>490<br>490<br>490                        | 5,570<br>5,050<br>5,050<br>5,050<br>5,050<br>5,050<br>4,880               | 30<br>10<br>10<br>10<br>10<br>10                            | 5,600<br>5,060<br>5,060<br>5,060<br>5,060<br>5,060<br>4,890               | 6,090<br>5,550<br>5,550<br>5,550<br>5,550<br>5,550<br>5,380               |
|                                     | Watershed Total      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 6,730<br>6,730<br>6,730<br>6,730<br>6,730<br>6,730<br>6,730          | 1,870<br>2,380<br>0<br>0<br>0<br>0<br>0<br>2,840    | 2,290<br>1,510<br>0<br>0<br>2,670<br>2,670<br>1,120 | 10,890<br>10,620<br>6,730<br>6,730<br>9,400<br>9,400<br>10,690       | 61,870<br>56,020<br>57,620<br>56,020<br>56,020<br>56,020<br>54,220        | 1,370<br>570<br>570<br>570<br>570<br>570<br>570             | 63,240<br>56,590<br>58,190<br>56,590<br>56,590<br>56,590<br>54,790        | 74,130<br>67,210<br>64,920<br>63,320<br>65,990<br>65,990<br>65,480        |
| Biochemical Oxygen Demand (pounds)  | Kinnickinnic River   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 3,680<br>3,680<br>3,680<br>3,680<br>3,680<br>3,680<br>3,680          | 12,370<br>15,950<br>0<br>0<br>0<br>0<br>0<br>19,050 | 6,880<br>4,540<br>0<br>0<br>8,010<br>8,010<br>3,210 | 22,930<br>24,170<br>3,680<br>3,680<br>11,690<br>11,690<br>25,940     | 80,050<br>67,460<br>75,590<br>67,460<br>67,460<br>67,460<br>67,460        | 740<br>710<br>710<br>710<br>710<br>710<br>710               | 80,790<br>68,170<br>76,300<br>68,170<br>68,170<br>68,170<br>68,170        | 103,720<br>92,340<br>79,980<br>71,850<br>79,860<br>79,860<br>94,110       |
|                                     | Wilson Park Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 5,630<br>5,630<br>5,630<br>5,630<br>5,630<br>5,630<br>5,630          | 210<br>90<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0                               | 5,840<br>5,720<br>5,630<br>5,630<br>5,630<br>5,630<br>5,730          | 165,660<br>157,460<br>157,460<br>157,460<br>157,460<br>157,460<br>157,460 | 1,900<br>1,100<br>1,100<br>1,100<br>1,100<br>1,100<br>1,100 | 167,560<br>158,560<br>158,560<br>158,560<br>158,560<br>158,560<br>158,560 | 173,400<br>164,280<br>164,190<br>164,190<br>164,190<br>164,190<br>164,290 |
|                                     | Holmes Avenue Creek  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120 | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                          | 1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120 | 44,320<br>39,590<br>39,590<br>39,590<br>39,590<br>39,590<br>39,590        | 160<br>90<br>90<br>90<br>90<br>90<br>90                     | 44,480<br>39,680<br>39,680<br>39,680<br>39,680<br>39,680<br>39,680        | 45,600<br>40,800<br>40,800<br>40,800<br>40,800<br>40,800<br>40,800        |
|                                     | Villa Mann Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                           | 20,320<br>16,940<br>16,940<br>16,940<br>16,940<br>16,940                  | 80<br>40<br>40<br>40<br>40<br>40<br>40                      | 20,400<br>16,980<br>16,980<br>16,980<br>16,980<br>16,980<br>16,980        | 20,400<br>16,980<br>16,980<br>16,980<br>16,980<br>16,980<br>16,980        |

## Table H-1 (continued)

|                                                |                      |                                               |                                                                    | Point S                                        | Sources                                             |                                                                    | N                                                                         | Ionpoint Source                                                      | a                                                                         |                                                                           |
|------------------------------------------------|----------------------|-----------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed         | Screening Alternative                         | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                              | CSOs                                                | Subtotal                                                           | Urban                                                                     | Rural <sup>C</sup>                                                   | Subtotal                                                                  | Total                                                                     |
| Biochemical Oxygen Demand (pounds) (continued) | Cherokee Park Creek  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 11,980<br>10,350<br>10,350<br>10,350<br>10,350<br>10,350<br>10,350        | 140<br>110<br>110<br>110<br>110<br>110<br>110                        | 12,120<br>10,460<br>10,460<br>10,460<br>10,460<br>10,460<br>10,460        | 12,120<br>10,460<br>10,460<br>10,460<br>10,460<br>10,460<br>10,460        |
|                                                | Lyons Park Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 10<br>10<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                          | 10<br>10<br>0<br>0<br>0<br>0<br>0                                  | 16,880<br>14,340<br>14,340<br>14,340<br>14,340<br>14,340<br>14,340        | 60<br>50<br>50<br>50<br>50<br>50<br>50                               | 16,940<br>14,390<br>14,390<br>14,390<br>14,390<br>14,390<br>14,390        | 16,950<br>14,400<br>14,390<br>14,390<br>14,390<br>14,390<br>14,400        |
|                                                | S. 43rd Street Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 5,420<br>5,420<br>5,420<br>5,420<br>5,420<br>5,420<br>5,420        | 30<br>30<br>0<br>0<br>0<br>0<br>0<br>30        | 0<br>0<br>0<br>0<br>0                               | 5,450<br>5,450<br>5,420<br>5,420<br>5,420<br>5,420<br>5,450        | 30,730<br>26,040<br>26,040<br>26,040<br>26,040<br>26,040<br>26,040        | 130<br>50<br>50<br>50<br>50<br>50<br>50                              | 30,860<br>26,090<br>26,090<br>26,090<br>26,090<br>26,090<br>26,090        | 36,310<br>31,540<br>31,510<br>31,510<br>31,510<br>31,510<br>31,540        |
|                                                | Watershed Total      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 15,850<br>15,850<br>15,850<br>15,850<br>15,850<br>15,850<br>15,850 | 12,620<br>16,080<br>0<br>0<br>0<br>0<br>19,190 | 6,880<br>4,540<br>0<br>0<br>8,010<br>8,010<br>3,210 | 35,350<br>36,470<br>15,850<br>15,850<br>23,860<br>23,860<br>38,250 | 369,940<br>332,180<br>340,310<br>332,180<br>332,180<br>332,180<br>332,180 | 3,210<br>2,150<br>2,150<br>2,150<br>2,150<br>2,150<br>2,150<br>2,150 | 373,150<br>334,330<br>342,460<br>334,330<br>334,330<br>334,330<br>334,330 | 408,500<br>370,800<br>358,310<br>350,180<br>358,190<br>358,190<br>372,580 |
| Copper (pounds)                                | Kinnickinnic River   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 7<br>7<br>7<br>7<br>7<br>7                                         | 8<br>10<br>0<br>0<br>0<br>0<br>0               | 15<br>10<br>0<br>0<br>18<br>18<br>7                 | 30<br>27<br>7<br>7<br>7<br>25<br>25<br>25<br>26                    | 146<br>120<br>136<br>120<br>120<br>120<br>120                             | <1<br><1<br><1<br><1<br><1<br><1<br><1                               | 146<br>120<br>136<br>120<br>120<br>120<br>120                             | 176<br>147<br>143<br>127<br>145<br>145<br>146                             |
|                                                | Wilson Park Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | <1<br><1<br>0<br>0<br>0<br>0<br>0<br>0         | 0<br>0<br>0<br>0<br>0<br>0                          | <1<br><1<br>0<br>0<br>0<br>0<br>0<br>0                             | 174<br>151<br>151<br>151<br>151<br>151<br>151                             | 1<br><1<br><1<br><1<br><1<br><1<br><1                                | 175<br>151<br>151<br>151<br>151<br>151<br>151                             | 175<br>151<br>151<br>151<br>151<br>151<br>151                             |
|                                                | Holmes Avenue Creek  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 59<br>49<br>49<br>49<br>49<br>49                                          | <1<br><1<br><1<br><1<br><1<br><1<br><1                               | 59<br>49<br>49<br>49<br>49<br>49                                          | 59<br>49<br>49<br>49<br>49<br>49                                          |

Table H-1 (continued)

|                             |                      |                                               |                                | Point S                           | Sources                             |                                            | ٨                                             | Ionpoint Source                        | <sub>j</sub> a                                |                                               |
|-----------------------------|----------------------|-----------------------------------------------|--------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Water Quality Indicator     | Subwatershed         | Screening Alternative                         | Industrial<br>Point<br>Sources | SSOs <sup>b</sup>                 | CSOs                                | Subtotal                                   | Urban                                         | Rural <sup>C</sup>                     | Subtotal                                      | Total                                         |
| Copper (pounds) (continued) | Villa Mann Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0               | 0<br>0<br>0<br>0<br>0                      | 37<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | <1<br><1<br><1<br><1<br><1<br><1<br><1 | 37<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | 37<br>30<br>30<br>30<br>30<br>30<br>30<br>30  |
|                             | Cherokee Park Creek  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0<br>0                 | 22<br>18<br>18<br>18<br>18<br>18              | <1<br><1<br><1<br><1<br><1<br><1<br><1 | 22<br>18<br>18<br>18<br>18<br>18              | 22<br>18<br>18<br>18<br>18<br>18<br>18        |
|                             | Lyons Park Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0          | <1<br><1<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0               | <1<br><1<br>0<br>0<br>0<br>0<br>0          | 30<br>25<br>25<br>25<br>25<br>25<br>25<br>25  | <1<br><1<br><1<br><1<br><1<br><1<br><1 | 30<br>25<br>25<br>25<br>25<br>25<br>25<br>25  | 30<br>25<br>25<br>25<br>25<br>25<br>25<br>25  |
|                             | S. 43rd Street Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0          | <1<br><1<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0               | <1<br><1<br>0<br>0<br>0<br>0<br>0          | 57<br>47<br>47<br>47<br>47<br>47<br>47        | <1<br><1<br><1<br><1<br><1<br><1<br><1 | 57<br>47<br>47<br>47<br>47<br>47<br>47        | 57<br>47<br>47<br>47<br>47<br>47<br>47        |
|                             | Watershed Total      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 7<br>7<br>7<br>7<br>7<br>7     | 8<br>10<br>0<br>0<br>0<br>0<br>12 | 15<br>10<br>0<br>0<br>18<br>18<br>7 | 30<br>27<br>7<br>7<br>25<br>25<br>25<br>26 | 525<br>440<br>456<br>440<br>440<br>440<br>440 | 1<br><1<br><1<br><1<br>0<br>0          | 526<br>440<br>456<br>440<br>440<br>440<br>440 | 556<br>467<br>463<br>447<br>465<br>465<br>466 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>Loads presented in this table for the 2020 future (baseline) condition reflect refinements that were made to the MMSD conveyance system model after the screening alternatives were evaluated. This results in certain anomalies in the load comparisons presented herein, particularly regarding SSO loads with Screening Alternative 2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table H-2

AVERAGE ANNUAL POLLUTANT LOADS FOR SCREENING ALTERNATIVES: MENOMONEE RIVER WATERSHED

|                           |                        |                                                                 |                                                              | Point S                                    | Sources                                             |                                                              | N                                                                    | Ionpoint Source                               | a                                                           |                                                                      |
|---------------------------|------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|
| Water Quality Indicator   | Subwatershed           | Screening Alternative                                           | Industrial<br>Point<br>Sources                               | SSOs <sup>b</sup>                          | CSOs                                                | Subtotal                                                     | Urban                                                                | Rural <sup>C</sup>                            | Subtotal                                                    | Total                                                                |
| Total Phosphorus (pounds) | Butler Ditch           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                   | 10<br>10<br>0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0<br>0                          | 10<br>10<br>0<br>0<br>0<br>0<br>0                            | 1,490<br>1,290<br>1,290<br>1,290<br>1,290<br>1,290<br>1,290<br>1,200 | 50<br>40<br>40<br>40<br>40<br>40<br>40        | 1,540<br>1,330<br>1,330<br>1,330<br>1,330<br>1,330<br>1,240 | 1,550<br>1,340<br>1,330<br>1,330<br>1,330<br>1,330<br>1,250          |
|                           | Honey Creek            | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200         | 10<br>10<br>0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0<br>0                          | 210<br>210<br>200<br>200<br>200<br>200<br>200<br>210         | 3,900<br>3,430<br>3,430<br>3,430<br>3,430<br>3,430<br>3,200          | 20<br>10<br>10<br>10<br>10<br>10<br>10        | 3,920<br>3,440<br>3,440<br>3,440<br>3,440<br>3,440<br>3,210 | 4,130<br>3,650<br>3,640<br>3,640<br>3,640<br>3,640<br>3,420          |
|                           | Lily Creek             | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                   | 1,200<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,040          | 90<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | 1,290<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,070 | 1,290<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,070          |
|                           | Little Menomonee Creek | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                   | 80<br>70<br>70<br>70<br>70<br>70<br>70                               | 350<br>310<br>310<br>310<br>310<br>310<br>290 | 430<br>380<br>380<br>380<br>380<br>380<br>380               | 430<br>380<br>380<br>380<br>380<br>380<br>360                        |
|                           | Little Menomonee River | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 360<br>360<br>360<br>360<br>360<br>360<br>360                | <10<br><10<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0                          | 360<br>360<br>360<br>360<br>360<br>360<br>360                | 3,300<br>3,170<br>3,170<br>3,170<br>3,170<br>3,170<br>2,950          | 840<br>690<br>690<br>690<br>690<br>690<br>690 | 4,140<br>3,860<br>3,860<br>3,860<br>3,860<br>3,860<br>3,610 | 4,500<br>4,220<br>4,220<br>4,220<br>4,220<br>4,220<br>4,220<br>3,970 |
|                           | Lower Menomonee River  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 15,650<br>3,910<br>3,910<br>3,910<br>3,910<br>3,910<br>3,910 | 550<br>470<br>0<br>0<br>0<br>0<br>0<br>750 | 1,880<br>1,350<br>0<br>0<br>1,810<br>1,810<br>1,030 | 18,080<br>5,730<br>3,910<br>3,910<br>5,720<br>5,720<br>5,690 | 7,180<br>6,290<br>7,400<br>6,290<br>6,290<br>6,290<br>5,850          | 70<br>60<br>60<br>60<br>60<br>60<br>60        | 7,250<br>6,350<br>7,460<br>6,350<br>6,350<br>6,350<br>5,910 | 25,330<br>12,080<br>11,370<br>10,260<br>12,070<br>12,070<br>11,600   |

Table H-2 (continued)

|                                       |                                 |                                                            |                                                              | Point S                                    | Sources                                             |                                                              | N                                                                  | lonpoint Source                                             | а                                                                    |                                                                    |
|---------------------------------------|---------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed                    | Screening Alternative                                      | Industrial<br>Point<br>Sources                               | SSOs <sup>b</sup>                          | CSOs                                                | Subtotal                                                     | Urban                                                              | Rural <sup>C</sup>                                          | Subtotal                                                             | Total                                                              |
| Total Phosphorus (pounds) (continued) | North Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2              | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                   | 50<br>50<br>50<br>50<br>50<br>50<br>50                             | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>210        | 270<br>270<br>270<br>270<br>270<br>270<br>270<br>260                 | 270<br>270<br>270<br>270<br>270<br>270<br>270<br>260               |
|                                       | Nor-X-Way Channel               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2              | 160<br>160<br>160<br>160<br>160<br>160<br>160                | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0                               | 160<br>160<br>160<br>160<br>160<br>160<br>160                | 630<br>910<br>910<br>910<br>910<br>910<br>830                      | 340<br>330<br>330<br>330<br>330<br>330<br>330<br>310        | 970<br>1,240<br>1,240<br>1,240<br>1,240<br>1,240<br>1,140            | 1,130<br>1,400<br>1,400<br>1,400<br>1,400<br>1,400<br>1,300        |
|                                       | Underwood Creek                 | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                 | 10<br>10<br>0<br>0<br>0<br>0               | 0<br>0<br>0<br>0<br>0<br>0                          | 40<br>40<br>30<br>30<br>30<br>30<br>30<br>40                 | 6,350<br>5,480<br>5,480<br>5,480<br>5,480<br>5,480<br>5,100        | 270<br>220<br>220<br>220<br>220<br>220<br>220<br>220        | 6,620<br>5,700<br>5,700<br>5,700<br>5,700<br>5,700<br>5,320          | 6,660<br>5,740<br>5,730<br>5,730<br>5,730<br>5,730<br>5,360        |
|                                       | Upper Menomonee River           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2              | 1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150  | <10<br><10<br>0<br>0<br>0<br>0<br>0<br><10 | 0<br>0<br>0<br>0<br>0<br>0                          | 1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150  | 4,170<br>4,630<br>4,630<br>4,630<br>4,630<br>4,630<br>4,190        | 1,150<br>1,100<br>1,100<br>1,100<br>1,100<br>1,100<br>1,030 | 5,320<br>5,730<br>5,730<br>5,730<br>5,730<br>5,730<br>5,730<br>5,220 | 6,470<br>6,880<br>6,880<br>6,880<br>6,880<br>6,880<br>6,370        |
|                                       | West Branch<br>Menomonee River  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2              | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                   | 370<br>600<br>600<br>600<br>600<br>600<br>530                      | 240<br>250<br>250<br>250<br>250<br>250<br>250<br>230        | 610<br>850<br>850<br>850<br>850<br>850<br>850<br>760                 | 610<br>850<br>850<br>850<br>850<br>850<br>850<br>760               |
|                                       | Willow Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2              | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                   | 320<br>430<br>430<br>430<br>430<br>430<br>430<br>380               | 430<br>450<br>450<br>450<br>450<br>450<br>410               | 750<br>880<br>880<br>880<br>880<br>880<br>790                        | 750<br>880<br>880<br>880<br>880<br>880<br>790                      |
|                                       | Watershed Total                 | Existing 2020 Future (baseline) 1A 1B 1C 1D 2              | 17,550<br>5,810<br>5,810<br>5,810<br>5,810<br>5,810<br>5,810 | 580<br>500<br>0<br>0<br>0<br>0<br>0<br>780 | 1,880<br>1,330<br>0<br>0<br>1,810<br>1,810<br>1,010 | 20,010<br>7,640<br>5,810<br>5,810<br>7,620<br>7,620<br>7,600 | 29,040<br>27,470<br>28,580<br>27,470<br>27,470<br>27,470<br>25,390 | 4,070<br>3,710<br>3,710<br>3,710<br>3,710<br>3,710<br>3,500 | 33,110<br>31,180<br>32,290<br>31,180<br>31,180<br>31,180<br>28,890   | 53,120<br>38,820<br>38,100<br>36,990<br>38,800<br>38,800<br>36,490 |

## Table H-2 (continued)

|                                 |                                 |                                               |                                                                      | Point S                                        | Sources                                                      |                                                                         | N                                                                                       |                                                                           |                                                                                         |                                                                                         |
|---------------------------------|---------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator         | Subwatershed                    | Screening Alternative                         | Industrial<br>Point<br>Sources                                       | SSOs <sup>b</sup>                              | CSOs                                                         | Subtotal                                                                | Urban                                                                                   | Rural <sup>C</sup>                                                        | Subtotal                                                                                | Total                                                                                   |
| Total Suspended Solids (pounds) | Butler Ditch                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 320<br>320<br>0<br>0<br>0<br>0<br>0<br>320     | 0<br>0<br>0<br>0<br>0<br>0                                   | 320<br>320<br>0<br>0<br>0<br>0<br>0<br>320                              | 689,190<br>506,400<br>506,400<br>506,400<br>506,400<br>506,400<br>506,390               | 8,000<br>2,540<br>2,540<br>2,540<br>2,540<br>2,540<br>2,540<br>2,540      | 697,190<br>508,940<br>508,940<br>508,940<br>508,940<br>508,940<br>508,930               | 697,510<br>509,260<br>508,940<br>508,940<br>508,940<br>508,940<br>509,250               |
|                                 | Honey Creek                     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 800<br>800<br>800<br>800<br>800<br>800<br>800                        | 470<br>450<br>0<br>0<br>0<br>0<br>0<br>450     | 0<br>0<br>0<br>0<br>0<br>0                                   | 1,270<br>1,250<br>800<br>800<br>800<br>800<br>800<br>1,250              | 1,874,860<br>1,453,590<br>1,453,590<br>1,453,590<br>1,453,590<br>1,453,590<br>1,453,600 | 2,400<br>1,790<br>1,790<br>1,790<br>1,790<br>1,790<br>1,780               | 1,877,260<br>1,455,380<br>1,455,380<br>1,455,380<br>1,455,380<br>1,455,380<br>1,455,380 | 1,878,530<br>1,456,630<br>1,456,180<br>1,456,180<br>1,456,180<br>1,456,180<br>1,456,630 |
|                                 | Lily Creek                      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>0                                              | 666,000<br>498,090<br>498,090<br>498,090<br>498,090<br>498,090<br>498,090               | 53,720<br>2,820<br>2,820<br>2,820<br>2,820<br>2,820<br>2,820<br>2,820     | 719,720<br>500,910<br>500,910<br>500,910<br>500,910<br>500,910<br>500,910               | 719,720<br>500,910<br>500,910<br>500,910<br>500,910<br>500,910<br>500,910               |
|                                 | Little Menomonee Creek          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>0                                              | 58,630<br>45,820<br>45,820<br>45,820<br>45,820<br>45,820<br>45,820                      | 205,820<br>150,780<br>150,780<br>150,780<br>150,780<br>150,780<br>140,580 | 264,450<br>196,600<br>196,600<br>196,600<br>196,600<br>196,600<br>186,400               | 264,450<br>196,600<br>196,600<br>196,600<br>196,600<br>196,600<br>186,400               |
|                                 | Little Menomonee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530 | 30<br>30<br>0<br>0<br>0<br>0<br>0<br>30        | 0<br>0<br>0<br>0<br>0                                        | 2,560<br>2,560<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,560    | 1,976,270<br>1,650,910<br>1,650,910<br>1,650,910<br>1,650,910<br>1,650,910<br>1,650,920 | 437,140<br>206,370<br>206,370<br>206,370<br>206,370<br>206,370<br>194,760 | 2,413,410<br>1,857,280<br>1,857,280<br>1,857,280<br>1,857,280<br>1,857,280<br>1,845,680 | 2,415,970<br>1,859,840<br>1,859,810<br>1,859,810<br>1,859,810<br>1,859,810<br>1,848,240 |
|                                 | Lower Menomonee River           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 51,660<br>30,880<br>30,880<br>30,880<br>30,880<br>30,880<br>30,880   | 31,670<br>26,930<br>0<br>0<br>0<br>0<br>43,140 | 182,960<br>129,150<br>0<br>0<br>177,380<br>177,380<br>90,450 | 266,290<br>186,960<br>30,880<br>30,880<br>208,260<br>208,260<br>164,470 | 4,001,330<br>3,109,190<br>3,635,740<br>3,109,190<br>3,109,190<br>3,109,190<br>3,099,310 | 10,180<br>9,930<br>9,930<br>9,930<br>9,930<br>9,930<br>9,910              | 4,011,510<br>3,119,120<br>3,645,670<br>3,119,120<br>3,119,120<br>3,119,120<br>3,109,220 | 4,277,800<br>3,306,080<br>3,676,550<br>3,150,000<br>3,327,380<br>3,273,690              |
|                                 | North Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>0                                              | 27,660<br>29,120<br>29,120<br>29,120<br>29,120<br>29,120<br>26,630                      | 117,390<br>102,450<br>102,450<br>102,450<br>102,450<br>102,450<br>94,700  | 145,050<br>131,570<br>131,570<br>131,570<br>131,570<br>131,570<br>131,330               | 145,050<br>131,570<br>131,570<br>131,570<br>131,570<br>131,570<br>121,330               |

Table H-2 (continued)

|                                              |                                |                                                                 |                                                                    | Point S                                              | Sources                                                      |                                                                         | N                                                                                              |                                                                                       |                                                                                                |                                                                                                |
|----------------------------------------------|--------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Water Quality Indicator                      | Subwatershed                   | Screening Alternative                                           | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                                    | CSOs                                                         | Subtotal                                                                | Urban                                                                                          | Rural <sup>C</sup>                                                                    | Subtotal                                                                                       | Total                                                                                          |
| Total Suspended Solids (pounds) (continued)  | Nor-X-Way Channel              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 280<br>280<br>280<br>280<br>280<br>280<br>280<br>280               | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                        | 280<br>280<br>280<br>280<br>280<br>280<br>280<br>280                    | 478,790<br>710,880<br>710,880<br>710,880<br>710,880<br>710,880<br>710,880<br>690,850           | 351,000<br>100,670<br>100,670<br>100,670<br>100,670<br>100,670<br>96,810              | 829,790<br>811,550<br>811,550<br>811,550<br>811,550<br>811,550<br>787,660                      | 830,070<br>811,830<br>811,830<br>811,830<br>811,830<br>811,830<br>787,940                      |
|                                              | Underwood Creek                | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 90<br>90<br>90<br>90<br>90<br>90                                   | 860<br>740<br>0<br>0<br>0<br>0<br>0<br>740           | 0<br>0<br>0<br>0<br>0<br>0                                   | 950<br>830<br>90<br>90<br>90<br>90<br>830                               | 3,031,420<br>2,241,900<br>2,241,900<br>2,241,900<br>2,241,900<br>2,241,900<br>2,241,900        | 46,540<br>15,560<br>15,560<br>15,560<br>15,560<br>15,560<br>15,520                    | 3,077,960<br>2,257,460<br>2,257,460<br>2,257,460<br>2,257,460<br>2,257,460<br>2,257,420        | 3,078,910<br>2,258,290<br>2,257,550<br>2,257,550<br>2,257,550<br>2,257,550<br>2,258,250        |
|                                              | Upper Menomonee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D                     | 3,380<br>3,380<br>3,380<br>3,380<br>3,380<br>3,380<br>3,380        | 240<br>240<br>0<br>0<br>0<br>0<br>0<br>240           | 0<br>0<br>0<br>0<br>0<br>0                                   | 3,620<br>3,620<br>3,380<br>3,380<br>3,380<br>3,380<br>3,620             | 2,504,060<br>2,540,160<br>2,540,160<br>2,540,160<br>2,540,160<br>2,540,160<br>2,406,940        | 462,670<br>268,490<br>268,490<br>268,490<br>268,490<br>268,490<br>250,150             | 2,966,730<br>2,808,650<br>2,808,650<br>2,808,650<br>2,808,650<br>2,808,650<br>2,657,090        | 2,970,350<br>2,812,270<br>2,812,030<br>2,812,030<br>2,812,030<br>2,812,030<br>2,660,710        |
|                                              | West Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0                                                   | 232,070<br>414,350<br>414,350<br>414,350<br>414,350<br>414,350<br>377,740                      | 103,580<br>74,340<br>74,340<br>74,340<br>74,340<br>74,340<br>68,500                   | 335,650<br>488,690<br>488,690<br>488,690<br>488,690<br>488,690<br>446,240                      | 335,650<br>488,690<br>488,690<br>488,690<br>488,690<br>488,690<br>446,240                      |
|                                              | Willow Creek                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0<br>0<br>0                                              | 197,990<br>259,850<br>259,850<br>259,850<br>259,850<br>259,850<br>238,480                      | 151,790<br>121,870<br>121,870<br>121,870<br>121,870<br>121,870<br>121,870<br>112,460  | 349,780<br>381,720<br>381,720<br>381,720<br>381,720<br>381,720<br>350,940                      | 349,780<br>381,720<br>381,720<br>381,720<br>381,720<br>381,720<br>350,940                      |
|                                              | Watershed Total                | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 58,740<br>37,960<br>37,960<br>37,960<br>37,960<br>37,960<br>37,960 | 33,590<br>28,710<br>0<br>0<br>0<br>0<br>0<br>44,920  | 182,960<br>127,230<br>0<br>0<br>177,380<br>177,380<br>89,180 | 275,290<br>193,900<br>37,960<br>37,960<br>215,340<br>215,340<br>172,060 | 15,738,270<br>13,460,260<br>13,986,810<br>13,460,260<br>13,460,260<br>13,460,260<br>13,236,670 | 1,950,230<br>1,057,610<br>1,057,610<br>1,057,610<br>1,057,610<br>1,057,610<br>990,530 | 17,688,500<br>14,517,870<br>15,044,420<br>14,517,870<br>14,517,870<br>14,517,870<br>14,227,200 | 17,963,790<br>14,711,770<br>15,082,380<br>14,555,830<br>14,733,210<br>14,733,210<br>14,399,260 |
| Fecal Coliform Bacteria (trillions of cells) | Butler Ditch                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00               | 6.07<br>6.07<br>0.00<br>0.00<br>0.00<br>0.00<br>6.07 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 6.07<br>6.07<br>0.00<br>0.00<br>0.00<br>0.00<br>6.07                    | 223.75<br>188.25<br>188.25<br>188.25<br>188.25<br>188.25<br>169.43                             | 0.46<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17                                  | 224.21<br>188.42<br>188.42<br>188.42<br>188.42<br>188.42<br>169.60                             | 230.28<br>194.49<br>188.42<br>188.42<br>188.42<br>188.42<br>175.67                             |

Table H-2 (continued)

|                                                          |                                 |                                                                 |                                                      | Point Sources                                              |                                                                          |                                                                          |                                                                                  | Nonpoint Source <sup>a</sup>                                      |                                                                                  |                                                                                  |  |
|----------------------------------------------------------|---------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Water Quality Indicator                                  | Subwatershed                    | Screening Alternative                                           | Industrial<br>Point<br>Sources                       | SSOs <sup>b</sup>                                          | CSOs                                                                     | Subtotal                                                                 | Urban                                                                            | Rural <sup>C</sup>                                                | Subtotal                                                                         | Total                                                                            |  |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Honey Creek                     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 9.01<br>8.54<br>0.00<br>0.00<br>0.00<br>0.00<br>8.57       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 9.01<br>8.54<br>0.00<br>0.00<br>0.00<br>0.00<br>8.57                     | 2,342.61<br>1,964.37<br>1,964.37<br>1,964.37<br>1,964.37<br>1,964.37<br>1,767.93 | 0.14<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.10              | 2,342.75<br>1,964.48<br>1,964.48<br>1,964.48<br>1,964.48<br>1,964.48<br>1,768.03 | 2,351.76<br>1,973.02<br>1,964.48<br>1,964.48<br>1,964.48<br>1,964.48<br>1,776.60 |  |
|                                                          | Lily Creek                      | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 199.31<br>185.33<br>185.33<br>185.33<br>185.33<br>185.33<br>166.80               | 1.25<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18              | 200.56<br>185.51<br>185.51<br>185.51<br>185.51<br>185.51<br>166.98               | 200.56<br>185.51<br>185.51<br>185.51<br>185.51<br>185.51<br>166.98               |  |
|                                                          | Little Menomonee Creek          | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 65.43<br>58.34<br>58.34<br>58.34<br>58.34<br>58.34<br>52.51                      | 84.91<br>72.51<br>72.51<br>72.51<br>72.51<br>72.51<br>64.20       | 150.34<br>130.85<br>130.85<br>130.85<br>130.85<br>130.85<br>116.71               | 150.34<br>130.85<br>130.85<br>130.85<br>130.85<br>130.85<br>130.85<br>116.71     |  |
|                                                          | Little Menomonee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.52<br>0.52<br>0.00<br>0.00<br>0.00<br>0.00<br>0.52       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                             | 0.52<br>0.52<br>0.00<br>0.00<br>0.00<br>0.00<br>0.52                     | 2,097.81<br>1,855.49<br>1,855.49<br>1,855.49<br>1,855.49<br>1,855.49<br>1,669.94 | 105.28<br>104.67<br>104.67<br>104.67<br>104.67<br>104.67<br>92.66 | 2,203.09<br>1,960.16<br>1,960.16<br>1,960.16<br>1,960.16<br>1,960.16<br>1,762.60 | 2,203.61<br>1,960.68<br>1,960.16<br>1,960.16<br>1,960.16<br>1,960.16<br>1,763.12 |  |
|                                                          | Lower Menomonee River           | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 604.24<br>513.76<br>0.00<br>0.00<br>0.00<br>0.00<br>823.07 | 1,727.39<br>1,293.26<br>0.00<br>0.00<br>1,646.83<br>1,646.83<br>1,100.22 | 2,331.63<br>1,807.02<br>0.00<br>0.00<br>1,646.83<br>1,646.83<br>1,923.29 | 4,067.91<br>3,371.59<br>3,991.13<br>3,371.59<br>3,371.59<br>3,371.59<br>3,030.84 | 0.28<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44                      | 4,068.19<br>3,372.03<br>3,991.57<br>3,372.03<br>3,372.03<br>3,372.03<br>3,031.25 | 6,399.82<br>5,179.05<br>3,991.57<br>3,372.03<br>5,018.86<br>5,018.86<br>4,954.54 |  |
|                                                          | North Branch<br>Menomonee River | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 9.30<br>12.48<br>12.48<br>12.48<br>12.48<br>12.48<br>10.66                       | 7.82<br>9.73<br>9.73<br>9.73<br>9.73<br>9.73<br>7.57              | 17.12<br>22.21<br>22.21<br>22.21<br>22.21<br>22.21<br>18.23                      | 17.12<br>22.21<br>22.21<br>22.21<br>22.21<br>22.21<br>18.23                      |  |
|                                                          | Nor-X-Way Channel               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 256.06<br>316.87<br>316.87<br>316.87<br>316.87<br>316.87<br>279.42               | 48.78<br>85.76<br>85.76<br>85.76<br>85.76<br>85.76<br>75.34       | 304.84<br>402.63<br>402.63<br>402.63<br>402.63<br>402.63<br>354.76               | 304.84<br>402.63<br>402.63<br>402.63<br>402.63<br>402.63<br>354.76               |  |

Table H-2 (continued)

|                                                          |                                |                                               |                                                      | Point S                                                            | Sources                                                                  |                                                                          | N                                                                                       |                                                                    |                                                                                         |                                                                                              |
|----------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources                       | SSOs <sup>b</sup>                                                  | CSOs                                                                     | Subtotal                                                                 | Urban                                                                                   | Rural <sup>C</sup>                                                 | Subtotal                                                                                | Total                                                                                        |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Underwood Creek                | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 16.33<br>14.07<br>0.00<br>0.00<br>0.00<br>0.00<br>14.07            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 16.33<br>14.07<br>0.00<br>0.00<br>0.00<br>0.00<br>14.07                  | 3,454.09<br>2,796.17<br>2,796.17<br>2,796.17<br>2,796.17<br>2,796.17<br>2,516.55        | 1.67<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03               | 3,455.76<br>2,797.20<br>2,797.20<br>2,797.20<br>2,797.20<br>2,797.20<br>2,517.57        | 3,472.09<br>2,811.27<br>2,797.20<br>2,797.20<br>2,797.20<br>2,797.20<br>2,797.20<br>2,531.64 |
|                                                          | Upper Menomonee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 4.65<br>4.65<br>0.00<br>0.00<br>0.00<br>0.00<br>4.65               | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 4.65<br>4.65<br>0.00<br>0.00<br>0.00<br>0.00<br>4.65                     | 1,274.47<br>1,344.32<br>1,344.32<br>1,344.32<br>1,344.32<br>1,344.32<br>1,169.12        | 79.98<br>102.94<br>102.94<br>102.94<br>102.94<br>102.94<br>85.62   | 1,354.45<br>1,447.26<br>1,447.26<br>1,447.26<br>1,447.26<br>1,447.26<br>1,254.74        | 1,359.10<br>1,451.91<br>1,447.26<br>1,447.26<br>1,447.26<br>1,447.26<br>1,259.39             |
|                                                          | West Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00               | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 62.41<br>99.56<br>99.56<br>99.56<br>99.56<br>99.56<br>84.39                             | 16.80<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>18.81        | 79.21<br>122.27<br>122.27<br>122.27<br>122.27<br>122.27<br>103.20                       | 79.21<br>122.27<br>122.27<br>122.27<br>122.27<br>122.27<br>103.20                            |
|                                                          | Willow Creek                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00               | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 58.69<br>89.91<br>89.91<br>89.91<br>89.91<br>89.91<br>76.91                             | 45.74<br>50.22<br>50.22<br>50.22<br>50.22<br>50.22<br>41.92        | 104.43<br>140.13<br>140.13<br>140.13<br>140.13<br>140.13<br>118.83                      | 104.43<br>140.13<br>140.13<br>140.13<br>140.13<br>140.13<br>118.83                           |
|                                                          | Watershed Total                | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 640.82<br>547.61<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>856.95 | 1,727.39<br>1,268.37<br>0.00<br>0.00<br>1,646.83<br>1,646.83<br>1,079.64 | 2,368.21<br>1,815.98<br>0.00<br>0.00<br>1,646.83<br>1,646.83<br>1,936.59 | 14,111.84<br>12,282.68<br>12,902.22<br>12,282.68<br>12,282.68<br>12,282.68<br>10,994.50 | 393.11<br>450.47<br>450.47<br>450.47<br>450.47<br>450.47<br>388.00 | 14,504.95<br>12,733.15<br>13,352.69<br>12,733.15<br>12,733.15<br>12,733.15<br>11,382.50 | 16,873.16<br>14,549.13<br>13,352.69<br>12,733.15<br>14,379.98<br>14,379.98<br>13,319.09      |
| Total Nitrogen (pounds)                                  | Butler Ditch                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                           | 10<br>10<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                                               | 10<br>10<br>0<br>0<br>0<br>0<br>0                                        | 10,890<br>9,750<br>9,750<br>9,750<br>9,750<br>9,750<br>9,480                            | 570<br>220<br>220<br>220<br>220<br>220<br>220<br>220               | 11,460<br>9,970<br>9,970<br>9,970<br>9,970<br>9,970<br>9,700                            | 11,470<br>9,980<br>9,970<br>9,970<br>9,970<br>9,970<br>9,710                                 |
|                                                          | Honey Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 640<br>640<br>640<br>640<br>640<br>640<br>640        | 20<br>20<br>0<br>0<br>0<br>0<br>0<br>20                            | 0<br>0<br>0<br>0<br>0<br>0                                               | 660<br>660<br>640<br>640<br>640<br>640<br>660                            | 27,300<br>24,740<br>24,740<br>24,740<br>24,740<br>24,740<br>24,010                      | 220<br>150<br>150<br>150<br>150<br>150<br>150                      | 27,520<br>24,890<br>24,890<br>24,890<br>24,890<br>24,890<br>24,160                      | 28,180<br>25,550<br>25,530<br>25,530<br>25,530<br>25,530<br>24,820                           |

## Table H-2 (continued)

|                                     |                                 |                                                                 |                                                                    | Point S                                        | Sources                                                |                                                                    | N                                                                    | Nonpoint Source                                                    | а                                                                     |                                                                              |
|-------------------------------------|---------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                    | Screening Alternative                                           | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                              | CSOs                                                   | Subtotal                                                           | Urban                                                                | Rural <sup>C</sup>                                                 | Subtotal                                                              | Total                                                                        |
| Total Nitrogen (pounds) (continued) | Lily Creek                      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                                         | 9,530<br>9,190<br>9,190<br>9,190<br>9,190<br>9,190<br>8,950          | 2,920<br>270<br>270<br>270<br>270<br>270<br>270<br>270             | 12,450<br>9,460<br>9,460<br>9,460<br>9,460<br>9,460<br>9,220          | 12,450<br>9,460<br>9,460<br>9,460<br>9,460<br>9,460<br>9,220                 |
|                                     | Little Menomonee Creek          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                             | 0<br>0<br>0<br>0<br>0<br>0                                         | 530<br>530<br>530<br>530<br>530<br>530<br>530                        | 9,610<br>7,870<br>7,870<br>7,870<br>7,870<br>7,870<br>7,790        | 10,140<br>8,400<br>8,400<br>8,400<br>8,400<br>8,400<br>8,300          | 10,140<br>8,400<br>8,400<br>8,400<br>8,400<br>8,400<br>8,300                 |
|                                     | Little Menomonee River          | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350        | <10<br><10<br>0<br>0<br>0<br>0<br>0<br><10     | 0<br>0<br>0<br>0<br>0                                  | 1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350        | 25,150<br>23,930<br>23,930<br>23,930<br>23,930<br>23,930<br>23,220   | 22,270<br>12,480<br>12,480<br>12,480<br>12,480<br>12,480<br>12,360 | 47,420<br>36,410<br>36,410<br>36,410<br>36,410<br>36,410<br>35,580    | 48,770<br>37,760<br>37,760<br>37,760<br>37,760<br>37,760<br>36,930           |
|                                     | Lower Menomonee River           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 52,730<br>20,850<br>20,850<br>20,850<br>20,850<br>20,850<br>20,850 | 1,160<br>980<br>0<br>0<br>0<br>0<br>0<br>1,570 | 11,610<br>7,990<br>0<br>0<br>11,330<br>11,330<br>6,300 | 65,500<br>29,820<br>20,850<br>20,850<br>32,180<br>32,180<br>28,720 | 49,520<br>44,550<br>50,620<br>44,550<br>44,550<br>44,550<br>43,160   | 730<br>650<br>650<br>650<br>650<br>650<br>650                      | 50,250<br>45,200<br>51,270<br>45,200<br>45,200<br>45,200<br>43,810    | 115,750<br>75,020<br>72,120<br>66,050<br>77,380<br>77,380<br>72,530          |
|                                     | North Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                                         | 310<br>340<br>340<br>340<br>340<br>340<br>310                        | 13,000<br>12,050<br>12,050<br>12,050<br>12,050<br>12,050<br>11,920 | 13,310<br>12,390<br>12,390<br>12,390<br>12,390<br>12,390<br>12,230    | 13,310<br>12,390<br>12,390<br>12,390<br>12,390<br>12,390<br>12,390<br>12,230 |
|                                     | Nor-X-Way Channel               | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 100<br>100<br>100<br>100<br>100<br>100<br>100                      | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                             | 100<br>100<br>100<br>100<br>100<br>100<br>100                      | 4,350<br>5,730<br>5,730<br>5,730<br>5,730<br>5,730<br>5,730<br>5,470 | 8,110<br>3,490<br>3,490<br>3,490<br>3,490<br>3,490<br>3,420        | 12,460<br>9,220<br>9,220<br>9,220<br>9,220<br>9,220<br>9,220<br>8,890 | 12,560<br>9,320<br>9,320<br>9,320<br>9,320<br>9,320<br>9,320<br>8,990        |
|                                     | Underwood Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                       | 30<br>30<br>0<br>0<br>0<br>0<br>0<br>30        | 0<br>0<br>0<br>0<br>0<br>0                             | 50<br>50<br>20<br>20<br>20<br>20<br>20<br>50                       | 45,090<br>40,210<br>40,210<br>40,210<br>40,210<br>40,210<br>39,060   | 2,810<br>1,580<br>1,580<br>1,580<br>1,580<br>1,580<br>1,580        | 47,900<br>41,790<br>41,790<br>41,790<br>41,790<br>41,790<br>40,640    | 47,950<br>41,840<br>41,810<br>41,810<br>41,810<br>41,810<br>40,690           |

Table H-2 (continued)

|                                     |                                |                                               |                                                                    | Point S                                          | Sources                                                |                                                                    | N                                                                            | lonpoint Source                                                              | а                                                                         |                                                                           |
|-------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                                | CSOs                                                   | Subtotal                                                           | Urban                                                                        | Rural <sup>C</sup>                                                           | Subtotal                                                                  | Total                                                                     |
| Total Nitrogen (pounds) (continued) | Upper Menomonee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 810<br>810<br>810<br>810<br>810<br>810<br>810                      | 10<br>10<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                                  | 820<br>820<br>810<br>810<br>810<br>810<br>820                      | 32,240<br>35,050<br>35,050<br>35,050<br>35,050<br>35,050<br>35,050<br>33,160 | 32,270<br>21,850<br>21,850<br>21,850<br>21,850<br>21,850<br>21,850<br>21,370 | 64,510<br>56,900<br>56,900<br>56,900<br>56,900<br>56,900<br>54,530        | 65,330<br>57,720<br>57,710<br>57,710<br>57,710<br>57,710<br>55,350        |
|                                     | West Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0                             | 0<br>0<br>0<br>0<br>0                                              | 2,500<br>3,670<br>3,670<br>3,670<br>3,670<br>3,670<br>3,400                  | 10,770<br>7,500<br>7,500<br>7,500<br>7,500<br>7,500<br>7,340                 | 13,270<br>11,170<br>11,170<br>11,170<br>11,170<br>11,170<br>10,740        | 13,270<br>11,170<br>11,170<br>11,170<br>11,170<br>11,170<br>10,740        |
|                                     | Willow Creek                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                                         | 1,930<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530<br>2,340         | 15,130<br>9,830<br>9,830<br>9,830<br>9,830<br>9,830<br>9,560                 | 17,060<br>12,360<br>12,360<br>12,360<br>12,360<br>12,360<br>11,900        | 17,060<br>12,360<br>12,360<br>12,360<br>12,360<br>12,360<br>11,900        |
|                                     | Watershed Total                | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 55,650<br>23,770<br>23,770<br>23,770<br>23,770<br>23,770<br>23,770 | 1,230<br>1,050<br>0<br>0<br>0<br>0<br>0<br>1,640 | 11,610<br>7,890<br>0<br>0<br>11,330<br>11,330<br>6,230 | 68,490<br>32,710<br>23,770<br>23,770<br>35,100<br>35,100<br>31,640 | 209,340<br>200,220<br>206,290<br>200,220<br>200,220<br>200,220<br>193,070    | 118,410<br>77,940<br>77,940<br>77,940<br>77,940<br>77,940<br>76,630          | 327,750<br>278,160<br>284,230<br>278,160<br>278,160<br>278,160<br>269,700 | 396,240<br>310,870<br>308,000<br>301,930<br>313,260<br>313,260<br>301,340 |
| Biochemical Oxygen Demand (pounds)  | Butler Ditch                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 80<br>80<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                             | 80<br>80<br>0<br>0<br>0<br>0<br>0                                  | 44,260<br>36,520<br>36,520<br>36,520<br>36,520<br>36,520<br>36,520           | 1,680<br>1,180<br>1,180<br>1,180<br>1,180<br>1,180<br>1,180                  | 45,940<br>37,700<br>37,700<br>37,700<br>37,700<br>37,700<br>37,700        | 46,020<br>37,780<br>37,700<br>37,700<br>37,700<br>37,700<br>37,780        |
|                                     | Honey Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 970<br>970<br>970<br>970<br>970<br>970<br>970                      | 120<br>110<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                             | 1,090<br>1,080<br>970<br>970<br>970<br>970<br>970<br>1,080         | 119,400<br>100,700<br>100,700<br>100,700<br>100,700<br>100,700<br>100,700    | 720<br>510<br>510<br>510<br>510<br>510<br>510                                | 120,120<br>101,210<br>101,210<br>101,210<br>101,210<br>101,210<br>101,210 | 121,210<br>102,290<br>102,180<br>102,180<br>102,180<br>102,180<br>102,290 |
|                                     | Lily Creek                     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0                             | 0<br>0<br>0<br>0<br>0<br>0                                         | 42,390<br>38,020<br>38,020<br>38,020<br>38,020<br>38,020<br>38,020           | 4,250<br>1,030<br>1,030<br>1,030<br>1,030<br>1,030<br>1,030                  | 46,640<br>39,050<br>39,050<br>39,050<br>39,050<br>39,050<br>39,050        | 46,640<br>39,050<br>39,050<br>39,050<br>39,050<br>39,050<br>39,050        |

Table H-2 (continued)

|                                                |                                 |                                                                 |                                                                     | Point S                                           | ources                                                   |                                                                         | N                                                                         | Ionpoint Source                                                    | a                                                                         |                                                                           |
|------------------------------------------------|---------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                    | Screening Alternative                                           | Industrial<br>Point<br>Sources                                      | SSOs <sup>b</sup>                                 | CSOs                                                     | Subtotal                                                                | Urban                                                                     | Rural <sup>C</sup>                                                 | Subtotal                                                                  | Total                                                                     |
| Biochemical Oxygen Demand (pounds) (continued) | Little Menomonee Creek          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                                               | 0<br>0<br>0<br>0<br>0                             | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0                                              | 3,570<br>3,380<br>3,380<br>3,380<br>3,380<br>3,380<br>3,380               | 13,290<br>12,930<br>12,930<br>12,930<br>12,930<br>12,930<br>12,530 | 16,860<br>16,310<br>16,310<br>16,310<br>16,310<br>16,310<br>15,910        | 16,860<br>16,310<br>16,310<br>16,310<br>16,310<br>16,310<br>15,910        |
|                                                | Little Menomonee River          | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 3,090<br>3,090<br>3,090<br>3,090<br>3,090<br>3,090<br>3,090         | 10<br>10<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0                                    | 3,100<br>3,100<br>3,090<br>3,090<br>3,090<br>3,090<br>3,100             | 126,650<br>124,990<br>124,990<br>124,990<br>124,990<br>124,990<br>124,990 | 32,380<br>23,540<br>23,540<br>23,540<br>23,540<br>23,540<br>23,080 | 159,030<br>148,530<br>148,530<br>148,530<br>148,530<br>148,530<br>148,070 | 162,130<br>151,630<br>151,620<br>151,620<br>151,620<br>151,620<br>151,170 |
|                                                | Lower Menomonee River           | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 104,920<br>61,040<br>61,040<br>61,040<br>61,040<br>61,040<br>61,040 | 7,790<br>6,620<br>0<br>0<br>0<br>0<br>0<br>10,610 | 58,680<br>38,060<br>0<br>0<br>58,150<br>58,150<br>29,620 | 171,390<br>105,720<br>61,040<br>61,040<br>119,190<br>119,190<br>101,270 | 236,620<br>199,350<br>230,730<br>199,350<br>199,350<br>199,350<br>198,950 | 2,440<br>2,160<br>2,160<br>2,160<br>2,160<br>2,160<br>2,160        | 239,060<br>201,510<br>232,890<br>201,510<br>201,510<br>201,510<br>201,110 | 410,450<br>307,230<br>293,930<br>262,550<br>320,700<br>320,700<br>302,380 |
|                                                | North Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                                               | 0<br>0<br>0<br>0<br>0                             | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0                                              | 2,200<br>2,390<br>2,390<br>2,390<br>2,390<br>2,390<br>2,250               | 16,120<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,150 | 18,320<br>18,200<br>18,200<br>18,200<br>18,200<br>18,200<br>17,400        | 18,320<br>18,200<br>18,200<br>18,200<br>18,200<br>18,200<br>17,400        |
|                                                | Nor-X-Way Channel               | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 450<br>450<br>450<br>450<br>450<br>450<br>450                       | 0<br>0<br>0<br>0<br>0                             | 0<br>0<br>0<br>0<br>0                                    | 450<br>450<br>450<br>450<br>450<br>450<br>450                           | 26,530<br>43,680<br>43,680<br>43,680<br>43,680<br>43,680<br>42,880        | 9,200<br>6,960<br>6,960<br>6,960<br>6,960<br>6,960<br>6,830        | 35,730<br>50,640<br>50,640<br>50,640<br>50,640<br>50,640<br>49,710        | 36,180<br>51,090<br>51,090<br>51,090<br>51,090<br>51,090<br>50,160        |
|                                                | Underwood Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 200<br>200<br>200<br>200<br>200<br>200<br>200                       | 210<br>180<br>0<br>0<br>0<br>0<br>180             | 0<br>0<br>0<br>0<br>0                                    | 410<br>380<br>200<br>200<br>200<br>200<br>380                           | 194,480<br>159,880<br>159,880<br>159,880<br>159,880<br>159,880<br>159,880 | 9,490<br>6,400<br>6,400<br>6,400<br>6,400<br>6,400<br>6,400        | 203,970<br>166,280<br>166,280<br>166,280<br>166,280<br>166,280<br>166,280 | 204,380<br>166,660<br>166,480<br>166,480<br>166,480<br>166,480<br>166,660 |
|                                                | Upper Menomonee River           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 6,880<br>6,880<br>6,880<br>6,880<br>6,880<br>6,880<br>6,880         | 60<br>60<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0                               | 6,940<br>6,940<br>6,880<br>6,880<br>6,880<br>6,880<br>6,940             | 164,500<br>192,130<br>192,130<br>192,130<br>192,130<br>192,130<br>184,740 | 52,650<br>44,770<br>44,770<br>44,770<br>44,770<br>44,770<br>43,160 | 217,150<br>236,900<br>236,900<br>236,900<br>236,900<br>236,900<br>227,900 | 224,090<br>243,840<br>243,780<br>243,780<br>243,780<br>243,780<br>234,840 |

Table H-2 (continued)

|                                                |                                |                                                                 |                                                                     | Point S                                           | Sources                                                  |                                                                         | N                                                                         | Ionpoint Source                                                           | <sub>j</sub> a                                                                          |                                                                                         |
|------------------------------------------------|--------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                   | Screening Alternative                                           | Industrial<br>Point<br>Sources                                      | SSOs <sup>b</sup>                                 | CSOs                                                     | Subtotal                                                                | Urban                                                                     | Rural <sup>C</sup>                                                        | Subtotal                                                                                | Total                                                                                   |
| Biochemical Oxygen Demand (pounds) (continued) | West Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0                                              | 18,000<br>31,910<br>31,910<br>31,910<br>31,910<br>31,910<br>29,870        | 14,280<br>11,640<br>11,640<br>11,640<br>11,640<br>11,640<br>11,110        | 32,280<br>43,550<br>43,550<br>43,550<br>43,550<br>43,550<br>40,980                      | 32,280<br>43,550<br>43,550<br>43,550<br>43,550<br>43,550<br>40,980                      |
|                                                | Willow Creek                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                              | 14,790<br>20,230<br>20,230<br>20,230<br>20,230<br>20,230<br>19,050        | 19,350<br>19,200<br>19,200<br>19,200<br>19,200<br>19,200<br>18,330        | 34,140<br>39,430<br>39,430<br>39,430<br>39,430<br>39,430<br>37,380                      | 34,140<br>39,430<br>39,430<br>39,430<br>39,430<br>39,430<br>37,380                      |
|                                                | Watershed Total                | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 116,510<br>72,630<br>72,630<br>72,630<br>72,630<br>72,630<br>72,630 | 8,270<br>7,060<br>0<br>0<br>0<br>0<br>0<br>11,050 | 58,680<br>37,750<br>0<br>0<br>58,150<br>58,150<br>29,400 | 183,460<br>117,440<br>72,630<br>72,630<br>130,780<br>130,780<br>113,080 | 993,390<br>953,180<br>984,560<br>953,180<br>953,180<br>953,180<br>941,230 | 175,840<br>146,130<br>146,130<br>146,130<br>146,130<br>146,130<br>141,470 | 1,169,230<br>1,099,310<br>1,130,690<br>1,099,310<br>1,099,310<br>1,099,310<br>1,082,700 | 1,352,690<br>1,216,750<br>1,203,320<br>1,171,940<br>1,230,090<br>1,230,090<br>1,195,780 |
| Copper (pounds)                                | Butler Ditch                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                          | <1<br><1<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                               | <1<br><1<br>0<br>0<br>0<br>0<br>0                                       | 78<br>61<br>61<br>61<br>61<br>61                                          | 1<br><1<br><1<br><1<br><1<br><1<br><1                                     | 79<br>61<br>61<br>61<br>61<br>61<br>61                                                  | 79<br>61<br>61<br>61<br>61<br>61                                                        |
|                                                | Honey Creek                    | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 1<br>1<br>1<br>1<br>1<br>1                                          | <1<br><1<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                               | 1<br>1<br>1<br>1<br>1<br>1                                              | 211<br>172<br>172<br>172<br>172<br>172<br>172<br>172                      | <1<br><1<br><1<br><1<br><1<br><1<br><1                                    | 211<br>172<br>172<br>172<br>172<br>172<br>172                                           | 212<br>173<br>173<br>173<br>173<br>173<br>173                                           |
|                                                | Lily Creek                     | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                              | 73<br>61<br>61<br>61<br>61<br>61<br>61                                    | 1<br><1<br><1<br><1<br><1<br><1<br><1                                     | 74<br>61<br>61<br>61<br>61<br>61<br>61                                                  | 74<br>61<br>61<br>61<br>61<br>61                                                        |
|                                                | Little Menomonee Creek         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                              | 6<br>6<br>6<br>6<br>6                                                     | 9<br>8<br>8<br>8<br>8<br>8                                                | 15<br>14<br>14<br>14<br>14<br>14                                                        | 15<br>14<br>14<br>14<br>14<br>14<br>14                                                  |

|                             |                                 |                                                                 |                                | Point S                               | Sources                              |                                      | N                                             | Ionpoint Source                              | a                                                    |                                                      |
|-----------------------------|---------------------------------|-----------------------------------------------------------------|--------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Water Quality Indicator     | Subwatershed                    | Screening Alternative                                           | Industrial<br>Point<br>Sources | SSOs <sup>b</sup>                     | CSOs                                 | Subtotal                             | Urban                                         | Rural <sup>C</sup>                           | Subtotal                                             | Total                                                |
| Copper (pounds) (continued) | Little Menomonee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0          | <1<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                | <1<br>0<br>0<br>0<br>0<br>0<br>0     | 224<br>207<br>207<br>207<br>207<br>207<br>207 | 17<br>15<br>15<br>15<br>15<br>15<br>15       | 241<br>222<br>222<br>222<br>222<br>222<br>222<br>222 | 241<br>222<br>222<br>222<br>222<br>222<br>222<br>222 |
|                             | Lower Menomonee River           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 3<br>3<br>3<br>3<br>3<br>3     | 5<br>4<br>0<br>0<br>0<br>0<br>7       | 48<br>36<br>0<br>0<br>45<br>45<br>25 | 56<br>43<br>3<br>3<br>48<br>48<br>48 | 428<br>349<br>407<br>349<br>349<br>349<br>348 | 1<br>1<br>1<br>1<br>1<br>1                   | 429<br>350<br>408<br>350<br>350<br>350<br>350<br>349 | 485<br>393<br>411<br>353<br>398<br>398<br>384        |
|                             | North Branch<br>Menomonee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0           | 4<br>4<br>4<br>4<br>4<br>4                    | 6<br>7<br>7<br>7<br>7<br>7                   | 10<br>11<br>11<br>11<br>11<br>11                     | 10<br>11<br>11<br>11<br>11<br>11<br>11               |
|                             | Nor-X-Way Channel               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 49<br>79<br>79<br>79<br>79<br>79<br>77        | 8<br>9<br>9<br>9<br>9                        | 57<br>88<br>88<br>88<br>88<br>88                     | 57<br>88<br>88<br>88<br>88<br>88<br>88               |
|                             | Underwood Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0     | <1<br><1<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0           | <1<br><1<br>0<br>0<br>0<br>0         | 340<br>268<br>268<br>268<br>268<br>268<br>268 | 3<br>2<br>2<br>2<br>2<br>2<br>2<br>2         | 343<br>270<br>270<br>270<br>270<br>270<br>270        | 343<br>270<br>270<br>270<br>270<br>270<br>270<br>270 |
|                             | Upper Menomonee River           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0     | <1<br><1<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0           | <1<br><1<br>0<br>0<br>0<br>0<br>0    | 295<br>329<br>329<br>329<br>329<br>329<br>314 | 35<br>37<br>37<br>37<br>37<br>37<br>37<br>35 | 330<br>366<br>366<br>366<br>366<br>366<br>349        | 330<br>366<br>366<br>366<br>366<br>366<br>349        |
|                             | West Branch<br>Menomonee River  | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 33<br>60<br>60<br>60<br>60<br>60<br>56        | 9<br>9<br>9<br>9<br>9                        | 42<br>69<br>69<br>69<br>69<br>69<br>65               | 42<br>69<br>69<br>69<br>69<br>69<br>69               |

|                             |                 |                                               |                                | Point S                         | Sources                              |                                      | ١                                                           | Ionpoint Source                               | a                                                           |                                                    |
|-----------------------------|-----------------|-----------------------------------------------|--------------------------------|---------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|
| Water Quality Indicator     | Subwatershed    | Screening Alternative                         | Industrial<br>Point<br>Sources | SSOs <sup>b</sup>               | CSOs                                 | Subtotal                             | Urban                                                       | Rural <sup>C</sup>                            | Subtotal                                                    | Total                                              |
| Copper (pounds) (continued) | Willow Creek    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                | 27<br>37<br>37<br>37<br>37<br>37<br>37<br>35                | 16<br>16<br>16<br>16<br>16<br>16              | 43<br>53<br>53<br>53<br>53<br>53<br>53<br>50                | 43<br>53<br>53<br>53<br>53<br>53<br>53<br>50       |
|                             | Watershed Total | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 4<br>4<br>4<br>4<br>4<br>4     | 5<br>4<br>0<br>0<br>0<br>0<br>7 | 48<br>35<br>0<br>0<br>45<br>45<br>25 | 57<br>43<br>4<br>4<br>49<br>49<br>36 | 1,768<br>1,633<br>1,691<br>1,633<br>1,633<br>1,633<br>1,609 | 105<br>104<br>104<br>104<br>104<br>104<br>100 | 1,873<br>1,737<br>1,795<br>1,737<br>1,737<br>1,737<br>1,709 | 1,930<br>1,780<br>1,799<br>1,741<br>1,786<br>1,786 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

bLoads presented in this table for the 2020 future (baseline) condition reflect refinements that were made to the MMSD conveyance system model after the screening alternatives were evaluated. This results in certain anomalies in the load comparisons presented herein, particularly regarding SSO loads with Screening Alternative 2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table H-3

AVERAGE ANNUAL POLLUTANT LOADS FOR SCREENING ALTERNATIVES: MILWAUKEE RIVER WATERSHED

|                           |                                |                                                                 |                                               |                            | Point Sources              | 3                                                                 |                                                                   | N                                                           | onpoint Sourc                                                        | e <sup>a</sup>                                                     |                                                                    |
|---------------------------|--------------------------------|-----------------------------------------------------------------|-----------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator   | Subwatershed                   | Screening Alternative                                           | Industrial<br>Point<br>Sources                | SSOs <sup>b</sup>          | CSOs                       | WWTPs                                                             | Subtotal                                                          | Urban                                                       | Rural <sup>C</sup>                                                   | Subtotal                                                           | Total                                                              |
| Total Phosphorus (pounds) | Batavia Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0<br>0<br>0                                        | 120<br>120<br>120<br>120<br>120<br>120<br>120               | 480<br>460<br>460<br>460<br>460<br>460<br>440                        | 600<br>580<br>580<br>580<br>580<br>580<br>580<br>560               | 600<br>580<br>580<br>580<br>580<br>580<br>580                      |
|                           | Cedar Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D                     | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 7,400<br>10,050<br>10,050<br>10,050<br>10,050<br>10,050<br>10,050 | 7,400<br>10,050<br>10,050<br>10,050<br>10,050<br>10,050<br>10,050 | 3,310<br>3,550<br>3,550<br>3,550<br>3,550<br>3,550<br>3,320 | 15,390<br>14,850<br>14,850<br>14,850<br>14,850<br>14,850<br>14,080   | 18,700<br>18,400<br>18,400<br>18,400<br>18,400<br>18,400<br>17,400 | 26,100<br>28,450<br>28,450<br>28,450<br>28,450<br>28,450<br>27,450 |
|                           | Cedar Lake                     | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                             | 0<br>0<br>0<br>0<br>0                                             | 390<br>380<br>380<br>380<br>380<br>380<br>360               | 2,250<br>2,200<br>2,200<br>2,200<br>2,200<br>2,200<br>2,080          | 2,640<br>2,580<br>2,580<br>2,580<br>2,580<br>2,580<br>2,440        | 2,640<br>2,580<br>2,580<br>2,580<br>2,580<br>2,580<br>2,440        |
|                           | Chambers Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D                     | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0<br>0<br>0                                        | 150<br>150<br>150<br>150<br>150<br>150<br>140               | 500<br>490<br>490<br>490<br>490<br>490<br>470                        | 650<br>640<br>640<br>640<br>640<br>640<br>610                      | 650<br>640<br>640<br>640<br>640<br>640<br>610                      |
|                           | East Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0<br>0<br>0                                        | 460<br>470<br>470<br>470<br>470<br>470<br>470<br>440        | 2,140<br>2,130<br>2,130<br>2,130<br>2,130<br>2,130<br>2,130<br>2,080 | 2,600<br>2,600<br>2,600<br>2,600<br>2,600<br>2,600<br>2,520        | 2,600<br>2,600<br>2,600<br>2,600<br>2,600<br>2,600<br>2,520        |
|                           | Kettle Moraine Lake            | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0<br>0<br>0                                        | 270<br>270<br>270<br>270<br>270<br>270<br>270<br>260        | 3,180<br>3,050<br>3,050<br>3,050<br>3,050<br>3,050<br>3,050<br>2,920 | 3,450<br>3,320<br>3,320<br>3,320<br>3,320<br>3,320<br>3,180        | 3,450<br>3,320<br>3,320<br>3,320<br>3,320<br>3,320<br>3,180        |

Table H-3 (continued)

|                                       |                        |                                                                 |                                                                    |                                         | Point Sources                                       | 3                                                                  |                                                                    | N                                                                  | onpoint Source                                              | e <sup>a</sup>                                                     |                                                                      |
|---------------------------------------|------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed           | Screening Alternative                                           | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                       | CSOs                                                | WWTPs                                                              | Subtotal                                                           | Urban                                                              | Rural <sup>C</sup>                                          | Subtotal                                                           | Total                                                                |
| Total Phosphorus (pounds) (continued) | Kewaskum Creek         | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 370<br>380<br>380<br>380<br>380<br>380<br>380<br>360               | 1,870<br>1,800<br>1,800<br>1,800<br>1,800<br>1,800<br>1,700 | 2,240<br>2,180<br>2,180<br>2,180<br>2,180<br>2,180<br>2,060        | 2,240<br>2,180<br>2,180<br>2,180<br>2,180<br>2,180<br>2,180<br>2,060 |
|                                       | Lake Fifteen Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>210               | 1,200<br>1,180<br>1,180<br>1,180<br>1,180<br>1,180<br>1,150 | 1,420<br>1,400<br>1,400<br>1,400<br>1,400<br>1,400<br>1,360        | 1,420<br>1,400<br>1,400<br>1,400<br>1,400<br>1,400<br>1,360          |
|                                       | Lincoln Creek          | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 4,260<br>4,260<br>4,260<br>4,260<br>4,260<br>4,260<br>4,260        | 200<br>180<br>0<br>0<br>0<br>0<br>280   | 80<br>10<br>0<br>0<br>120<br>120<br><10             | 0<br>0<br>0<br>0<br>0<br>0                                         | 4,540<br>4,450<br>4,260<br>4,260<br>4,380<br>4,380<br>4,540        | 7,870<br>6,940<br>6,940<br>6,940<br>6,940<br>6,940<br>6,440        | 70<br>80<br>80<br>80<br>80<br>80                            | 7,940<br>7,020<br>7,020<br>7,020<br>7,020<br>7,020<br>6,520        | 12,480<br>11,470<br>11,280<br>11,280<br>11,400<br>11,400<br>11,060   |
|                                       | Lower Cedar Creek      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 10<br>10<br>10<br>10<br>10<br>10                                   | 10<br>10<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0                          | 5,730<br>7,470<br>7,470<br>7,470<br>7,470<br>7,470<br>7,470        | 5,750<br>7,490<br>7,480<br>7,480<br>7,480<br>7,480<br>7,490        | 3,200<br>3,320<br>3,320<br>3,320<br>3,320<br>3,320<br>3,110        | 5,210<br>5,000<br>5,000<br>5,000<br>5,000<br>5,000<br>4,790 | 8,410<br>8,320<br>8,320<br>8,320<br>8,320<br>8,320<br>7,900        | 14,160<br>15,810<br>15,800<br>15,800<br>15,800<br>15,800<br>15,390   |
|                                       | Lower Milwaukee River  | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 73,470<br>73,470<br>73,470<br>73,470<br>73,470<br>73,470<br>73,470 | 540<br>860<br>0<br>0<br>0<br>0<br>1,050 | 1,710<br>1,210<br>0<br>0<br>1,490<br>1,490<br>1,010 | 0<br>0<br>0<br>0<br>0<br>0                                         | 75,720<br>75,540<br>73,470<br>73,470<br>74,960<br>74,960<br>75,530 | 14,780<br>13,500<br>14,700<br>13,500<br>13,500<br>13,500<br>12,540 | 6,740<br>6,210<br>6,210<br>6,210<br>6,210<br>6,210<br>5,890 | 21,520<br>19,710<br>20,910<br>19,710<br>19,710<br>19,710<br>18,430 | 97,240<br>95,250<br>94,380<br>93,180<br>94,670<br>94,670<br>93,960   |
|                                       | Middle Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 10<br>10<br>10<br>10<br>10<br>10                                   | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                          | 14,740<br>19,420<br>19,420<br>19,420<br>19,420<br>19,420<br>19,420 | 14,750<br>19,430<br>19,430<br>19,430<br>19,430<br>19,430           | 3,480<br>3,700<br>3,700<br>3,700<br>3,700<br>3,700<br>3,460        | 6,150<br>6,110<br>6,110<br>6,110<br>6,110<br>6,110<br>5,810 | 9,630<br>9,810<br>9,810<br>9,810<br>9,810<br>9,810<br>9,270        | 24,380<br>29,240<br>29,240<br>29,240<br>29,240<br>29,240<br>28,700   |
|                                       | Mink Creek             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 320<br>320<br>320<br>320<br>320<br>320<br>320<br>300               | 1,120<br>1,080<br>1,080<br>1,080<br>1,080<br>1,080<br>1,040 | 1,440<br>1,400<br>1,400<br>1,400<br>1,400<br>1,400<br>1,340        | 1,440<br>1,400<br>1,400<br>1,400<br>1,400<br>1,400<br>1,340          |

|                                       |                                    |                                                                 |                                                                    |                                               | Point Sources              | 3                                                                  |                                                                    | N                                                           | onpoint Source                                              | e <sup>a</sup>                                                       |                                                                    |
|---------------------------------------|------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed                       | Screening Alternative                                           | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                             | CSOs                       | WWTPs                                                              | Subtotal                                                           | Urban                                                       | Rural <sup>C</sup>                                          | Subtotal                                                             | Total                                                              |
| Total Phosphorus (pounds) (continued) | North Branch<br>Milwaukee River    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 15,870<br>15,870<br>15,870<br>15,870<br>15,870<br>15,870<br>15,870 | <10<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br><10 | 0<br>0<br>0<br>0<br>0<br>0 | 6,580<br>6,830<br>6,830<br>6,830<br>6,830<br>6,830<br>6,830        | 22,450<br>22,700<br>22,700<br>22,700<br>22,700<br>22,700<br>22,700 | 1,480<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,390 | 6,240<br>6,070<br>6,070<br>6,070<br>6,070<br>6,070<br>5,820 | 7,720<br>7,560<br>7,560<br>7,560<br>7,560<br>7,560<br>7,210          | 30,170<br>30,260<br>30,260<br>30,260<br>30,260<br>30,260<br>29,910 |
|                                       | Silver Creek<br>(Sheboygan County) | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0 | 900<br>1,070<br>1,070<br>1,070<br>1,070<br>1,070<br>1,070          | 900<br>1,070<br>1,070<br>1,070<br>1,070<br>1,070<br>1,070          | 830<br>930<br>930<br>930<br>930<br>930<br>870               | 1,350<br>1,310<br>1,310<br>1,310<br>1,310<br>1,310<br>1,260 | 2,180<br>2,240<br>2,240<br>2,240<br>2,240<br>2,240<br>2,130          | 3,080<br>3,310<br>3,310<br>3,310<br>3,310<br>3,310<br>3,200        |
|                                       | Silver Creek (West Bend)           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 1,280<br>1,410<br>1,410<br>1,410<br>1,410<br>1,410<br>1,320 | 730<br>740<br>740<br>740<br>740<br>740<br>740<br>710        | 2,010<br>2,150<br>2,150<br>2,150<br>2,150<br>2,150<br>2,150<br>2,030 | 2,010<br>2,150<br>2,150<br>2,150<br>2,150<br>2,150<br>2,030        |
|                                       | Stony Creek                        | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 310<br>310<br>310<br>310<br>310<br>310<br>290               | 1,090<br>1,060<br>1,060<br>1,060<br>1,060<br>1,060<br>1,030 | 1,400<br>1,370<br>1,370<br>1,370<br>1,370<br>1,370<br>1,320          | 1,400<br>1,370<br>1,370<br>1,370<br>1,370<br>1,370<br>1,320        |
|                                       | Upper Lower<br>Milwaukee River     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 140<br>140<br>140<br>140<br>140<br>140<br>140                      | 30<br>30<br>0<br>0<br>0<br>0<br>0<br>30       | 0<br>0<br>0<br>0<br>0<br>0 | 12,850<br>17,370<br>17,370<br>17,370<br>17,370<br>17,370<br>17,370 | 13,020<br>17,540<br>17,510<br>17,510<br>17,510<br>17,510<br>17,540 | 3,480<br>3,790<br>3,790<br>3,790<br>3,790<br>3,790<br>3,550 | 5,120<br>4,850<br>4,850<br>4,850<br>4,850<br>4,850<br>4,620 | 8,640<br>8,640<br>8,640<br>8,640<br>8,640<br>8,640<br>8,170          | 21,620<br>26,180<br>26,150<br>26,150<br>26,150<br>26,150<br>25,710 |
|                                       | Upper Milwaukee River              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 80<br>80<br>80<br>80<br>80<br>80                                   | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0 | 3,540<br>4,620<br>4,620<br>4,620<br>4,620<br>4,620<br>4,620        | 3,620<br>4,700<br>4,700<br>4,700<br>4,700<br>4,700<br>4,700        | 1,400<br>1,480<br>1,480<br>1,480<br>1,480<br>1,480<br>1,380 | 8,830<br>8,430<br>8,430<br>8,430<br>8,430<br>8,430<br>8,030 | 10,230<br>9,910<br>9,910<br>9,910<br>9,910<br>9,910<br>9,410         | 13,850<br>14,610<br>14,610<br>14,610<br>14,610<br>14,610<br>14,110 |
|                                       | Watercress Creek                   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>280        | 2,360<br>2,290<br>2,290<br>2,290<br>2,290<br>2,290<br>2,190 | 2,660<br>2,590<br>2,590<br>2,590<br>2,590<br>2,590<br>2,470          | 2,660<br>2,590<br>2,590<br>2,590<br>2,590<br>2,590<br>2,470        |

Table H-3 (continued)

|                                          |                                |                                               |                                                          |                                                | Point Sources                                       | 3                                                                  |                                                                           | N                                                                                       | onpoint Source                                                                          | e <sup>a</sup>                                                                          |                                                                                         |
|------------------------------------------|--------------------------------|-----------------------------------------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                  | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources                           | SSOs <sup>b</sup>                              | CSOs                                                | WWTPs                                                              | Subtotal                                                                  | Urban                                                                                   | Rural <sup>C</sup>                                                                      | Subtotal                                                                                | Total                                                                                   |
| Total Phosphorus (pounds)<br>(continued) | West Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                                | 1,270<br>1,260<br>1,260<br>1,260<br>1,260<br>1,260<br>1,260<br>1,180                    | 9,040<br>8,620<br>8,620<br>8,620<br>8,620<br>8,620<br>8,620<br>8,210                    | 10,310<br>9,880<br>9,880<br>9,880<br>9,880<br>9,880<br>9,390                            | 10,310<br>9,880<br>9,880<br>9,880<br>9,880<br>9,880<br>9,390                            |
|                                          | Watershed Total                | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 93,840<br>93,840<br>93,840<br>93,840<br>93,840<br>93,840 | 780<br>1,080<br>0<br>0<br>0<br>0<br>0<br>1,370 | 1,790<br>1,220<br>0<br>0<br>1,610<br>1,610<br>1,010 | 51,740<br>66,830<br>66,830<br>66,830<br>66,830<br>66,830<br>66,830 | 148,150<br>162,970<br>160,670<br>160,670<br>162,280<br>162,280<br>163,050 | 45,290<br>44,290<br>45,480<br>44,290<br>44,290<br>44,290<br>41,320                      | 81,060<br>78,010<br>78,010<br>78,010<br>78,010<br>78,010<br>74,400                      | 126,350<br>122,300<br>123,490<br>122,300<br>122,300<br>122,300<br>115,720               | 274,500<br>285,270<br>284,160<br>282,970<br>284,580<br>284,580<br>278,770               |
| Total Suspended Solids (pounds)          | Batavia Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                                | 40,000<br>40,000<br>40,000<br>40,000<br>40,000<br>40,000<br>36,000                      | 186,000<br>180,000<br>180,000<br>180,000<br>180,000<br>180,000<br>170,000               | 226,000<br>220,000<br>220,000<br>220,000<br>220,000<br>220,000<br>206,000               | 226,000<br>220,000<br>220,000<br>220,000<br>220,000<br>220,000<br>206,000               |
|                                          | Cedar Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                               | 24,000<br>32,000<br>32,000<br>32,000<br>32,000<br>32,000<br>32,000 | 24,000<br>32,000<br>32,000<br>32,000<br>32,000<br>32,000<br>32,000        | 1,504,000<br>1,588,000<br>1,588,000<br>1,588,000<br>1,588,000<br>1,588,000<br>1,506,000 | 6,782,000<br>6,634,000<br>6,634,000<br>6,634,000<br>6,634,000<br>6,634,000<br>6,272,000 | 8,286,000<br>8,222,000<br>8,222,000<br>8,222,000<br>8,222,000<br>8,222,000<br>7,778,000 | 8,310,000<br>8,254,000<br>8,254,000<br>8,254,000<br>8,254,000<br>8,254,000<br>7,810,000 |
|                                          | Cedar Lake                     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                                | 186,000<br>178,000<br>178,000<br>178,000<br>178,000<br>178,000<br>168,000               | 1,070,000<br>1,048,000<br>1,048,000<br>1,048,000<br>1,048,000<br>1,048,000<br>996,000   | 1,256,000<br>1,226,000<br>1,226,000<br>1,226,000<br>1,226,000<br>1,226,000<br>1,164,000 | 1,256,000<br>1,226,000<br>1,226,000<br>1,226,000<br>1,226,000<br>1,226,000<br>1,164,000 |
|                                          | Chambers Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                                | 52,000<br>52,000<br>52,000<br>52,000<br>52,000<br>52,000<br>46,000                      | 200,000<br>194,000<br>194,000<br>194,000<br>194,000<br>194,000<br>184,000               | 252,000<br>246,000<br>246,000<br>246,000<br>246,000<br>246,000<br>230,000               | 252,000<br>246,000<br>246,000<br>246,000<br>246,000<br>246,000<br>230,000               |
|                                          | East Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                                | 150,000<br>150,000<br>150,000<br>150,000<br>150,000<br>150,000<br>130,000               | 860,000<br>852,000<br>852,000<br>852,000<br>852,000<br>852,000<br>820,000               | 1,010,000<br>1,002,000<br>1,002,000<br>1,002,000<br>1,002,000<br>1,002,000<br>950,000   | 1,010,000<br>1,002,000<br>1,002,000<br>1,002,000<br>1,002,000<br>1,002,000<br>950,000   |

|                                             |                        |                                                                 |                                                                           |                                                     | Point Sources                                                 | 3                                                                  |                                                                           | N                                                                                       | onpoint Source                                                                          | ea                                                                                      |                                                                                         |
|---------------------------------------------|------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                     | Subwatershed           | Screening Alternative                                           | Industrial<br>Point<br>Sources                                            | SSOs <sup>b</sup>                                   | CSOs                                                          | WWTPs                                                              | Subtotal                                                                  | Urban                                                                                   | Rural <sup>C</sup>                                                                      | Subtotal                                                                                | Total                                                                                   |
| Total Suspended Solids (pounds) (continued) | Kettle Moraine Lake    | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                                | 126,000<br>126,000<br>126,000<br>126,000<br>126,000<br>126,000<br>110,000               | 1,916,000<br>1,874,000<br>1,874,000<br>1,874,000<br>1,874,000<br>1,874,000<br>1,794,000 | 2,042,000<br>2,000,000<br>2,000,000<br>2,000,000<br>2,000,000                           | 2,042,000<br>2,000,000<br>2,000,000<br>2,000,000<br>2,000,000                           |
|                                             | Kewaskum Creek         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                                | 162,000<br>160,000<br>160,000<br>160,000<br>160,000<br>160,000<br>144,000               | 878,000<br>840,000<br>840,000<br>840,000<br>840,000<br>840,000<br>790,000               | 1,040,000<br>1,000,000<br>1,000,000<br>1,000,000<br>1,000,000                           | 1,040,000<br>1,000,000<br>1,000,000<br>1,000,000<br>1,000,000                           |
|                                             | Lake Fifteen Creek     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0                                                | 94,000<br>94,000<br>94,000<br>94,000<br>94,000<br>94,000<br>78,000                      | 686,000<br>680,000<br>680,000<br>680,000<br>680,000<br>680,000<br>652,000               | 780,000<br>774,000<br>774,000<br>774,000<br>774,000<br>774,000<br>730,000               | 780,000<br>774,000<br>774,000<br>774,000<br>774,000<br>774,000<br>730,000               |
|                                             | Lincoln Creek          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 28,000<br>28,000<br>28,000<br>28,000<br>28,000<br>28,000<br>28,000        | 6,000<br>6,000<br>0<br>0<br>0<br>0<br>24,000        | 4,000<br>0<br>0<br>0<br>20,000<br>20,000<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                                         | 38,000<br>34,000<br>28,000<br>28,000<br>48,000<br>48,000<br>52,000        | 2,778,000<br>2,180,000<br>2,180,000<br>2,180,000<br>2,180,000<br>2,180,000<br>1,906,000 | 48,000<br>38,000<br>38,000<br>38,000<br>38,000<br>38,000<br>40,000                      | 2,826,000<br>2,218,000<br>2,218,000<br>2,218,000<br>2,218,000<br>2,218,000<br>1,946,000 | 2,864,000<br>2,252,000<br>2,246,000<br>2,246,000<br>2,266,000<br>1,998,000              |
|                                             | Lower Cedar Creek      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                    | 46,000<br>62,000<br>62,000<br>62,000<br>62,000<br>62,000<br>62,000 | 46,000<br>62,000<br>62,000<br>62,000<br>62,000<br>62,000<br>62,000        | 1,256,000<br>1,266,000<br>1,266,000<br>1,266,000<br>1,266,000<br>1,266,000<br>1,096,000 | 3,094,000<br>3,030,000<br>3,030,000<br>3,030,000<br>3,030,000<br>3,030,000<br>2,894,000 | 4,350,000<br>4,296,000<br>4,296,000<br>4,296,000<br>4,296,000<br>4,296,000<br>3,990,000 | 4,396,000<br>4,358,000<br>4,358,000<br>4,358,000<br>4,358,000<br>4,358,000<br>4,052,000 |
|                                             | Lower Milwaukee River  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 370,000<br>370,000<br>370,000<br>370,000<br>370,000<br>370,000<br>370,000 | 16,000<br>24,000<br>0<br>0<br>0<br>0<br>0<br>90,000 | 139,650<br>104,140<br>0<br>0<br>220,820<br>220,820<br>148,540 | 0<br>0<br>0<br>0<br>0<br>0                                         | 525,650<br>498,140<br>370,000<br>370,000<br>590,820<br>590,820<br>608,540 | 5,236,000<br>4,306,000<br>4,732,000<br>4,306,000<br>4,306,000<br>4,306,000<br>3,856,000 | 3,032,000<br>2,654,000<br>2,654,000<br>2,654,000<br>2,654,000<br>2,654,000<br>2,506,000 | 8,268,000<br>6,960,000<br>7,386,000<br>6,960,000<br>6,960,000<br>6,960,000<br>6,362,000 | 8,793,650<br>7,458,140<br>7,756,000<br>7,330,000<br>7,550,820<br>7,550,820<br>6,970,540 |
|                                             | Middle Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                    | 44,000<br>60,000<br>60,000<br>60,000<br>60,000<br>60,000<br>60,000 | 44,000<br>60,000<br>60,000<br>60,000<br>60,000<br>60,000                  | 1,510,000<br>1,558,000<br>1,558,000<br>1,558,000<br>1,558,000<br>1,558,000<br>1,388,000 | 3,088,000<br>2,990,000<br>2,990,000<br>2,990,000<br>2,990,000<br>2,990,000<br>2,816,000 | 4,598,000<br>4,548,000<br>4,548,000<br>4,548,000<br>4,548,000<br>4,548,000<br>4,204,000 | 4,642,000<br>4,608,000<br>4,608,000<br>4,608,000<br>4,608,000<br>4,608,000<br>4,264,000 |

Table H-3 (continued)

|                                             |                                    |                                                                 |                                                                      |                                             | Point Sources              | ;                                                                         |                                                                           | N                                                                                       | onpoint Source                                                                          | e <sup>a</sup>                                                                          |                                                                                         |
|---------------------------------------------|------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|----------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                     | Subwatershed                       | Screening Alternative                                           | Industrial<br>Point<br>Sources                                       | SSOs <sup>b</sup>                           | CSOs                       | WWTPs                                                                     | Subtotal                                                                  | Urban                                                                                   | Rural <sup>c</sup>                                                                      | Subtotal                                                                                | Total                                                                                   |
| Total Suspended Solids (pounds) (continued) | Mink Creek                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0                                                     | 0<br>0<br>0<br>0<br>0<br>0                                                | 106,000<br>106,000<br>106,000<br>106,000<br>106,000<br>106,000<br>96,000                | 460,000<br>442,000<br>442,000<br>442,000<br>442,000<br>420,000                          | 566,000<br>548,000<br>548,000<br>548,000<br>548,000<br>548,000<br>516,000               | 566,000<br>548,000<br>548,000<br>548,000<br>548,000<br>548,000<br>516,000               |
|                                             | North Branch<br>Milwaukee River    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 54,000<br>54,000<br>54,000<br>54,000<br>54,000<br>54,000             | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0 | 8,000<br>22,280<br>22,280<br>22,280<br>22,280<br>22,280<br>22,280         | 62,000<br>76,280<br>76,280<br>76,280<br>76,280<br>76,280<br>76,280        | 532,000<br>530,000<br>530,000<br>530,000<br>530,000<br>530,000<br>478,000               | 2,666,000<br>2,582,000<br>2,582,000<br>2,582,000<br>2,582,000<br>2,582,000<br>2,444,000 | 3,198,000<br>3,112,000<br>3,112,000<br>3,112,000<br>3,112,000<br>3,112,000<br>2,922,000 | 3,260,000<br>3,188,280<br>3,188,280<br>3,188,280<br>3,188,280<br>3,188,280<br>2,998,280 |
|                                             | Silver Creek<br>(Sheboygan County) | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0 | 16,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000        | 16,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000        | 292,000<br>322,000<br>322,000<br>322,000<br>322,000<br>322,000<br>286,000               | 532,000<br>518,000<br>518,000<br>518,000<br>518,000<br>518,000<br>486,000               | 824,000<br>840,000<br>840,000<br>840,000<br>840,000<br>840,000<br>772,000               | 840,000<br>860,000<br>860,000<br>860,000<br>860,000<br>792,000                          |
|                                             | Silver Creek (West Bend)           | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 526,000<br>548,000<br>548,000<br>548,000<br>548,000<br>548,000<br>512,000               | 470,000<br>454,000<br>454,000<br>454,000<br>454,000<br>454,000<br>444,000               | 996,000<br>1,002,000<br>1,002,000<br>1,002,000<br>1,002,000<br>1,002,000<br>956,000     | 996,000<br>1,002,000<br>1,002,000<br>1,002,000<br>1,002,000<br>1,002,000<br>956,000     |
|                                             | Stony Creek                        | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 100,000<br>100,000<br>100,000<br>100,000<br>100,000<br>100,000<br>84,000                | 434,000<br>426,000<br>426,000<br>426,000<br>426,000<br>426,000<br>404,000               | 534,000<br>526,000<br>526,000<br>526,000<br>526,000<br>526,000<br>488,000               | 534,000<br>526,000<br>526,000<br>526,000<br>526,000<br>526,000<br>488,000               |
|                                             | Upper Lower<br>Milwaukee River     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                           | 2,000<br>2,000<br>0<br>0<br>0<br>0<br>2,000 | 0<br>0<br>0<br>0<br>0<br>0 | 130,000<br>172,000<br>172,000<br>172,000<br>172,000<br>172,000<br>172,000 | 132,000<br>174,000<br>172,000<br>172,000<br>172,000<br>172,000<br>174,000 | 1,748,000<br>1,880,000<br>1,880,000<br>1,880,000<br>1,880,000<br>1,880,000<br>1,740,000 | 2,574,000<br>2,442,000<br>2,442,000<br>2,442,000<br>2,442,000<br>2,442,000<br>2,306,000 | 4,322,000<br>4,322,000<br>4,322,000<br>4,322,000<br>4,322,000<br>4,322,000<br>4,046,000 | 4,454,000<br>4,496,000<br>4,494,000<br>4,494,000<br>4,494,000<br>4,494,000<br>4,220,000 |
|                                             | Upper Milwaukee River              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000<br>2,000 | 0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0 | 26,000<br>36,000<br>36,000<br>36,000<br>36,000<br>36,000<br>36,000        | 28,000<br>38,000<br>38,000<br>38,000<br>38,000<br>38,000<br>38,000        | 580,000<br>610,000<br>610,000<br>610,000<br>610,000<br>610,000<br>550,000               | 4,714,000<br>4,578,000<br>4,578,000<br>4,578,000<br>4,578,000<br>4,578,000<br>4,346,000 | 5,294,000<br>5,188,000<br>5,188,000<br>5,188,000<br>5,188,000<br>5,188,000<br>4,896,000 | 5,322,000<br>5,226,000<br>5,226,000<br>5,226,000<br>5,226,000<br>5,226,000<br>4,934,000 |

|                                                 |                                |                                               |                                                                |                                                      | Point Sources                                                 | )                                                                         |                                                                                 | N                                                                                              | onpoint Source                                                                                 | ea                                                                                             |                                                                                                |
|-------------------------------------------------|--------------------------------|-----------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Water Quality Indicator                         | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources                                 | SSOs <sup>b</sup>                                    | CSOs                                                          | WWTPs                                                                     | Subtotal                                                                        | Urban                                                                                          | Rural <sup>C</sup>                                                                             | Subtotal                                                                                       | Total                                                                                          |
| Total Suspended Solids (pounds) (continued)     | Watercress Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                      | 134,000<br>134,000<br>134,000<br>134,000<br>134,000<br>134,000<br>114,000                      | 1,388,000<br>1,358,000<br>1,358,000<br>1,358,000<br>1,358,000<br>1,358,000<br>1,290,000        | 1,522,000<br>1,492,000<br>1,492,000<br>1,492,000<br>1,492,000<br>1,492,000<br>1,404,000        | 1,522,000<br>1,492,000<br>1,492,000<br>1,492,000<br>1,492,000<br>1,492,000<br>1,404,000        |
|                                                 | West Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                      | 596,000<br>590,000<br>590,000<br>590,000<br>590,000<br>590,000<br>498,000                      | 4,682,000<br>4,538,000<br>4,538,000<br>4,538,000<br>4,538,000<br>4,538,000<br>4,274,000        | 5,278,000<br>5,128,000<br>5,128,000<br>5,128,000<br>5,128,000<br>5,128,000<br>4,772,000        | 5,278,000<br>5,128,000<br>5,128,000<br>5,128,000<br>5,128,000<br>5,128,000<br>4,772,000        |
|                                                 | Watershed Total                | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 454,000<br>454,000<br>454,000<br>454,000<br>454,000<br>454,000 | 24,000<br>32,000<br>0<br>0<br>0<br>0<br>116,000      | 143,650<br>104,140<br>0<br>0<br>240,820<br>240,820<br>148,540 | 294,000<br>404,280<br>404,280<br>404,280<br>404,280<br>404,280<br>404,280 | 915,650<br>994,420<br>858,280<br>858,280<br>1,099,100<br>1,099,100<br>1,122,820 | 17,708,000<br>16,518,000<br>16,946,000<br>16,518,000<br>16,518,000<br>16,518,000<br>14,822,000 | 39,760,000<br>38,352,000<br>38,352,000<br>38,352,000<br>38,352,000<br>38,352,000<br>36,348,000 | 57,468,000<br>54,870,000<br>55,298,000<br>54,870,000<br>54,870,000<br>54,870,000<br>51,170,000 | 58,383,650<br>55,864,420<br>56,156,280<br>55,728,280<br>55,969,100<br>55,969,100<br>52,292,820 |
| Fecal Coliform Bacteria<br>(trillions of cells) | Batavia Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                            | 73.50<br>73.30<br>73.30<br>73.30<br>73.30<br>73.30<br>65.95                                    | 87.60<br>87.52<br>87.52<br>87.52<br>87.52<br>87.52<br>84.21                                    | 161.10<br>160.82<br>160.82<br>160.83<br>160.82<br>160.82<br>150.16                             | 161.10<br>160.82<br>160.82<br>160.83<br>160.82<br>160.82<br>150.16                             |
|                                                 | Cedar Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00          | 0.20<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27                      | 0.21<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                            | 1,664.36<br>852.04<br>852.04<br>852.04<br>852.04<br>852.04<br>763.73                           | 1,878.04<br>1,201.78<br>1,201.78<br>1,201.78<br>1,201.78<br>1,201.78<br>1,131.15               | 3,542.40<br>2,053.82<br>2,053.82<br>2,053.82<br>2,053.82<br>2,053.82<br>1,894.88               | 3,542.61<br>2,054.10<br>2,054.10<br>2,054.10<br>2,054.10<br>2,054.10<br>1,895.44               |
|                                                 | Cedar Lake                     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                            | 212.84<br>1.83<br>1.83<br>1.83<br>1.83<br>1.83<br>1.68                                         | 1,362.21<br>53.16<br>53.16<br>53.16<br>53.16<br>53.16<br>51.44                                 | 1,575.05<br>54.99<br>54.99<br>54.99<br>54.99<br>54.99<br>53.12                                 | 1,575.05<br>54.99<br>54.99<br>54.99<br>54.99<br>54.99<br>53.12                                 |
|                                                 | Chambers Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                            | 82.08<br>81.86<br>81.86<br>81.86<br>81.86<br>73.65                                             | 105.88<br>105.74<br>105.74<br>105.74<br>105.74<br>105.74<br>100.31                             | 187.96<br>187.60<br>187.60<br>187.60<br>187.60<br>187.60<br>173.96                             | 187.96<br>187.60<br>187.60<br>187.60<br>187.60<br>187.60<br>173.96                             |

Table H-3 (continued)

|                                                             |                                |                                                                 |                                                      |                                                              | Point Sources                                                            | ;                                                    |                                                                          | N                                                                                | onpoint Source                                                     | e <sup>a</sup>                                                                   |                                                                                   |
|-------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Water Quality Indicator                                     | Subwatershed                   | Screening Alternative                                           | Industrial<br>Point<br>Sources                       | SSOs <sup>b</sup>                                            | CSOs                                                                     | WWTPs                                                | Subtotal                                                                 | Urban                                                                            | Rural <sup>C</sup>                                                 | Subtotal                                                                         | Total                                                                             |
| Fecal Coliform Bacteria<br>(trillions of cells) (continued) | East Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 270.07<br>237.88<br>237.88<br>237.88<br>237.88<br>237.88<br>237.88<br>214.20     | 521.74<br>514.06<br>514.06<br>514.06<br>514.06<br>514.06<br>474.15 | 791.81<br>751.94<br>751.94<br>751.94<br>751.94<br>751.94<br>688.35               | 791.81<br>751.94<br>751.94<br>751.94<br>751.94<br>751.94<br>688.35                |
|                                                             | Kettle Moraine Lake            | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 157.94<br>157.85<br>157.85<br>157.85<br>157.85<br>157.85<br>142.06               | 540.89<br>540.66<br>540.66<br>540.66<br>540.66<br>540.66<br>498.27 | 698.83<br>698.51<br>698.51<br>698.51<br>698.51<br>698.51<br>640.33               | 698.83<br>698.51<br>698.51<br>698.51<br>698.51<br>698.51<br>640.33                |
|                                                             | Kewaskum Creek                 | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 198.48<br>112.67<br>112.67<br>112.67<br>112.67<br>112.67<br>100.50               | 180.39<br>182.23<br>182.23<br>182.23<br>182.23<br>182.23<br>169.52 | 378.87<br>294.90<br>294.90<br>294.90<br>294.90<br>294.90<br>270.02               | 378.87<br>294.90<br>294.90<br>294.90<br>294.90<br>294.90<br>270.02                |
|                                                             | Lake Fifteen Creek             | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 114.69<br>114.49<br>114.49<br>114.49<br>114.49<br>103.02                         | 340.61<br>340.01<br>340.01<br>340.01<br>340.01<br>340.01<br>310.94 | 455.30<br>454.50<br>454.50<br>454.50<br>454.50<br>454.50<br>413.96               | 455.30<br>454.50<br>454.50<br>454.50<br>454.50<br>454.50<br>413.96                |
|                                                             | Lincoln Creek                  | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79         | 111.29<br>99.03<br>0.00<br>0.00<br>0.00<br>0.00<br>151.19    | 57.96<br>6.59<br>0.00<br>0.00<br>86.69<br>86.69<br>0.57                  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 170.04<br>106.41<br>0.79<br>0.79<br>87.48<br>87.48<br>152.55             | 4,178.24<br>3,456.43<br>3,456.43<br>3,456.43<br>3,456.43<br>3,456.43<br>3,031.94 | 0.28<br>19.12<br>19.12<br>19.12<br>19.12<br>19.12<br>16.66         | 4,178.52<br>3,475.55<br>3,475.55<br>3,475.55<br>3,475.55<br>3,475.55<br>3,048.60 | 4,348.56<br>3,581.96<br>3,476.34<br>3,476.34<br>3,563.03<br>3,563.03<br>3,201.15  |
|                                                             | Lower Cedar Creek              | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 2.78<br>2.78<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>2.78 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 1.67<br>2.17<br>2.17<br>2.17<br>2.17<br>2.17<br>2.17 | 4.45<br>4.95<br>2.17<br>2.17<br>2.17<br>2.17<br>4.95                     | 1,637.71<br>446.29<br>446.29<br>446.29<br>446.29<br>446.29<br>400.06             | 851.03<br>798.65<br>798.65<br>798.65<br>798.65<br>798.65<br>734.17 | 2,488.74<br>1,244.94<br>1,244.94<br>1,244.94<br>1,244.94<br>1,134.23             | 2,493.19<br>1,249.89<br>1,247.11<br>1,247.11<br>1,247.11<br>1,247.11<br>1,139.18  |
|                                                             | Lower Milwaukee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 9.84<br>9.84<br>9.84<br>9.84<br>9.84<br>9.84         | 296.62<br>471.65<br>0.00<br>0.00<br>0.00<br>0.00<br>573.70   | 1,820.95<br>1,343.69<br>0.00<br>0.00<br>1,636.00<br>1,636.00<br>1,116.08 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 2,127.41<br>1,825.18<br>9.84<br>9.84<br>1,645.84<br>1,645.84<br>1,699.62 | 7,522.97<br>5,901.79<br>6,029.44<br>5,901.79<br>5,901.79<br>5,901.79<br>5,165.32 | 973.60<br>828.16<br>828.16<br>828.16<br>828.16<br>828.16<br>747.37 | 8,496.57<br>6,729.95<br>6,857.60<br>6,729.95<br>6,729.95<br>6,729.95<br>5,912.69 | 10,623.98<br>8,555.13<br>6,867.44<br>6,739.79<br>8,375.79<br>8,375.79<br>7,612.31 |

|                                                             |                                    |                                                                 |                                                      |                                                              | Point Sources                                        | i                                                            |                                                             | N                                                                    | onpoint Source                                                                   | ea                                                                               |                                                                                              |
|-------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Water Quality Indicator                                     | Subwatershed                       | Screening Alternative                                           | Industrial<br>Point<br>Sources                       | SSOs <sup>b</sup>                                            | CSOs                                                 | WWTPs                                                        | Subtotal                                                    | Urban                                                                | Rural <sup>C</sup>                                                               | Subtotal                                                                         | Total                                                                                        |
| Fecal Coliform Bacteria<br>(trillions of cells) (continued) | Middle Milwaukee River             | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 27.70<br>37.73<br>37.73<br>37.73<br>37.73<br>37.73<br>37.73  | 27.72<br>37.75<br>37.75<br>37.75<br>37.75<br>37.75<br>37.75 | 1,909.21<br>408.44<br>408.44<br>408.44<br>408.44<br>408.44<br>366.44 | 1,396.42<br>1,084.69<br>1,084.69<br>1,084.69<br>1,084.69<br>1,084.69<br>993.87   | 3,305.63<br>1,493.13<br>1,493.13<br>1,493.13<br>1,493.13<br>1,493.13<br>1,360.31 | 3,333.35<br>1,530.88<br>1,530.88<br>1,530.88<br>1,530.88<br>1,530.88<br>1,530.88<br>1,398.10 |
|                                                             | Mink Creek                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 183.01<br>182.53<br>182.53<br>182.53<br>182.53<br>182.53<br>164.23   | 263.94<br>263.62<br>263.62<br>263.62<br>263.62<br>263.62<br>251.32               | 446.95<br>446.15<br>446.15<br>446.15<br>446.15<br>446.15<br>415.55               | 446.95<br>446.15<br>446.15<br>446.15<br>446.15<br>446.15<br>415.55                           |
|                                                             | North Branch<br>Milwaukee River    | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.67<br>0.67<br>0.67<br>0.67<br>0.67<br>0.67         | 1.77<br>1.77<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>1.77 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 8.19<br>8.26<br>8.26<br>8.26<br>8.26<br>8.26<br>8.26         | 10.63<br>10.70<br>8.93<br>8.93<br>8.93<br>8.93<br>10.70     | 814.80<br>725.20<br>725.20<br>725.20<br>725.20<br>725.20<br>652.45   | 1,623.75<br>1,424.17<br>1,424.17<br>1,424.17<br>1,424.17<br>1,424.17<br>1,324.38 | 2,438.55<br>2,149.37<br>2,149.37<br>2,149.37<br>2,149.37<br>2,149.37<br>1,976.83 | 2,449.18<br>2,160.07<br>2,158.30<br>2,158.30<br>2,158.30<br>2,158.30<br>1,987.53             |
|                                                             | Silver Creek<br>(Sheboygan County) | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.82<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97                 | 0.87<br>1.02<br>1.02<br>1.02<br>1.02<br>1.02<br>1.02        | 599.28<br>192.17<br>192.17<br>192.17<br>192.17<br>192.17<br>172.71   | 295.74<br>303.95<br>303.95<br>303.95<br>303.95<br>303.95<br>283.99               | 895.02<br>496.12<br>496.12<br>496.12<br>496.12<br>496.12<br>456.70               | 895.89<br>497.14<br>497.14<br>497.14<br>497.14<br>497.14<br>457.72                           |
|                                                             | Silver Creek (West Bend)           | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 722.20<br>311.75<br>311.75<br>311.75<br>311.75<br>311.75<br>279.36   | 210.56<br>224.37<br>224.37<br>224.37<br>224.37<br>224.37<br>202.49               | 932.76<br>536.12<br>536.12<br>536.12<br>536.12<br>536.12<br>481.85               | 932.76<br>536.12<br>536.12<br>536.12<br>536.12<br>536.12<br>481.85                           |
|                                                             | Stony Creek                        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 188.85<br>188.35<br>188.35<br>188.35<br>188.35<br>188.35<br>169.46   | 271.65<br>271.24<br>271.24<br>271.24<br>271.24<br>271.24<br>255.66               | 460.50<br>459.59<br>459.59<br>459.59<br>459.59<br>459.59<br>425.12               | 460.50<br>459.59<br>459.59<br>459.59<br>459.59<br>459.59<br>425.12                           |
|                                                             | Upper Lower<br>Milwaukee River     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 16.58<br>16.58<br>0.00<br>0.00<br>0.00<br>0.00<br>16.58      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 1.75<br>2.22<br>2.22<br>2.22<br>2.22<br>2.22<br>2.22<br>2.22 | 18.95<br>19.42<br>2.84<br>2.84<br>2.84<br>2.84<br>19.42     | 1,849.48<br>245.37<br>245.37<br>245.37<br>245.37<br>245.37<br>219.84 | 1,104.93<br>774.72<br>774.72<br>774.72<br>774.72<br>774.72<br>774.72<br>715.49   | 2,954.41<br>1,020.09<br>1,020.09<br>1,020.09<br>1,020.09<br>1,020.09<br>935.33   | 2,973.36<br>1,039.51<br>1,022.93<br>1,022.93<br>1,022.93<br>1,022.93<br>954.75               |

Table H-3 (continued)

|                                                             |                                |                                               |                                                             |                                                            | Point Sources                                                            | 3                                                                    |                                                                          | N                                                                                       | onpoint Source                                                                          | e <sup>a</sup>                                                                          |                                                                                         |
|-------------------------------------------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                                     | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources                              | SSOs <sup>b</sup>                                          | CSOs                                                                     | WWTPs                                                                | Subtotal                                                                 | Urban                                                                                   | Rural <sup>C</sup>                                                                      | Subtotal                                                                                | Total                                                                                   |
| Fecal Coliform Bacteria<br>(trillions of cells) (continued) | Upper Milwaukee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 1.21<br>1.45<br>1.45<br>1.45<br>1.45<br>1.45                         | 1.32<br>1.56<br>1.56<br>1.56<br>1.56<br>1.56                             | 820.18<br>438.94<br>438.94<br>438.94<br>438.94<br>438.94<br>394.89                      | 809.09<br>692.87<br>692.87<br>692.87<br>692.87<br>692.87<br>662.16                      | 1,629.27<br>1,131.81<br>1,131.81<br>1,131.81<br>1,131.81<br>1,131.81<br>1,057.05        | 1,630.59<br>1,133.37<br>1,133.37<br>1,133.37<br>1,133.37<br>1,133.37<br>1,058.61        |
|                                                             | Watercress Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 201.89<br>201.75<br>201.75<br>201.75<br>201.75<br>201.75<br>181.56                      | 723.77<br>723.42<br>723.42<br>723.42<br>723.42<br>723.42<br>660.13                      | 925.66<br>925.17<br>925.17<br>925.17<br>925.17<br>925.17<br>841.69                      | 925.66<br>925.17<br>925.17<br>925.17<br>925.17<br>925.17<br>841.69                      |
|                                                             | West Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 697.12<br>605.04<br>605.04<br>605.04<br>605.04<br>605.04<br>543.84                      | 824.04<br>794.74<br>794.74<br>794.74<br>794.74<br>794.74<br>761.43                      | 1,521.16<br>1,399.78<br>1,399.78<br>1,399.78<br>1,399.78<br>1,399.78<br>1,305.27        | 1,521.16<br>1,399.78<br>1,399.78<br>1,399.78<br>1,399.78<br>1,399.78<br>1,305.27        |
|                                                             | Watershed Total                | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 12.11<br>12.11<br>12.11<br>12.11<br>12.11<br>12.11<br>12.11 | 429.04<br>591.81<br>0.00<br>0.00<br>0.00<br>0.00<br>746.02 | 1,878.91<br>1,350.28<br>0.00<br>0.00<br>1,722.69<br>1,722.69<br>1,116.65 | 41.54<br>53.07<br>53.07<br>53.07<br>53.07<br>53.07<br>53.07          | 2,361.60<br>2,007.27<br>65.18<br>65.18<br>1,787.87<br>1,787.87<br>927.85 | 24,098.90<br>14,935.97<br>15,065.01<br>14,935.97<br>14,935.97<br>14,935.97<br>13,206.89 | 14,366.16<br>11,228.88<br>11,228.88<br>11,228.88<br>11,228.88<br>11,228.88<br>10,429.11 | 38,465.06<br>26,164.85<br>26,293.89<br>26,164.85<br>26,164.85<br>26,164.85<br>23,636.00 | 40,826.66<br>28,172.12<br>26,359.07<br>26,230.03<br>27,952.72<br>27,952.72<br>24,563.85 |
| Total Nitrogen (pounds)                                     | Batavia Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0<br>0                                               | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0                                                    | 560<br>560<br>560<br>560<br>560<br>560<br>540                                           | 18,950<br>18,800<br>18,800<br>18,800<br>18,800<br>18,800<br>18,710                      | 19,510<br>19,360<br>19,360<br>19,360<br>19,360<br>19,360<br>19,250                      | 19,510<br>19,360<br>19,360<br>19,360<br>19,360<br>19,360<br>19,250                      |
|                                                             | Cedar Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 40<br>40<br>40<br>40<br>40<br>40<br>40                      | 0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0                                                    | 4,580<br>6,220<br>6,220<br>6,220<br>6,220<br>6,220<br>6,220<br>6,220 | 4,620<br>6,260<br>6,260<br>6,260<br>6,260<br>6,260<br>6,260              | 13,420<br>14,600<br>14,600<br>14,600<br>14,600<br>14,400                                | 286,240<br>272,880<br>272,880<br>272,880<br>272,880<br>272,880<br>269,710               | 299,660<br>287,480<br>287,480<br>287,480<br>287,480<br>287,480<br>284,110               | 304,280<br>293,740<br>293,740<br>293,740<br>293,740<br>293,740<br>290,370               |
|                                                             | Cedar Lake                     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0<br>0                                               | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0                                               | 1,610<br>1,600<br>1,600<br>1,600<br>1,600<br>1,600<br>1,570                             | 24,990<br>24,560<br>24,560<br>24,560<br>24,560<br>24,560<br>24,310                      | 26,600<br>26,160<br>26,160<br>26,160<br>26,160<br>26,160<br>25,880                      | 26,600<br>26,160<br>26,160<br>26,160<br>26,160<br>26,160<br>25,880                      |

|                                     |                                |                                               | Point Sources Industrial                                    |                                              |                                        |                                                           |                                                             | N                                                                  | onpoint Source                                                               | ea                                                                        |                                                                              |
|-------------------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------------|----------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources                              | SSOs <sup>b</sup>                            | CSOs                                   | WWTPs                                                     | Subtotal                                                    | Urban                                                              | Rural <sup>C</sup>                                                           | Subtotal                                                                  | Total                                                                        |
| Total Nitrogen (pounds) (continued) | Chambers Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0                                  | 650<br>650<br>650<br>650<br>650<br>650<br>620                      | 18,970<br>18,830<br>18,830<br>18,830<br>18,830<br>18,830<br>18,750           | 19,620<br>19,480<br>19,480<br>19,480<br>19,480<br>19,480<br>19,370        | 19,620<br>19,480<br>19,480<br>19,480<br>19,480<br>19,480<br>19,370           |
|                                     | East Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0                                  | 2,080<br>2,090<br>2,090<br>2,090<br>2,090<br>2,090<br>1,970        | 41,270<br>40,690<br>40,690<br>40,690<br>40,690<br>40,690<br>40,520           | 43,350<br>42,780<br>42,780<br>42,780<br>42,780<br>42,780<br>42,490        | 43,350<br>42,780<br>42,780<br>42,780<br>42,780<br>42,780<br>42,780<br>42,490 |
|                                     | Kettle Moraine Lake            | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0<br>0                                  | 1,220<br>1,220<br>1,220<br>1,220<br>1,220<br>1,220<br>1,170        | 58,780<br>57,820<br>57,820<br>57,820<br>57,820<br>57,820<br>57,150           | 60,000<br>59,040<br>59,040<br>59,040<br>59,040<br>59,040<br>58,320        | 60,000<br>59,040<br>59,040<br>59,040<br>59,040<br>59,040<br>58,320           |
|                                     | Kewaskum Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0                                  | 1,780<br>1,870<br>1,870<br>1,870<br>1,870<br>1,870<br>1,810        | 42,100<br>39,920<br>39,920<br>39,920<br>39,920<br>39,920<br>39,460           | 43,880<br>41,790<br>41,790<br>41,790<br>41,790<br>41,790<br>41,270        | 43,880<br>41,790<br>41,790<br>41,790<br>41,790<br>41,790<br>41,270           |
|                                     | Lake Fifteen Creek             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0                                  | 920<br>920<br>920<br>920<br>920<br>920<br>870                      | 20,270<br>20,080<br>20,080<br>20,080<br>20,080<br>20,080<br>19,920           | 21,190<br>21,000<br>21,000<br>21,000<br>21,000<br>21,000<br>20,790        | 21,190<br>21,000<br>21,000<br>21,000<br>21,000<br>21,000<br>20,790           |
|                                     | Lincoln Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 3,530<br>3,530<br>3,530<br>3,530<br>3,530<br>3,530<br>3,530 | 850<br>760<br>0<br>0<br>0<br>0<br>0<br>1,160 | 960<br>110<br>0<br>0<br>1,430<br>1,430 | 0<br>0<br>0<br>0<br>0<br>0                                | 5,340<br>4,400<br>3,530<br>3,530<br>4,960<br>4,960<br>4,700 | 42,420<br>39,530<br>39,530<br>39,530<br>39,530<br>39,530<br>38,450 | 500<br>460<br>460<br>460<br>460<br>460<br>460                                | 42,920<br>39,990<br>39,990<br>39,990<br>39,990<br>39,990<br>38,910        | 48,260<br>44,390<br>43,520<br>43,520<br>44,950<br>44,950<br>43,610           |
|                                     | Lower Cedar Creek              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <10<br><10<br><10<br><10<br><10<br><10<br><10               | 20<br>20<br>0<br>0<br>0<br>0<br>0<br>20      | 0<br>0<br>0<br>0<br>0<br>0             | 950<br>1,230<br>1,230<br>1,230<br>1,230<br>1,230<br>1,230 | 970<br>1,250<br>1,230<br>1,230<br>1,230<br>1,230<br>1,250   | 16,910<br>17,960<br>17,960<br>17,960<br>17,960<br>17,960<br>17,330 | 95,100<br>89,380<br>89,380<br>89,380<br>89,380<br>89,380<br>89,380<br>88,390 | 112,010<br>107,340<br>107,340<br>107,340<br>107,340<br>107,340<br>105,720 | 112,980<br>108,590<br>108,570<br>108,570<br>108,570<br>108,570<br>106,970    |

Table H-3 (continued)

|                                        |                                    |                                                                 |                                                                    |                                             | Point Sources                                           | 3                                                                  |                                                                    | N                                                                    | onpoint Source                                                            | ea                                                                        |                                                                              |
|----------------------------------------|------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Water Quality Indicator                | Subwatershed                       | Screening Alternative                                           | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                           | CSOs                                                    | WWTPs                                                              | Subtotal                                                           | Urban                                                                | Rural <sup>C</sup>                                                        | Subtotal                                                                  | Total                                                                        |
| Total Nitrogen (pounds)<br>(continued) | Lower Milwaukee River              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 64,010<br>64,010<br>64,010<br>64,010<br>64,010<br>64,010<br>64,010 | 2,270<br>3,610<br>0<br>0<br>0<br>0<br>4,390 | 16,950<br>11,560<br>0<br>0<br>14,350<br>14,350<br>9,660 | 0<br>0<br>0<br>0<br>0<br>0                                         | 83,230<br>79,180<br>64,010<br>64,010<br>78,360<br>78,360<br>78,060 | 79,020<br>77,390<br>83,960<br>77,390<br>77,390<br>77,390<br>75,770   | 109,560<br>82,260<br>82,260<br>82,260<br>82,260<br>82,260<br>81,270       | 188,580<br>159,650<br>166,220<br>159,650<br>159,650<br>159,650<br>157,040 | 271,810<br>238,830<br>230,230<br>223,660<br>238,010<br>238,010<br>235,100    |
|                                        | Middle Milwaukee River             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 10<br>10<br>10<br>10<br>10<br>10<br>10                             | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                              | 27,930<br>37,670<br>37,670<br>37,670<br>37,670<br>37,670<br>37,670 | 27,940<br>37,680<br>37,680<br>37,680<br>37,680<br>37,680<br>37,680 | 16,190<br>17,290<br>17,290<br>17,290<br>17,290<br>17,290<br>16,690   | 123,790<br>109,130<br>109,130<br>109,130<br>109,130<br>109,130<br>108,080 | 139,980<br>126,420<br>126,420<br>126,420<br>126,420<br>126,420<br>124,770 | 167,920<br>164,100<br>164,100<br>164,100<br>164,100<br>164,100<br>162,450    |
|                                        | Mink Creek                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 1,420<br>1,420<br>1,420<br>1,420<br>1,420<br>1,420<br>1,360          | 49,620<br>49,240<br>49,240<br>49,240<br>49,240<br>49,050                  | 51,040<br>50,660<br>50,660<br>50,660<br>50,660<br>50,410                  | 51,040<br>50,660<br>50,660<br>50,660<br>50,660<br>50,660<br>50,410           |
|                                        | North Branch<br>Milwaukee River    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 7,560<br>7,560<br>7,560<br>7,560<br>7,560<br>7,560<br>7,560        | 10<br>10<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0                              | 9,530<br>9,780<br>9,780<br>9,780<br>9,780<br>9,780<br>9,780        | 17,100<br>17,350<br>17,340<br>17,340<br>17,340<br>17,340<br>17,350 | 6,410<br>6,440<br>6,440<br>6,440<br>6,440<br>6,440<br>6,200          | 171,210<br>167,870<br>167,870<br>167,870<br>167,870<br>167,870<br>166,840 | 177,620<br>174,310<br>174,310<br>174,310<br>174,310<br>174,310<br>173,040 | 194,720<br>191,660<br>191,660<br>191,660<br>191,660<br>191,660<br>190,390    |
|                                        | Silver Creek<br>(Sheboygan County) | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                              | 350<br>420<br>420<br>420<br>420<br>420<br>420                      | 350<br>420<br>420<br>420<br>420<br>420<br>420                      | 3,680<br>4,240<br>4,240<br>4,240<br>4,240<br>4,240<br>4,080          | 44,550<br>42,820<br>42,820<br>42,820<br>42,820<br>42,820<br>42,580        | 48,230<br>47,060<br>47,060<br>47,060<br>47,060<br>47,060<br>46,660        | 48,580<br>47,480<br>47,480<br>47,480<br>47,480<br>47,480<br>47,080           |
|                                        | Silver Creek (West Bend)           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 6,410<br>7,270<br>7,270<br>7,270<br>7,270<br>7,270<br>7,270<br>7,170 | 10,860<br>8,800<br>8,800<br>8,800<br>8,800<br>8,800<br>8,750              | 17,270<br>16,070<br>16,070<br>16,070<br>16,070<br>16,070<br>15,920        | 17,270<br>16,070<br>16,070<br>16,070<br>16,070<br>16,070<br>16,070<br>15,920 |
|                                        | Stony Creek                        | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 1,440<br>1,440<br>1,440<br>1,440<br>1,440<br>1,440<br>1,350          | 39,770<br>39,540<br>39,540<br>39,540<br>39,540<br>39,540<br>39,380        | 41,210<br>40,980<br>40,980<br>40,980<br>40,980<br>40,980<br>40,730        | 41,210<br>40,980<br>40,980<br>40,980<br>40,980<br>40,980<br>40,730           |

|                                        |                                |                                               |                                                                    |                                                  | Point Sources                                           | 3                                                                         |                                                                           | N                                                                         | onpoint Source                                                                          | e <sup>a</sup>                                                                          |                                                                                         |
|----------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                                | CSOs                                                    | WWTPs                                                                     | Subtotal                                                                  | Urban                                                                     | Rural <sup>C</sup>                                                                      | Subtotal                                                                                | Total                                                                                   |
| Total Nitrogen (pounds)<br>(continued) | Upper Lower<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 350<br>350<br>350<br>350<br>350<br>350<br>350                      | 130<br>130<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                              | 77,920<br>99,960<br>99,960<br>99,960<br>99,960<br>99,960                  | 78,400<br>100,440<br>100,310<br>100,310<br>100,310<br>100,310<br>100,440  | 17,730<br>19,460<br>19,460<br>19,460<br>19,460<br>19,460<br>19,070        | 123,670<br>114,200<br>114,200<br>114,200<br>114,200<br>114,200<br>113,260               | 141,400<br>133,660<br>133,660<br>133,660<br>133,660<br>133,660<br>132,330               | 219,800<br>234,100<br>234,100<br>234,100<br>234,100<br>234,100<br>232,770               |
|                                        | Upper Milwaukee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                       | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0                              | 1,950<br>2,300<br>2,300<br>2,300<br>2,300<br>2,300<br>2,300               | 1,980<br>2,330<br>2,330<br>2,330<br>2,330<br>2,330<br>2,330               | 6,740<br>7,130<br>7,130<br>7,130<br>7,130<br>7,130<br>6,890               | 194,190<br>188,890<br>188,890<br>188,890<br>188,890<br>188,890<br>186,790               | 200,930<br>196,020<br>196,020<br>196,020<br>196,020<br>196,020<br>193,680               | 202,910<br>198,350<br>198,350<br>198,350<br>198,350<br>198,350<br>196,010               |
|                                        | Watercress Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 1,480<br>1,480<br>1,480<br>1,480<br>1,480<br>1,480<br>1,390               | 40,150<br>39,440<br>39,440<br>39,440<br>39,440<br>38,980                                | 41,630<br>40,920<br>40,920<br>40,920<br>40,920<br>40,920<br>40,370                      | 41,630<br>40,920<br>40,920<br>40,920<br>40,920<br>40,920<br>40,370                      |
|                                        | West Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0                                                     | 5,390<br>5,360<br>5,360<br>5,360<br>5,360<br>5,360<br>5,030               | 219,160<br>214,960<br>214,960<br>214,960<br>214,960<br>214,960<br>212,600               | 224,550<br>220,320<br>220,320<br>220,320<br>220,320<br>220,320<br>217,630               | 224,550<br>220,320<br>220,320<br>220,320<br>220,320<br>220,320<br>217,630               |
|                                        | Watershed Total                | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 75,530<br>75,530<br>75,530<br>75,530<br>75,530<br>75,530<br>75,530 | 3,280<br>4,530<br>0<br>0<br>0<br>0<br>0<br>5,710 | 17,910<br>11,670<br>0<br>0<br>15,780<br>15,780<br>9,670 | 123,210<br>157,580<br>157,580<br>157,580<br>157,580<br>157,580<br>157,580 | 219,930<br>249,310<br>233,110<br>233,110<br>248,890<br>248,890<br>248,490 | 227,480<br>229,920<br>236,500<br>229,920<br>229,920<br>229,920<br>223,730 | 1,733,700<br>1,640,570<br>1,640,570<br>1,640,570<br>1,640,570<br>1,640,570<br>1,624,960 | 1,961,180<br>1,870,490<br>1,877,070<br>1,870,490<br>1,870,490<br>1,870,490<br>1,848,690 | 2,181,110<br>2,119,800<br>2,110,180<br>2,103,600<br>2,119,380<br>2,119,380<br>2,097,180 |
| Biochemical Oxygen Demand (pounds)     | Batavia Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 4,000<br>3,990<br>3,990<br>3,990<br>3,990<br>3,990<br>3,990               | 24,470<br>23,680<br>23,680<br>23,680<br>23,680<br>23,680<br>23,680                      | 28,470<br>27,670<br>27,670<br>27,670<br>27,670<br>27,670<br>27,670                      | 28,470<br>27,670<br>27,670<br>27,670<br>27,670<br>27,670<br>27,670                      |
|                                        | Cedar Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 60<br>60<br>60<br>60<br>60<br>60                                   | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0                              | 10,370<br>14,080<br>14,080<br>14,080<br>14,080<br>14,080<br>14,080        | 10,430<br>14,140<br>14,140<br>14,140<br>14,140<br>14,140                  | 105,650<br>114,540<br>114,540<br>114,540<br>114,540<br>114,540<br>114,540 | 632,050<br>604,280<br>604,280<br>604,280<br>604,280<br>604,280<br>604,280               | 737,700<br>718,820<br>718,820<br>718,820<br>718,820<br>718,820<br>718,820               | 748,130<br>732,960<br>732,960<br>732,960<br>732,960<br>732,960<br>732,960               |

Table H-3 (continued)

|                                                |                                |                                                                 |                                                                    |                                             | Point Sources                         | 3                          |                                                                    | N                                                                         | onpoint Source                                                            | ea                                                                        |                                                                           |
|------------------------------------------------|--------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                   | Screening Alternative                                           | Industrial<br>Point<br>Sources                                     | SSOs <sup>b</sup>                           | CSOs                                  | WWTPs                      | Subtotal                                                           | Urban                                                                     | Rural <sup>C</sup>                                                        | Subtotal                                                                  | Total                                                                     |
| Biochemical Oxygen Demand (pounds) (continued) | Cedar Lake                     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 12,700<br>12,360<br>12,360<br>12,360<br>12,360<br>12,360<br>12,360        | 68,630<br>67,500<br>67,500<br>67,500<br>67,500<br>67,500<br>67,500        | 81,330<br>79,860<br>79,860<br>79,860<br>79,860<br>79,860<br>79,860        | 81,330<br>79,860<br>79,860<br>79,860<br>79,860<br>79,860<br>79,860        |
|                                                | Chambers Creek                 | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 5,140<br>5,130<br>5,130<br>5,130<br>5,130<br>5,130<br>5,130               | 23,440<br>22,900<br>22,900<br>22,900<br>22,900<br>22,900<br>22,900        | 28,580<br>28,030<br>28,030<br>28,030<br>28,030<br>28,030<br>28,030        | 28,580<br>28,030<br>28,030<br>28,030<br>28,030<br>28,030<br>28,030        |
|                                                | East Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 15,060<br>15,110<br>15,110<br>15,110<br>15,110<br>15,110<br>15,110        | 82,180<br>80,930<br>80,930<br>80,930<br>80,930<br>80,930                  | 97,240<br>96,040<br>96,040<br>96,040<br>96,040<br>96,040                  | 97,240<br>96,040<br>96,040<br>96,040<br>96,040<br>96,040<br>96,040        |
|                                                | Kettle Moraine Lake            | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 8,880<br>8,880<br>8,880<br>8,880<br>8,880<br>8,880<br>8,880               | 120,250<br>115,640<br>115,640<br>115,640<br>115,640<br>115,640<br>115,640 | 129,130<br>124,520<br>124,520<br>124,520<br>124,520<br>124,520<br>124,520 | 129,130<br>124,520<br>124,520<br>124,520<br>124,520<br>124,520<br>124,520 |
|                                                | Kewaskum Creek                 | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 11,340<br>11,350<br>11,350<br>11,350<br>11,350<br>11,350<br>11,350        | 81,960<br>76,760<br>76,760<br>76,760<br>76,760<br>76,760<br>76,760        | 93,300<br>88,110<br>88,110<br>88,110<br>88,110<br>88,110<br>88,110        | 93,300<br>88,110<br>88,110<br>88,110<br>88,110<br>88,110<br>88,110        |
|                                                | Lake Fifteen Creek             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                                         | 7,770<br>7,760<br>7,760<br>7,760<br>7,760<br>7,760<br>7,760               | 41,080<br>40,510<br>40,510<br>40,510<br>40,510<br>40,510<br>40,510        | 48,850<br>48,270<br>48,270<br>48,270<br>48,270<br>48,270<br>48,270        | 48,850<br>48,270<br>48,270<br>48,270<br>48,270<br>48,270<br>48,270        |
|                                                | Lincoln Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 15,210<br>15,210<br>15,210<br>15,210<br>15,210<br>15,210<br>15,210 | 1,440<br>1,280<br>0<br>0<br>0<br>0<br>1,950 | 720<br>80<br>0<br>0<br>1,080<br>1,080 | 0<br>0<br>0<br>0<br>0<br>0 | 17,370<br>16,570<br>15,210<br>15,210<br>16,290<br>16,290<br>17,170 | 216,100<br>188,380<br>188,380<br>188,380<br>188,380<br>188,380<br>188,380 | 1,840<br>2,050<br>2,050<br>2,050<br>2,050<br>2,050<br>2,050               | 217,940<br>190,430<br>190,430<br>190,430<br>190,430<br>190,430<br>190,430 | 235,310<br>207,000<br>205,640<br>205,640<br>206,720<br>206,720<br>207,600 |

|                                                |                                    |                                                                 | Point Sources Industrial                                                  |                                             |                                                          |                                                                           |                                                                           | N                                                                         | onpoint Source                                                            | ea                                                                        |                                                                              |
|------------------------------------------------|------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                       | Screening Alternative                                           | Industrial<br>Point<br>Sources                                            | SSOs <sup>b</sup>                           | CSOs                                                     | WWTPs                                                                     | Subtotal                                                                  | Urban                                                                     | Rural <sup>C</sup>                                                        | Subtotal                                                                  | Total                                                                        |
| Biochemical Oxygen Demand (pounds) (continued) | Lower Cedar Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                              | 40<br>40<br>0<br>0<br>0<br>0<br>0<br>40     | 0<br>0<br>0<br>0<br>0<br>0                               | 20,080<br>26,160<br>26,160<br>26,160<br>26,160<br>26,160                  | 20,140<br>26,220<br>26,180<br>26,180<br>26,180<br>26,180<br>26,220        | 85,590<br>88,370<br>88,370<br>88,370<br>88,370<br>88,370<br>88,370        | 185,110<br>176,580<br>176,580<br>176,580<br>176,580<br>176,580<br>176,580 | 270,700<br>264,950<br>264,950<br>264,950<br>264,950<br>264,950<br>264,950 | 290,840<br>291,170<br>291,130<br>291,130<br>291,130<br>291,130<br>291,170    |
|                                                | Lower Milwaukee River              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 259,990<br>259,990<br>259,990<br>259,990<br>259,990<br>259,990<br>259,990 | 3,830<br>6,080<br>0<br>0<br>0<br>0<br>7,400 | 22,550<br>16,640<br>0<br>0<br>20,260<br>20,260<br>13,820 | 0<br>0<br>0<br>0<br>0<br>0                                                | 286,370<br>282,710<br>259,990<br>259,990<br>280,250<br>280,250<br>281,210 | 388,570<br>354,170<br>364,770<br>354,170<br>354,170<br>354,170<br>354,170 | 234,560<br>178,680<br>178,680<br>178,680<br>178,680<br>178,680<br>178,680 | 623,130<br>532,850<br>543,450<br>532,850<br>532,850<br>532,850<br>532,850 | 909,500<br>815,560<br>803,440<br>792,840<br>813,100<br>813,100<br>814,060    |
|                                                | Middle Milwaukee River             | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                              | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                               | 296,770<br>390,710<br>390,710<br>390,710<br>390,710<br>390,710<br>390,710 | 296,790<br>390,730<br>390,730<br>390,730<br>390,730<br>390,730<br>390,730 | 108,290<br>116,790<br>116,790<br>116,790<br>116,790<br>116,790<br>116,790 | 220,120<br>200,880<br>200,880<br>200,880<br>200,880<br>200,880<br>200,880 | 328,410<br>317,670<br>317,670<br>317,670<br>317,670<br>317,670<br>317,670 | 625,200<br>708,400<br>708,400<br>708,400<br>708,400<br>708,400<br>708,400    |
|                                                | Mink Creek                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                                     | 0<br>0<br>0<br>0<br>0                                                     | 10,490<br>10,460<br>10,460<br>10,460<br>10,460<br>10,460                  | 56,310<br>54,640<br>54,640<br>54,640<br>54,640<br>54,640<br>54,640        | 66,800<br>65,100<br>65,100<br>65,100<br>65,100<br>65,100                  | 66,800<br>65,100<br>65,100<br>65,100<br>65,100<br>65,100<br>65,100           |
|                                                | North Branch<br>Milwaukee River    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 7,020<br>7,020<br>7,020<br>7,020<br>7,020<br>7,020<br>7,020<br>7,020      | 20<br>20<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0                                    | 6,080<br>6,700<br>6,700<br>6,700<br>6,700<br>6,700<br>6,700               | 13,120<br>13,740<br>13,720<br>13,720<br>13,720<br>13,720<br>13,740        | 50,380<br>50,410<br>50,410<br>50,410<br>50,410<br>50,410<br>50,410        | 267,240<br>256,550<br>256,550<br>256,550<br>256,550<br>256,550<br>256,550 | 317,620<br>306,960<br>306,960<br>306,960<br>306,960<br>306,960<br>306,960 | 330,740<br>320,700<br>320,680<br>320,680<br>320,680<br>320,680<br>320,700    |
|                                                | Silver Creek<br>(Sheboygan County) | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 4,330<br>4,330<br>4,330<br>4,330<br>4,330<br>4,330<br>4,330               | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                               | 2,990<br>3,560<br>3,560<br>3,560<br>3,560<br>3,560<br>3,560               | 7,320<br>7,890<br>7,890<br>7,890<br>7,890<br>7,890<br>7,890               | 26,810<br>30,340<br>30,340<br>30,340<br>30,340<br>30,340<br>30,340        | 63,180<br>60,620<br>60,620<br>60,620<br>60,620<br>60,620                  | 89,990<br>90,960<br>90,960<br>90,960<br>90,960<br>90,960<br>90,960        | 97,310<br>98,850<br>98,850<br>98,850<br>98,850<br>98,850<br>98,850<br>98,850 |
|                                                | Silver Creek (West Bend)           | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 36,060<br>40,570<br>40,570<br>40,570<br>40,570<br>40,570<br>40,570        | 23,710<br>21,980<br>21,990<br>21,990<br>21,990<br>21,990<br>21,990        | 59,770<br>62,550<br>62,560<br>62,560<br>62,560<br>62,560<br>62,560        | 59,770<br>62,550<br>62,560<br>62,560<br>62,560<br>62,560<br>62,560           |

Table H-3 (continued)

|                                                |                                |                                                                 |                                                                           |                                                  | Point Sources                                            | 3                                                                         |                                                                           | N                                                                                       | onpoint Source                                                                          | ea                                                                                      |                                                                                         |
|------------------------------------------------|--------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                   | Screening Alternative                                           | Industrial<br>Point<br>Sources                                            | SSOs <sup>b</sup>                                | CSOs                                                     | WWTPs                                                                     | Subtotal                                                                  | Urban                                                                                   | Rural <sup>C</sup>                                                                      | Subtotal                                                                                | Total                                                                                   |
| Biochemical Oxygen Demand (pounds) (continued) | Stony Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                                                     | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 10,240<br>10,220<br>10,220<br>10,220<br>10,220<br>10,220<br>10,220                      | 51,490<br>50,450<br>50,450<br>50,450<br>50,450<br>50,450<br>50,450                      | 61,730<br>60,670<br>60,670<br>60,670<br>60,670<br>60,670<br>60,670                      | 61,730<br>60,670<br>60,670<br>60,670<br>60,670<br>60,670<br>60,670                      |
|                                                | Upper Lower<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 2,770<br>2,770<br>2,770<br>2,770<br>2,770<br>2,770<br>2,770               | 210<br>210<br>0<br>0<br>0<br>0<br>0<br>210       | 0<br>0<br>0<br>0<br>0<br>0                               | 52,690<br>68,820<br>68,820<br>68,820<br>68,820<br>68,820<br>68,820        | 55,670<br>71,800<br>71,590<br>71,590<br>71,590<br>71,590<br>71,800        | 103,450<br>113,970<br>113,970<br>113,970<br>113,970<br>113,970<br>113,970               | 199,780<br>183,390<br>183,390<br>183,390<br>183,390<br>183,390<br>183,390               | 303,230<br>297,360<br>297,360<br>297,360<br>297,360<br>297,360<br>297,360               | 358,900<br>369,160<br>368,950<br>368,950<br>368,950<br>368,950<br>369,160               |
|                                                | Upper Milwaukee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 1,030<br>1,030<br>1,030<br>1,030<br>1,030<br>1,030<br>1,030               | 0<br>0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0                               | 10,830<br>14,490<br>14,490<br>14,490<br>14,490<br>14,490                  | 11,860<br>15,520<br>15,520<br>15,520<br>15,520<br>15,520<br>15,520        | 44,460<br>47,010<br>47,010<br>47,010<br>47,010<br>47,010                                | 373,160<br>356,330<br>356,330<br>356,330<br>356,330<br>356,330<br>356,330               | 417,620<br>403,340<br>403,340<br>403,340<br>403,340<br>403,340<br>403,340               | 429,480<br>418,860<br>418,860<br>418,860<br>418,860<br>418,860<br>418,860               |
|                                                | Watercress Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 10,130<br>10,130<br>10,130<br>10,130<br>10,130<br>10,130<br>10,130                      | 86,840<br>83,890<br>83,890<br>83,890<br>83,890<br>83,890<br>83,890                      | 96,970<br>94,020<br>94,020<br>94,020<br>94,020<br>94,020<br>94,020                      | 96,970<br>94,020<br>94,020<br>94,020<br>94,020<br>94,020<br>94,020                      |
|                                                | West Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                                                     | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 42,450<br>42,090<br>42,090<br>42,090<br>42,090<br>42,090<br>42,090                      | 373,130<br>358,050<br>358,050<br>358,050<br>358,050<br>358,050<br>358,050               | 415,580<br>400,140<br>400,140<br>400,140<br>400,140<br>400,140<br>400,140               | 415,580<br>400,140<br>400,140<br>400,140<br>400,140<br>400,140<br>400,140               |
|                                                | Watershed Total                | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 290,450<br>290,450<br>290,450<br>290,450<br>290,450<br>290,450<br>290,450 | 5,540<br>7,630<br>0<br>0<br>0<br>0<br>0<br>9,620 | 23,270<br>16,720<br>0<br>0<br>21,340<br>21,340<br>13,830 | 399,810<br>524,520<br>524,520<br>524,520<br>524,520<br>524,520<br>524,520 | 719,070<br>839,320<br>814,970<br>814,970<br>836,310<br>836,310<br>838,420 | 1,303,560<br>1,282,030<br>1,292,700<br>1,282,030<br>1,282,030<br>1,282,030<br>1,282,030 | 3,210,530<br>3,016,290<br>3,016,290<br>3,016,290<br>3,016,290<br>3,016,290<br>3,016,290 | 4,514,090<br>4,298,320<br>4,308,990<br>4,298,320<br>4,298,320<br>4,298,320<br>4,298,320 | 5,233,160<br>5,137,640<br>5,123,960<br>5,113,290<br>5,134,630<br>5,134,630<br>5,136,740 |
| Copper (pounds)                                | Batavia Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0                                                | 7<br>7<br>7<br>7<br>7<br>7                                                              | 11<br>11<br>11<br>11<br>11<br>11                                                        | 18<br>18<br>18<br>18<br>18<br>18                                                        | 18<br>18<br>18<br>18<br>18<br>18                                                        |

|                             |                                |                                               |                                |                            | Point Sources              | i .                                    |                                        | N                                             | onpoint Source                               | e <sup>a</sup>                                |                                               |
|-----------------------------|--------------------------------|-----------------------------------------------|--------------------------------|----------------------------|----------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Water Quality Indicator     | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources | SSOs <sup>b</sup>          | CSOs                       | WWTPs                                  | Subtotal                               | Urban                                         | Rural <sup>C</sup>                           | Subtotal                                      | Total                                         |
| Copper (pounds) (continued) | Cedar Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0 | 46<br>63<br>63<br>63<br>63<br>63<br>63 | 46<br>63<br>63<br>63<br>63<br>63<br>63 | 190<br>206<br>206<br>206<br>206<br>206<br>206 | 187<br>189<br>190<br>190<br>190<br>190       | 377<br>395<br>396<br>396<br>396<br>396<br>396 | 423<br>458<br>459<br>459<br>459<br>459<br>459 |
|                             | Cedar Lake                     | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 23<br>22<br>22<br>22<br>22<br>22<br>22<br>22  | 76<br>74<br>74<br>74<br>74<br>74<br>74       | 99<br>96<br>96<br>96<br>96<br>96              | 99<br>96<br>96<br>96<br>96<br>96<br>96        |
|                             | Chambers Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 9<br>9<br>9<br>9<br>9<br>9                    | 13<br>13<br>13<br>13<br>13<br>13             | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22  | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22  |
|                             | East Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0                  | 27<br>27<br>27<br>27<br>27<br>27<br>27        | 61<br>62<br>62<br>62<br>62<br>62<br>62<br>62 | 88<br>89<br>89<br>89<br>89                    | 88<br>89<br>89<br>89<br>89<br>89              |
|                             | Kettle Moraine Lake            | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 16<br>16<br>16<br>16<br>16<br>16              | 47<br>47<br>47<br>47<br>47<br>47<br>47       | 63<br>63<br>63<br>63<br>63<br>63<br>63        | 63<br>63<br>63<br>63<br>63<br>63<br>63        |
|                             | Kewaskum Creek                 | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20  | 21<br>22<br>21<br>21<br>21<br>21<br>21       | 41<br>42<br>41<br>41<br>41<br>41<br>41        | 41<br>42<br>41<br>41<br>41<br>41<br>41        |
|                             | Lake Fifteen Creek             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 14<br>14<br>14<br>14<br>14<br>14              | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 44<br>44<br>44<br>44<br>44<br>44              | 44<br>44<br>44<br>44<br>44<br>44<br>44        |

Table H-3 (continued)

|                             |                                    |                                                                 |                                |                                      | Point Sources                        | 3                                             |                                               | N                                             | onpoint Source                                | e <sup>a</sup>                                       |                                                      |
|-----------------------------|------------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Water Quality Indicator     | Subwatershed                       | Screening Alternative                                           | Industrial<br>Point<br>Sources | SSOs <sup>b</sup>                    | CSOs                                 | WWTPs                                         | Subtotal                                      | Urban                                         | Rural <sup>C</sup>                            | Subtotal                                             | Total                                                |
| Copper (pounds) (continued) | Lincoln Creek                      | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0     | 1<br>1<br>0<br>0<br>0<br>0           | 2<br>0<br>0<br>0<br>2<br>2<br>2      | 0<br>0<br>0<br>0<br>0<br>0                    | 3<br>1<br>0<br>0<br>2<br>2<br>2               | 380<br>316<br>316<br>316<br>316<br>316<br>316 | 1<br>1<br>1<br>1<br>1<br>1                    | 381<br>317<br>317<br>317<br>317<br>317<br>317        | 384<br>318<br>317<br>317<br>319<br>319<br>318        |
|                             | Lower Cedar Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 97<br>127<br>127<br>127<br>127<br>127<br>127  | 97<br>127<br>127<br>127<br>127<br>127<br>127  | 146<br>150<br>150<br>150<br>150<br>150<br>150 | 83<br>83<br>83<br>83<br>83<br>83<br>83        | 229<br>233<br>233<br>233<br>233<br>233<br>233        | 326<br>360<br>360<br>360<br>360<br>360<br>360        |
|                             | Lower Milwaukee River              | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0     | 2<br>4<br>0<br>0<br>0<br>0<br>0<br>5 | 50<br>37<br>0<br>0<br>45<br>45<br>30 | 0<br>0<br>0<br>0<br>0<br>0                    | 52<br>41<br>0<br>0<br>45<br>45<br>35          | 684<br>592<br>653<br>592<br>592<br>592<br>592 | 101<br>110<br>110<br>110<br>110<br>110<br>110 | 785<br>702<br>763<br>702<br>702<br>702<br>702        | 837<br>743<br>763<br>702<br>747<br>747<br>737        |
|                             | Middle Milwaukee River             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 307<br>405<br>405<br>405<br>405<br>405<br>405 | 307<br>405<br>405<br>405<br>405<br>405<br>405 | 192<br>204<br>204<br>204<br>204<br>204<br>204 | 119<br>130<br>130<br>130<br>130<br>130<br>130 | 311<br>334<br>334<br>334<br>334<br>334<br>334        | 618<br>739<br>739<br>739<br>739<br>739<br>739        |
|                             | Mink Creek                         | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                    | 19<br>19<br>19<br>19<br>19<br>19              | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | 49<br>49<br>49<br>49<br>49<br>49                     | 49<br>49<br>49<br>49<br>49<br>49                     |
|                             | North Branch<br>Milwaukee River    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 18<br>18<br>18<br>18<br>18<br>18              | 18<br>18<br>18<br>18<br>18<br>18              | 93<br>93<br>93<br>93<br>93<br>93<br>93        | 144<br>145<br>145<br>145<br>145<br>145<br>145 | 237<br>238<br>238<br>238<br>238<br>238<br>238<br>238 | 255<br>256<br>256<br>256<br>256<br>256<br>256<br>256 |
|                             | Silver Creek<br>(Sheboygan County) | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 15<br>18<br>18<br>18<br>18<br>18              | 15<br>18<br>18<br>18<br>18<br>18              | 49<br>55<br>55<br>55<br>55<br>55<br>55        | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | 79<br>85<br>85<br>85<br>85<br>85<br>85               | 94<br>103<br>103<br>103<br>103<br>103<br>103         |

|                             |                                |                                               | Point Sources Industrial       |                            |                            |                                               |                                               | N                                      | onpoint Sourc                                | e <sup>a</sup>                                |                                                      |
|-----------------------------|--------------------------------|-----------------------------------------------|--------------------------------|----------------------------|----------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| Water Quality Indicator     | Subwatershed                   | Screening Alternative                         | Industrial<br>Point<br>Sources | SSOs <sup>b</sup>          | CSOs                       | WWTPs                                         | Subtotal                                      | Urban                                  | Rural <sup>C</sup>                           | Subtotal                                      | Total                                                |
| Copper (pounds) (continued) | Silver Creek (West Bend)       | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0<br>0                    | 62<br>69<br>69<br>69<br>69<br>69       | 19<br>21<br>21<br>21<br>21<br>21<br>21       | 81<br>90<br>90<br>90<br>90<br>90<br>90        | 81<br>90<br>90<br>90<br>90<br>90<br>90               |
|                             | Stony Creek                    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                    | 18<br>18<br>18<br>18<br>18<br>18       | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 48<br>48<br>48<br>48<br>48<br>48              | 48<br>48<br>48<br>48<br>48<br>48<br>48               |
|                             | Upper Lower<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0      | 113<br>145<br>145<br>145<br>145<br>145<br>145 | 113<br>145<br>145<br>145<br>145<br>145<br>145 | 181<br>199<br>199<br>199<br>199<br>199 | 96<br>100<br>99<br>99<br>99<br>99            | 277<br>299<br>298<br>298<br>298<br>298<br>298 | 390<br>444<br>443<br>443<br>443<br>443<br>443        |
|                             | Upper Milwaukee River          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 38<br>49<br>49<br>49<br>49<br>49              | 38<br>49<br>49<br>49<br>49<br>49              | 80<br>84<br>84<br>84<br>84<br>84       | 99<br>100<br>100<br>100<br>100<br>100<br>100 | 179<br>184<br>184<br>184<br>184<br>184        | 217<br>233<br>233<br>233<br>233<br>233<br>233<br>233 |
|                             | Watercress Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                    | 18<br>18<br>18<br>18<br>18<br>18       | 55<br>55<br>55<br>55<br>55<br>55<br>55       | 73<br>73<br>73<br>73<br>73<br>73<br>73<br>73  | 73<br>73<br>73<br>73<br>73<br>73<br>73               |
|                             | West Branch<br>Milwaukee River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                    | 77<br>76<br>76<br>76<br>76<br>76<br>76 | 99<br>99<br>99<br>99<br>99<br>99             | 176<br>175<br>175<br>175<br>175<br>175<br>175 | 176<br>175<br>175<br>175<br>175<br>175<br>175        |

|                             |                 |                                                                 |                                | Point Sources Nonpoint Source |                                      |                                               |                                               |                                                             |                                                             | ea                                                          |                                                             |
|-----------------------------|-----------------|-----------------------------------------------------------------|--------------------------------|-------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Water Quality Indicator     | Subwatershed    | Screening Alternative                                           | Industrial<br>Point<br>Sources | SSOs <sup>b</sup>             | CSOs                                 | WWTPs                                         | Subtotal                                      | Urban                                                       | Rural <sup>C</sup>                                          | Subtotal                                                    | Total                                                       |
| Copper (pounds) (continued) | Watershed Total | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0          | 3<br>5<br>0<br>0<br>0<br>0    | 52<br>37<br>0<br>0<br>47<br>47<br>30 | 634<br>825<br>825<br>825<br>825<br>825<br>825 | 689<br>867<br>825<br>825<br>872<br>872<br>861 | 2,305<br>2,214<br>2,275<br>2,214<br>2,214<br>2,214<br>2,214 | 1,352<br>1,382<br>1,381<br>1,381<br>1,381<br>1,381<br>1,381 | 3,657<br>3,596<br>3,656<br>3,595<br>3,595<br>3,595<br>3,595 | 4,346<br>4,463<br>4,481<br>4,420<br>4,467<br>4,467<br>4,456 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

bLoads presented in this table for the 2020 future (baseline) condition reflect refinements that were made to the MMSD conveyance system model after the screening alternatives were evaluated. This results in certain anomalies in the load comparisons presented herein, particularly regarding SSO loads with Screening Alternative 2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table H-4

AVERAGE ANNUAL POLLUTANT LOADS FOR SCREENING ALTERNATIVES: OAK CREEK WATERSHED

|                           |                               |                                               |                                         | Point Sources                     |                                               | N                                                           | Ionpoint Source                                             | e <sup>a</sup>                                                        |                                                              |
|---------------------------|-------------------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|
| Water Quality Indicator   | Subwatershed                  | Caragina Altarnativa                          | Industrial<br>Point                     | SSOs                              | Subtotal                                      | Urban                                                       | Rural <sup>b</sup>                                          | Subtotal                                                              | Total                                                        |
| Water Quality Indicator   |                               | Screening Alternative                         | Sources                                 |                                   |                                               |                                                             |                                                             |                                                                       |                                                              |
| Total Phosphorus (pounds) | Lower Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 10<br>10<br>10<br>10<br>10<br>10        | 10<br>10<br>0<br>0<br>0<br>0<br>0 | 20<br>20<br>10<br>10<br>10<br>10<br>20        | 2,200<br>1,820<br>1,820<br>1,820<br>1,820<br>1,820<br>1,700 | 40<br>20<br>20<br>20<br>20<br>20<br>20<br>20                | 2,240<br>1,840<br>1,840<br>1,840<br>1,840<br>1,840<br>1,720           | 2,260<br>1,860<br>1,850<br>1,850<br>1,850<br>1,850<br>1,740  |
|                           | Middle Oak Creek              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>0<br>0<br>0<br>0                    | 1,310<br>1,250<br>1,250<br>1,250<br>1,250<br>1,250<br>1,160 | 980<br>1,030<br>1,030<br>1,030<br>1,030<br>1,030<br>970     | 2,290<br>2,280<br>2,280<br>2,280<br>2,280<br>2,280<br>2,130           | 2,290<br>2,280<br>2,280<br>2,280<br>2,280<br>2,280<br>2,130  |
|                           | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 0<br>0<br>0<br>0<br>0<br>0        | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 980<br>980<br>980<br>980<br>980<br>980<br>910               | 410<br>330<br>330<br>330<br>330<br>330<br>330<br>310        | 1,390<br>1,310<br>1,310<br>1,310<br>1,310<br>1,310<br>1,220           | 1,390<br>1,310<br>1,310<br>1,310<br>1,310<br>1,310<br>1,220  |
|                           | North Branch Oak Creek        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>0<br>0<br>0<br>0                    | 2,650<br>2,400<br>2,400<br>2,400<br>2,400<br>2,400<br>2,230 | 510<br>500<br>500<br>500<br>500<br>500<br>470               | 3,160<br>2,900<br>2,900<br>2,900<br>2,900<br>2,900<br>2,700           | 3,160<br>2,900<br>2,900<br>2,900<br>2,900<br>2,900<br>2,700  |
|                           | Upper Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>0<br>0<br>0<br>0                    | 1,360<br>1,290<br>1,290<br>1,290<br>1,290<br>1,290<br>1,290 | 170<br>100<br>100<br>100<br>100<br>100<br>100               | 1,530<br>1,390<br>1,390<br>1,390<br>1,390<br>1,390<br>1,390           | 1,530<br>1,390<br>1,390<br>1,390<br>1,390<br>1,390<br>1,300  |
|                           | Watershed Total               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 10<br>10<br>10<br>10<br>10<br>10        | 10<br>10<br>0<br>0<br>0<br>0      | 20<br>20<br>10<br>10<br>10<br>10<br>20        | 8,500<br>7,740<br>7,740<br>7,740<br>7,740<br>7,740<br>7,200 | 2,110<br>1,980<br>1,980<br>1,980<br>1,980<br>1,980<br>1,870 | 10,610<br>9,720<br>9,720<br>9,720<br>9,720<br>9,720<br>9,720<br>9,070 | 10,630<br>9,740<br>9,730<br>9,730<br>9,730<br>9,730<br>9,090 |

Table H-4 (continued)

|                                 |                               |                                               |                                                             | Point Sources                              |                                                             | N                                                                                       | onpoint Source                                                            | e <sup>a</sup>                                                                          |                                                                                         |
|---------------------------------|-------------------------------|-----------------------------------------------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                 |                               |                                               | Industrial<br>Point                                         |                                            |                                                             |                                                                                         |                                                                           |                                                                                         |                                                                                         |
| Water Quality Indicator         | Subwatershed                  | Screening Alternative                         | Sources                                                     | SSOs                                       | Subtotal                                                    | Urban                                                                                   | Rural <sup>b</sup>                                                        | Subtotal                                                                                | Total                                                                                   |
| Total Suspended Solids (pounds) | Lower Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 1,930<br>1,930<br>1,930<br>1,930<br>1,930<br>1,930<br>1,930 | 500<br>500<br>0<br>0<br>0<br>0<br>0<br>500 | 2,430<br>2,430<br>1,930<br>1,930<br>1,930<br>1,930<br>2,430 | 974,250<br>691,950<br>691,950<br>691,950<br>691,950<br>691,950<br>691,950               | 23,560<br>3,890<br>3,890<br>3,890<br>3,890<br>3,890<br>3,890              | 997,810<br>695,840<br>695,840<br>695,840<br>695,840<br>695,840<br>695,840               | 1,000,240<br>698,270<br>697,770<br>697,770<br>697,770<br>697,770<br>698,270             |
|                                 | Middle Oak Creek              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                                  | 685,780<br>546,490<br>546,490<br>546,490<br>546,490<br>546,490<br>546,490               | 387,670<br>101,010<br>101,010<br>101,010<br>101,010<br>101,010<br>100,580 | 1,073,450<br>647,500<br>647,500<br>647,500<br>647,500<br>647,500<br>647,070             | 1,073,450<br>647,500<br>647,500<br>647,500<br>647,500<br>647,500<br>647,070             |
|                                 | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <10<br><10<br><10<br><10<br><10<br><10<br><10               | 0<br>0<br>0<br>0<br>0<br>0                 | <10<br><10<br><10<br><10<br><10<br><10<br><10               | 532,620<br>452,990<br>452,990<br>452,990<br>452,990<br>452,990<br>452,990               | 108,810<br>28,560<br>28,560<br>28,560<br>28,560<br>28,560<br>28,300       | 641,430<br>481,550<br>481,550<br>481,550<br>481,550<br>481,550<br>481,290               | 641,430<br>481,550<br>481,550<br>481,550<br>481,550<br>481,290                          |
|                                 | North Branch Oak Creek        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0                                       | 1,558,560<br>1,203,130<br>1,203,130<br>1,203,130<br>1,203,130<br>1,203,130<br>1,203,130 | 212,030<br>47,930<br>47,930<br>47,930<br>47,930<br>47,930<br>47,700       | 1,770,590<br>1,251,060<br>1,251,060<br>1,251,060<br>1,251,060<br>1,251,060<br>1,250,830 | 1,770,590<br>1,251,060<br>1,251,060<br>1,251,060<br>1,251,060<br>1,251,060<br>1,250,830 |
|                                 | Upper Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                                  | 663,060<br>540,110<br>540,110<br>540,110<br>540,110<br>540,110<br>540,110               | 156,240<br>9,580<br>9,580<br>9,580<br>9,580<br>9,580<br>9,500             | 819,300<br>549,690<br>549,690<br>549,690<br>549,690<br>549,690<br>549,610               | 819,300<br>549,690<br>549,690<br>549,690<br>549,690<br>549,690<br>549,610               |
|                                 | Watershed Total               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 1,930<br>1,930<br>1,930<br>1,930<br>1,930<br>1,930<br>1,930 | 500<br>500<br>0<br>0<br>0<br>0<br>500      | 2,430<br>2,430<br>1,930<br>1,930<br>1,930<br>1,930<br>2,430 | 4,414,270<br>3,434,670<br>3,434,670<br>3,434,670<br>3,434,670<br>3,434,670<br>3,434,670 | 888,310<br>190,970<br>190,970<br>190,970<br>190,970<br>190,970<br>189,970 | 5,302,580<br>3,625,640<br>3,625,640<br>3,625,640<br>3,625,640<br>3,625,640<br>3,624,640 | 5,305,010<br>3,628,070<br>3,627,570<br>3,627,570<br>3,627,570<br>3,627,570<br>3,627,570 |

|                                              |                               |                                               |                                                      | Point Sources                                        |                                                      | N                                                                                | onpoint Source                                                     | e <sup>a</sup>                                                                               |                                                                                  |
|----------------------------------------------|-------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Water Quality Indicator                      | Subwatershed                  | Screening Alternative                         | Industrial<br>Point<br>Sources                       | SSOs                                                 | Subtotal                                             | Urban                                                                            | Rural <sup>b</sup>                                                 | Subtotal                                                                                     | Total                                                                            |
| Fecal Coliform Bacteria (trillions of cells) | Lower Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 9.55<br>9.55<br>0.00<br>0.00<br>0.00<br>0.00<br>9.55 | 9.55<br>9.55<br>0.00<br>0.00<br>0.00<br>0.00<br>9.55 | 612.67<br>493.23<br>493.23<br>493.23<br>493.23<br>493.23<br>443.90               | 0.33<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10               | 613.00<br>493.33<br>493.33<br>493.33<br>493.33<br>493.33<br>444.00                           | 622.55<br>502.88<br>493.33<br>493.33<br>493.33<br>493.33<br>453.55               |
|                                              | Middle Oak Creek              | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 394.77<br>363.63<br>363.63<br>363.63<br>363.63<br>363.63<br>327.26               | 96.09<br>99.81<br>99.81<br>99.81<br>99.81<br>99.81<br>89.84        | 490.86<br>463.44<br>463.44<br>463.44<br>463.44<br>463.44<br>417.10                           | 490.86<br>463.44<br>463.44<br>463.44<br>463.44<br>463.44<br>417.10               |
|                                              | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 505.12<br>548.78<br>548.78<br>548.78<br>548.78<br>548.78<br>493.90               | 36.28<br>27.74<br>27.74<br>27.74<br>27.74<br>27.74<br>24.98        | 541.40<br>576.52<br>576.52<br>576.52<br>576.52<br>576.52<br>518.88                           | 541.40<br>576.52<br>576.52<br>576.52<br>576.52<br>576.52<br>576.52<br>518.88     |
|                                              | North Branch Oak Creek        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 735.48<br>656.52<br>656.52<br>656.52<br>656.52<br>656.52<br>590.86               | 39.60<br>46.20<br>46.20<br>46.20<br>46.20<br>46.20<br>41.59        | 775.08<br>702.72<br>702.72<br>702.72<br>702.72<br>702.72<br>632.45                           | 775.08<br>702.72<br>702.72<br>702.72<br>702.72<br>702.72<br>702.72<br>632.45     |
|                                              | Upper Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 354.83<br>318.55<br>318.55<br>318.55<br>318.55<br>318.55<br>286.69               | 7.39<br>5.64<br>5.64<br>5.64<br>5.64<br>5.64<br>5.08               | 362.22<br>324.19<br>324.19<br>324.19<br>324.19<br>324.19<br>291.77                           | 362.22<br>324.19<br>324.19<br>324.19<br>324.19<br>324.19<br>291.77               |
|                                              | Watershed Total               | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 9.55<br>9.55<br>0.00<br>0.00<br>0.00<br>0.00<br>9.55 | 9.55<br>9.55<br>0.00<br>0.00<br>0.00<br>0.00<br>9.55 | 2,602.87<br>2,380.71<br>2,380.71<br>2,380.71<br>2,380.71<br>2,380.71<br>2,142.61 | 179.69<br>179.49<br>179.49<br>179.49<br>179.49<br>179.49<br>161.59 | 2,782.56<br>2,560.20<br>2,560.20<br>2,560.20<br>2,560.20<br>2,560.20<br>2,560.20<br>2,304.20 | 2,792.11<br>2,569.75<br>2,560.20<br>2,560.20<br>2,560.20<br>2,560.20<br>2,313.75 |

Table H-4 (continued)

|                         |                               |                                               |                                               | Point Sources                           |                                               | N                                                                  | Ionpoint Source                                                    | ea                                                                 |                                                                              |
|-------------------------|-------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|
| Water Quality Indicator | Subwatershed                  | Screening Alternative                         | Industrial<br>Point<br>Sources                | SSOs                                    | Subtotal                                      | Urban                                                              | Rural <sup>b</sup>                                                 | Subtotal                                                           | Total                                                                        |
| Total Nitrogen (pounds) | Lower Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 340<br>340<br>340<br>340<br>340<br>340<br>340 | 20<br>20<br>0<br>0<br>0<br>0<br>0       | 360<br>360<br>340<br>340<br>340<br>340<br>360 | 15,280<br>13,260<br>13,260<br>13,260<br>13,260<br>13,260<br>12,850 | 1,010<br>370<br>370<br>370<br>370<br>370<br>370                    | 16,290<br>13,630<br>13,630<br>13,630<br>13,630<br>13,630<br>13,220 | 16,650<br>13,990<br>13,970<br>13,970<br>13,970<br>13,970<br>13,580           |
|                         | Middle Oak Creek              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0                         | 9,240<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>8,700        | 13,810<br>8,160<br>8,160<br>8,160<br>8,160<br>8,160<br>7,980       | 23,050<br>17,160<br>17,160<br>17,160<br>17,160<br>17,160<br>16,680 | 23,050<br>17,160<br>17,160<br>17,160<br>17,160<br>17,160<br>16,680           |
|                         | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0<br>0              | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 9,360<br>9,190<br>9,190<br>9,190<br>9,190<br>9,190<br>8,870        | 7,580<br>4,410<br>4,410<br>4,410<br>4,410<br>4,410<br>4,290        | 16,940<br>13,600<br>13,600<br>13,600<br>13,600<br>13,600<br>13,160 | 16,940<br>13,600<br>13,600<br>13,600<br>13,600<br>13,600<br>13,160           |
|                         | North Branch Oak Creek        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                    | 17,590<br>16,550<br>16,550<br>16,550<br>16,550<br>16,550<br>16,000 | 8,790<br>4,310<br>4,310<br>4,310<br>4,310<br>4,310<br>4,220        | 26,380<br>20,860<br>20,860<br>20,860<br>20,860<br>20,860<br>20,220 | 26,380<br>20,860<br>20,860<br>20,860<br>20,860<br>20,860<br>20,220           |
|                         | Upper Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                    | 9,180<br>9,080<br>9,080<br>9,080<br>9,080<br>9,080<br>8,780        | 4,910<br>1,020<br>1,020<br>1,020<br>1,020<br>1,020<br>1,000        | 14,090<br>10,100<br>10,100<br>10,100<br>10,100<br>10,100<br>9,780  | 14,090<br>10,100<br>10,100<br>10,100<br>10,100<br>10,100<br>9,780            |
|                         | Watershed Total               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 340<br>340<br>340<br>340<br>340<br>340<br>340 | 20<br>20<br>0<br>0<br>0<br>0<br>0<br>20 | 360<br>360<br>340<br>340<br>340<br>340<br>360 | 60,650<br>57,080<br>57,080<br>57,080<br>57,080<br>57,080<br>55,200 | 36,100<br>18,270<br>18,270<br>18,270<br>18,270<br>18,270<br>17,860 | 96,750<br>75,350<br>75,350<br>75,350<br>75,350<br>75,350<br>73,060 | 97,110<br>75,710<br>75,690<br>75,690<br>75,690<br>75,690<br>75,690<br>73,420 |

|                                    |                               |                                               |                                                             | Point Sources                              |                                                             | N                                                                                    | Ionpoint Source                                                      | e <sup>a</sup>                                                            |                                                                              |
|------------------------------------|-------------------------------|-----------------------------------------------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Water Quality Indicator            | Subwatershed                  | Screening Alternative                         | Industrial<br>Point<br>Sources                              | SSOs                                       | Subtotal                                                    | Urban                                                                                | Rural <sup>b</sup>                                                   | Subtotal                                                                  | Total                                                                        |
| Biochemical Oxygen Demand (pounds) | Lower Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 3,440<br>3,440<br>3,440<br>3,440<br>3,440<br>3,440<br>3,440 | 120<br>120<br>0<br>0<br>0<br>0<br>0<br>120 | 3,560<br>3,560<br>3,440<br>3,440<br>3,440<br>3,440<br>3,560 | 56,390<br>45,680<br>45,680<br>45,680<br>45,680<br>45,680<br>45,680                   | 1,970<br>1,180<br>1,180<br>1,180<br>1,180<br>1,180<br>1,180          | 58,360<br>46,860<br>46,860<br>46,860<br>46,860<br>46,860<br>46,860        | 61,920<br>50,420<br>50,300<br>50,300<br>50,300<br>50,300<br>50,420           |
|                                    | Middle Oak Creek              | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                                  | 37,820<br>36,720<br>36,720<br>36,720<br>36,720<br>36,720<br>36,720                   | 26,670<br>19,170<br>19,170<br>19,170<br>19,170<br>19,170<br>19,140   | 64,490<br>55,890<br>55,890<br>55,890<br>55,890<br>55,890<br>55,860        | 64,490<br>55,890<br>55,890<br>55,890<br>55,890<br>55,890<br>55,860           |
|                                    | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <10<br><10<br><10<br><10<br><10<br><10<br><10               | 0<br>0<br>0<br>0<br>0<br>0                 | <10<br><10<br><10<br><10<br><10<br><10<br><10               | 28,860<br>32,340<br>32,340<br>32,340<br>32,340<br>32,340<br>32,340                   | 9,150<br>5,180<br>5,180<br>5,180<br>5,180<br>5,180<br>5,170          | 38,010<br>37,520<br>37,520<br>37,520<br>37,520<br>37,520<br>37,510        | 38,010<br>37,520<br>37,520<br>37,520<br>37,520<br>37,520<br>37,520<br>37,510 |
|                                    | North Branch Oak Creek        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                                  | 79,090<br>75,750<br>75,750<br>75,750<br>75,750<br>75,750<br>75,750                   | 15,680<br>8,940<br>8,940<br>8,940<br>8,940<br>8,940<br>8,930         | 94,770<br>84,690<br>84,690<br>84,690<br>84,690<br>84,690<br>84,680        | 94,770<br>84,690<br>84,690<br>84,690<br>84,690<br>84,690<br>84,680           |
|                                    | Upper Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0                                       | 35,580<br>38,330<br>38,330<br>38,330<br>38,330<br>38,330<br>38,330                   | 7,690<br>2,210<br>2,210<br>2,210<br>2,210<br>2,210<br>2,210<br>2,210 | 43,270<br>40,540<br>40,540<br>40,540<br>40,540<br>40,540<br>40,540        | 43,270<br>40,540<br>40,540<br>40,540<br>40,540<br>40,540<br>40,540           |
|                                    | Watershed Total               | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 3,440<br>3,440<br>3,440<br>3,440<br>3,440<br>3,440<br>3,440 | 120<br>120<br>0<br>0<br>0<br>0<br>0        | 3,560<br>3,560<br>3,440<br>3,440<br>3,440<br>3,560          | 237,740<br>228,820<br>228,820<br>228,820<br>228,820<br>228,820<br>228,820<br>228,820 | 61,160<br>36,680<br>36,680<br>36,680<br>36,680<br>36,680<br>36,630   | 298,900<br>265,500<br>265,500<br>265,500<br>265,500<br>265,500<br>265,450 | 302,460<br>269,060<br>268,940<br>268,940<br>268,940<br>268,940<br>269,010    |

Table H-4 (continued)

|                         |                               |                                                      |                            | Point Sources                          |                                        | N                                             | Ionpoint Source                              | e <sup>a</sup>                                       |                                                      |
|-------------------------|-------------------------------|------------------------------------------------------|----------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Water Quality Indicator | Cuburatarahad                 | Corporation Altermetics                              | Industrial<br>Point        | SSOs                                   | Cubtotal                               | l leb on                                      | Rural <sup>b</sup>                           | Cubtotal                                             | Total                                                |
| •                       | Subwatershed                  | Screening Alternative                                | Sources                    |                                        | Subtotal                               | Urban                                         |                                              | Subtotal                                             | Total                                                |
| Copper (pounds)         | Lower Oak Creek               | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C | 0<br>0<br>0<br>0           | <1<br><1<br>0<br>0                     | <1<br><1<br>0<br>0                     | 105<br>80<br>80<br>80<br>80                   | <1<br><1<br><1<br><1<br><1                   | 105<br>80<br>80<br>80<br>80                          | 105<br>80<br>80<br>80<br>80                          |
|                         |                               | 1D<br>2                                              | 0                          | 0<br><1                                | 0<br><1                                | 80<br>80                                      | <1<br><1                                     | 80<br>80                                             | 80<br>80                                             |
|                         | Middle Oak Creek              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2        | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 70<br>63<br>63<br>63<br>63<br>63<br>63        | 25<br>24<br>24<br>24<br>24<br>24<br>24<br>24 | 95<br>87<br>87<br>87<br>87<br>87<br>87               | 95<br>87<br>87<br>87<br>87<br>87<br>87               |
|                         | Mitchell Field Drainage Ditch | Existing 2020 Future (baseline) 1A 1B 1C 1D 2        | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 56<br>54<br>54<br>54<br>54<br>54<br>54        | 11<br>7<br>7<br>7<br>7<br>7                  | 67<br>61<br>61<br>61<br>61<br>61                     | 67<br>61<br>61<br>61<br>61<br>61<br>61               |
|                         | North Branch Oak Creek        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2        | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 148<br>128<br>128<br>128<br>128<br>128<br>128 | 13<br>11<br>11<br>11<br>11<br>11             | 161<br>139<br>139<br>139<br>139<br>139<br>139        | 161<br>139<br>139<br>139<br>139<br>139<br>139        |
|                         | Upper Oak Creek               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2        | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0             | 66<br>63<br>63<br>63<br>63<br>63              | 3<br>2<br>2<br>2<br>2<br>2<br>2<br>2         | 69<br>65<br>65<br>65<br>65<br>65                     | 69<br>65<br>65<br>65<br>65<br>65<br>65               |
|                         | Watershed Total               | Existing 2020 Future (baseline) 1A 1B 1C 1D 2        | 0<br>0<br>0<br>0<br>0<br>0 | <1<br><1<br>0<br>0<br>0<br>0<br>0<br>0 | <1<br><1<br>0<br>0<br>0<br>0<br>0<br>0 | 445<br>388<br>388<br>388<br>388<br>388<br>388 | 52<br>44<br>44<br>44<br>44<br>44<br>44       | 497<br>432<br>432<br>432<br>432<br>432<br>432<br>432 | 497<br>432<br>432<br>432<br>432<br>432<br>432<br>432 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

<sup>&</sup>lt;sup>b</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

Table H-5

AVERAGE ANNUAL POLLUTANT LOADS FOR SCREENING ALTERNATIVES: ROOT RIVER WATERSHED

|                           |                              |                                               |                                               | Point S                            | Sources                                                   |                                                           | N                                                           | lonpoint Sourc                                                     | e <sup>a</sup>                                                     |                                                                    |
|---------------------------|------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator   | Subwatershed                 | Screening Alternative                         | Industrial<br>Point<br>Sources                | SSOs <sup>b</sup>                  | WWTPs                                                     | Subtotal                                                  | Urban                                                       | Rural <sup>C</sup>                                                 | Subtotal                                                           | Total                                                              |
| Total Phosphorus (pounds) | Lower Root River             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 130<br>130<br>130<br>130<br>130<br>130<br>130 | 10<br>10<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0                                     | 140<br>140<br>140<br>130<br>140<br>140                    | 8,750<br>7,730<br>7,730<br>7,730<br>7,730<br>7,730<br>7,180 | 14,670<br>11,700<br>11,700<br>11,700<br>11,700<br>11,700<br>10,920 | 23,420<br>19,430<br>19,430<br>19,430<br>19,430<br>19,430<br>18,100 | 23,560<br>19,570<br>19,570<br>19,560<br>19,570<br>19,570<br>18,240 |
|                           | Middle Root River            | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0         | 0<br>0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0                                | 3,780<br>3,670<br>3,670<br>3,670<br>3,670<br>3,670<br>3,410 | 5,130<br>4,410<br>4,410<br>4,410<br>4,410<br>4,410<br>4,130        | 8,910<br>8,080<br>8,080<br>8,080<br>8,080<br>8,080<br>7,540        | 8,910<br>8,080<br>8,080<br>8,080<br>8,080<br>8,080<br>7,540        |
|                           | Upper Root River             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                         | <10<br>10<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                     | <10<br>10<br>0<br>0<br>0<br>0<br>20                       | 6,000<br>4,470<br>4,470<br>4,470<br>4,470<br>4,470<br>4,160 | 170<br>120<br>120<br>120<br>120<br>120<br>120                      | 6,170<br>4,590<br>4,590<br>4,590<br>4,590<br>4,590<br>4,280        | 6,170<br>4,600<br>4,590<br>4,590<br>4,590<br>4,590<br>4,300        |
|                           | Hoods Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0              | 940<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350 | 940<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350 | 1,020<br>990<br>990<br>990<br>990<br>990<br>920             | 5,610<br>4,420<br>4,420<br>4,420<br>4,420<br>4,420<br>4,120        | 6,630<br>5,410<br>5,410<br>5,410<br>5,410<br>5,410<br>5,040        | 7,570<br>6,760<br>6,760<br>6,760<br>6,760<br>6,760<br>6,390        |
|                           | Root River Canal             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0         | 0<br>0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0                                | 180<br>170<br>170<br>170<br>170<br>170<br>160               | 4,720<br>4,260<br>4,260<br>4,260<br>4,260<br>4,260<br>3,940        | 4,900<br>4,430<br>4,430<br>4,430<br>4,430<br>4,430<br>4,100        | 4,900<br>4,430<br>4,430<br>4,430<br>4,430<br>4,430<br>4,100        |
|                           | East Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0         | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>220      | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>220      | 430<br>500<br>500<br>500<br>500<br>500<br>440               | 6,880<br>6,010<br>6,010<br>6,010<br>6,010<br>6,010<br>5,560        | 7,310<br>6,510<br>6,510<br>6,510<br>6,510<br>6,510<br>6,000        | 7,530<br>6,730<br>6,730<br>6,730<br>6,730<br>6,730<br>6,220        |

Table H-5 (continued)

|                                       |                              |                                                                 |                                               | Point S                                    | Sources                                                              |                                                                      | N                                                                                       | onpoint Source                                                                                 | ea                                                                                             |                                                                                                |
|---------------------------------------|------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Water Quality Indicator               | Subwatershed                 | Screening Alternative                                           | Industrial<br>Point<br>Sources                | SSOs <sup>b</sup>                          | WWTPs                                                                | Subtotal                                                             | Urban                                                                                   | Rural <sup>C</sup>                                                                             | Subtotal                                                                                       | Total                                                                                          |
| Total Phosphorus (pounds) (continued) | West Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0<br>0                 | 1,990<br>2,620<br>2,620<br>2,620<br>2,620<br>2,620<br>2,620<br>2,620 | 1,990<br>2,620<br>2,620<br>2,620<br>2,620<br>2,620<br>2,620<br>2,620 | 1,040<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>960                               | 15,890<br>13,940<br>13,940<br>13,940<br>13,940<br>13,940<br>12,960                             | 16,930<br>14,990<br>14,990<br>14,990<br>14,990<br>14,990<br>13,920                             | 18,920<br>17,610<br>17,610<br>17,610<br>17,610<br>17,610<br>16,540                             |
|                                       | East Branch Root River       | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>10<br>0<br>0<br>0<br>0<br>0<br>30     | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>10<br>0<br>0<br>0<br>0<br>0<br>30                               | 1,660<br>1,470<br>1,470<br>1,470<br>1,470<br>1,470<br>1,370                             | 180<br>50<br>50<br>50<br>50<br>50<br>50                                                        | 1,840<br>1,520<br>1,520<br>1,520<br>1,520<br>1,520<br>1,420                                    | 1,840<br>1,530<br>1,520<br>1,520<br>1,520<br>1,520<br>1,450                                    |
|                                       | Whitnall Park Creek          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0                         | <10<br><10<br>0<br>0<br>0<br>0<br>0<br><10 | 0<br>0<br>0<br>0<br>0<br>0                                           | <10<br><10<br>0<br>0<br>0<br>0<br>0<br><10                           | 3,650<br>3,000<br>3,000<br>3,000<br>3,000<br>3,000<br>2,790                             | 1,010<br>720<br>720<br>720<br>720<br>720<br>720<br>680                                         | 4,660<br>3,720<br>3,720<br>3,720<br>3,720<br>3,720<br>3,470                                    | 4,660<br>3,720<br>3,720<br>3,720<br>3,720<br>3,720<br>3,470                                    |
|                                       | Watershed Total              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 130<br>130<br>130<br>130<br>130<br>130<br>130 | 10<br>30<br>0<br>0<br>0<br>0<br>0          | 3,150<br>4,190<br>4,190<br>4,190<br>4,190<br>4,190<br>4,190          | 3,290<br>4,350<br>4,320<br>4,320<br>4,320<br>4,320<br>4,380          | 26,510<br>23,050<br>23,050<br>23,050<br>23,050<br>23,050<br>21,390                      | 54,260<br>45,630<br>45,630<br>45,630<br>45,630<br>45,630<br>42,480                             | 80,770<br>68,680<br>68,680<br>68,680<br>68,680<br>68,680<br>63,870                             | 84,060<br>73,030<br>73,000<br>73,000<br>73,000<br>73,000<br>68,250                             |
| Total Suspended Solids (pounds)       | Lower Root River             | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 480<br>480<br>480<br>480<br>480<br>480<br>480 | 710<br>710<br>0<br>0<br>0<br>0<br>0<br>710 | 0<br>0<br>0<br>0<br>0<br>0                                           | 1,190<br>1,190<br>480<br>480<br>480<br>480<br>1,190                  | 2,781,990<br>2,084,320<br>2,084,320<br>2,084,320<br>2,084,320<br>2,084,320<br>2,069,730 | 18,169,680<br>11,913,280<br>11,913,280<br>11,913,280<br>11,913,280<br>11,913,280<br>10,770,520 | 20,951,670<br>13,997,600<br>13,997,600<br>13,997,600<br>13,997,600<br>13,997,600<br>12,840,250 | 20,952,860<br>13,998,790<br>13,998,080<br>13,998,080<br>13,998,080<br>13,998,080<br>12,841,440 |
|                                       | Middle Root River            | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0                                           | 1,290,740<br>1,093,100<br>1,093,100<br>1,093,100<br>1,093,100<br>1,093,100<br>1,087,730 | 5,439,900<br>2,217,110<br>2,217,110<br>2,217,110<br>2,217,110<br>2,217,110<br>2,017,560        | 6,730,640<br>3,310,210<br>3,310,210<br>3,310,210<br>3,310,210<br>3,310,210<br>3,105,290        | 6,730,640<br>3,310,210<br>3,310,210<br>3,310,210<br>3,310,210<br>3,310,210<br>3,105,290        |
|                                       | Upper Root River             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                    | 80<br>380<br>0<br>0<br>0<br>0<br>860       | 0<br>0<br>0<br>0<br>0<br>0                                           | 80<br>380<br>0<br>0<br>0<br>0<br>0<br>860                            | 1,918,200<br>1,304,810<br>1,304,810<br>1,304,810<br>1,304,810<br>1,304,810<br>1,304,790 | 18,970<br>7,980<br>7,980<br>7,980<br>7,980<br>7,980<br>7,980                                   | 1,937,170<br>1,312,790<br>1,312,790<br>1,312,790<br>1,312,790<br>1,312,790<br>1,312,770        | 1,937,250<br>1,313,170<br>1,312,790<br>1,312,790<br>1,312,790<br>1,312,790<br>1,313,630        |

|                                             |                              |                                               |                                               | Point S                                          | Sources                                                            |                                                                      | N                                                                                       | Ionpoint Source                                                                                      | ea                                                                                             |                                                                                                |
|---------------------------------------------|------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Water Quality Indicator                     | Subwatershed                 | Screening Alternative                         | Industrial<br>Point<br>Sources                | SSOs <sup>b</sup>                                | WWTPs                                                              | Subtotal                                                             | Urban                                                                                   | Rural <sup>C</sup>                                                                                   | Subtotal                                                                                       | Total                                                                                          |
| Total Suspended Solids (pounds) (continued) | Hoods Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                       | 1,060<br>1,520<br>1,520<br>1,520<br>1,520<br>1,520<br>1,520        | 1,060<br>1,520<br>1,520<br>1,520<br>1,520<br>1,520<br>1,520<br>1,520 | 536,060<br>395,060<br>395,060<br>395,060<br>395,060<br>395,060<br>395,060               | 7,409,050<br>4,980,580<br>4,980,580<br>4,980,580<br>4,980,580<br>4,980,580<br>4,980,580<br>4,499,690 | 7,945,110<br>5,375,640<br>5,375,640<br>5,375,640<br>5,375,640<br>5,375,640<br>4,894,750        | 7,946,170<br>5,377,160<br>5,377,160<br>5,377,160<br>5,377,160<br>5,377,160<br>4,896,270        |
|                                             | Root River Canal             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                           | 114,030<br>105,930<br>105,930<br>105,930<br>105,930<br>105,930<br>98,260                | 7,048,210<br>6,051,940<br>6,051,940<br>6,051,940<br>6,051,940<br>6,051,940<br>5,455,510              | 7,162,240<br>6,157,870<br>6,157,870<br>6,157,870<br>6,157,870<br>6,157,870<br>5,553,770        | 7,162,240<br>6,157,870<br>6,157,870<br>6,157,870<br>6,157,870<br>6,157,870<br>5,553,770        |
|                                             | East Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0                            | 450<br>450<br>450<br>450<br>450<br>450<br>450                      | 450<br>450<br>450<br>450<br>450<br>450<br>450                        | 271,250<br>296,030<br>296,030<br>296,030<br>296,030<br>296,030<br>274,700               | 10,618,210<br>9,004,670<br>9,004,670<br>9,004,670<br>9,004,670<br>9,004,670<br>8,114,680             | 10,889,460<br>9,300,700<br>9,300,700<br>9,300,700<br>9,300,700<br>9,300,700<br>8,389,380       | 10,889,910<br>9,301,150<br>9,301,150<br>9,301,150<br>9,301,150<br>9,301,150<br>8,389,830       |
|                                             | West Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0                            | 8,890<br>11,730<br>11,730<br>11,730<br>11,730<br>11,730<br>11,730  | 8,890<br>11,730<br>11,730<br>11,730<br>11,730<br>11,730<br>11,730    | 468,430<br>415,390<br>415,390<br>415,390<br>415,390<br>415,390<br>400,200               | 25,202,610<br>21,557,740<br>21,557,740<br>21,557,740<br>21,557,740<br>21,557,740<br>19,435,120       | 25,671,040<br>21,973,130<br>21,973,130<br>21,973,130<br>21,973,130<br>21,973,130<br>19,835,320 | 25,679,930<br>21,984,860<br>21,984,860<br>21,984,860<br>21,984,860<br>21,984,860<br>19,847,050 |
|                                             | East Branch Root River       | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>340<br>0<br>0<br>0<br>0<br>0<br>1,640       | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>340<br>0<br>0<br>0<br>0<br>0<br>1,640                           | 494,130<br>375,600<br>375,600<br>375,600<br>375,600<br>375,600<br>375,590               | 229,360<br>4,080<br>4,080<br>4,080<br>4,080<br>4,080<br>4,080                                        | 723,490<br>379,680<br>379,680<br>379,680<br>379,680<br>379,680<br>379,670                      | 723,490<br>380,020<br>379,680<br>379,680<br>379,680<br>379,680<br>381,310                      |
|                                             | Whitnall Park Creek          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 240<br>240<br>0<br>0<br>0<br>0<br>0<br>240       | 0<br>0<br>0<br>0<br>0<br>0                                         | 240<br>240<br>0<br>0<br>0<br>0<br>0<br>240                           | 1,112,640<br>801,550<br>801,550<br>801,550<br>801,550<br>801,550<br>801,540             | 636,060<br>65,210<br>65,210<br>65,210<br>65,210<br>65,210<br>65,210                                  | 1,748,700<br>866,760<br>866,760<br>866,760<br>866,760<br>866,760<br>866,750                    | 1,748,940<br>867,000<br>866,760<br>866,760<br>866,760<br>866,760<br>866,990                    |
|                                             | Watershed Total              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 480<br>480<br>480<br>480<br>480<br>480<br>480 | 1,030<br>1,670<br>0<br>0<br>0<br>0<br>0<br>3,450 | 10,400<br>13,700<br>13,700<br>13,700<br>13,700<br>13,700<br>13,700 | 11,910<br>15,850<br>14,180<br>14,180<br>14,180<br>14,180<br>17,630   | 8,987,470<br>6,871,790<br>6,871,790<br>6,871,790<br>6,871,790<br>6,871,790<br>6,807,600 | 74,772,050<br>55,802,590<br>55,802,590<br>55,802,590<br>55,802,590<br>55,802,590<br>50,370,350       | 83,759,520<br>62,674,380<br>62,674,380<br>62,674,380<br>62,674,380<br>62,674,380<br>57,177,950 | 83,771,430<br>62,690,230<br>62,688,560<br>62,688,560<br>62,688,560<br>62,688,560<br>57,195,580 |

Table H-5 (continued)

|                                              |                              |                                                                 |                                                      | Point S                                                 | Sources                                              |                                                         | N                                                                                | onpoint Source                                                     | e <sup>a</sup>                                                                   |                                                                                  |
|----------------------------------------------|------------------------------|-----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Water Quality Indicator                      | Subwatershed                 | Screening Alternative                                           | Industrial<br>Point<br>Sources                       | SSOs <sup>b</sup>                                       | WWTPs                                                | Subtotal                                                | Urban                                                                            | Rural <sup>C</sup>                                                 | Subtotal                                                                         | Total                                                                            |
| Fecal Coliform Bacteria (trillions of cells) | Lower Root River             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 13.58<br>13.58<br>0.00<br>0.00<br>0.00<br>0.00<br>13.58 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 13.58<br>13.58<br>0.00<br>0.00<br>0.00<br>0.00<br>13.58 | 2,641.12<br>2,156.05<br>2,156.05<br>2,156.05<br>2,156.05<br>2,156.05<br>1,932.99 | 853.13<br>735.14<br>735.14<br>735.14<br>735.14<br>735.14<br>618.84 | 3,494.25<br>2,891.19<br>2,891.19<br>2,891.19<br>2,891.19<br>2,891.19<br>2,551.83 | 3,507.83<br>2,904.77<br>2,891.19<br>2,891.19<br>2,891.19<br>2,891.19<br>2,565.41 |
|                                              | Middle Root River            | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00    | 1,323.10<br>1,266.52<br>1,266.52<br>1,266.52<br>1,266.52<br>1,266.52<br>1,137.49 | 317.14<br>336.20<br>336.20<br>336.20<br>336.20<br>336.20<br>294.20 | 1,640.24<br>1,602.72<br>1,602.72<br>1,602.72<br>1,602.72<br>1,602.72<br>1,431.69 | 1,640.24<br>1,602.72<br>1,602.72<br>1,602.72<br>1,602.72<br>1,602.72<br>1,431.69 |
|                                              | Upper Root River             | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 1.55<br>7.24<br>0.00<br>0.00<br>0.00<br>0.00<br>16.46   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 1.55<br>7.24<br>0.00<br>0.00<br>0.00<br>0.00<br>16.46   | 2,202.96<br>1,664.81<br>1,664.81<br>1,664.81<br>1,664.81<br>1,664.81<br>1,498.33 | 0.75<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28               | 2,203.71<br>1,665.09<br>1,665.09<br>1,665.09<br>1,665.09<br>1,665.09<br>1,498.61 | 2,205.26<br>1,672.33<br>1,665.09<br>1,665.09<br>1,665.09<br>1,665.09<br>1,515.07 |
|                                              | Hoods Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00    | 0.30<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43         | 0.30<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43    | 418.83<br>361.82<br>361.82<br>361.82<br>361.82<br>361.82<br>325.64               | 276.59<br>243.26<br>243.26<br>243.26<br>243.26<br>243.26<br>206.22 | 695.42<br>605.08<br>605.08<br>605.08<br>605.08<br>605.08<br>531.86               | 695.72<br>605.51<br>605.51<br>605.51<br>605.51<br>605.51<br>532.29               |
|                                              | Root River Canal             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00    | 96.48<br>91.50<br>91.50<br>91.50<br>91.50<br>91.50<br>77.80                      | 180.79<br>181.29<br>181.29<br>181.29<br>181.29<br>181.29<br>139.33 | 277.27<br>272.79<br>272.79<br>272.79<br>272.79<br>272.79<br>217.13               | 277.27<br>272.79<br>272.79<br>272.79<br>272.79<br>272.79<br>272.79<br>217.13     |
|                                              | East Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00    | 0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14         | 0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14            | 215.12<br>228.91<br>228.91<br>228.91<br>228.91<br>228.91<br>194.86               | 251.23<br>237.03<br>237.03<br>237.03<br>237.03<br>237.03<br>178.65 | 466.35<br>465.94<br>465.94<br>465.94<br>465.94<br>465.94<br>373.51               | 466.49<br>466.08<br>466.08<br>466.08<br>466.08<br>466.08<br>373.65               |
|                                              | West Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00    | 2.85<br>3.76<br>3.76<br>3.76<br>3.76<br>3.76<br>3.76 | 2.85<br>3.76<br>3.76<br>3.76<br>3.76<br>3.76<br>3.76    | 451.94<br>423.71<br>423.71<br>423.71<br>423.71<br>423.71<br>371.22               | 560.80<br>529.13<br>529.13<br>529.13<br>529.13<br>529.13<br>405.76 | 1,012.74<br>952.84<br>952.84<br>952.84<br>952.84<br>952.84<br>776.98             | 1,015.59<br>956.60<br>956.60<br>956.60<br>956.60<br>956.60<br>780.74             |

|                                                          |                        |                                                                 |                                                      | Point S                                                         | Sources                                                     |                                                             | N                                                                                | onpoint Source                                                                   | e <sup>a</sup>                                                                         |                                                                                        |
|----------------------------------------------------------|------------------------|-----------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Water Quality Indicator                                  | Subwatershed           | Screening Alternative                                           | Industrial<br>Point<br>Sources                       | SSOs <sup>b</sup>                                               | WWTPs                                                       | Subtotal                                                    | Urban                                                                            | Rural <sup>C</sup>                                                               | Subtotal                                                                               | Total                                                                                  |
| Fecal Coliform Bacteria (trillions of cells) (continued) | East Branch Root River | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>6.54<br>0.00<br>0.00<br>0.00<br>0.00<br>31.36           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 0.00<br>6.54<br>0.00<br>0.00<br>0.00<br>0.00<br>31.36       | 554.63<br>484.35<br>484.35<br>484.35<br>484.35<br>484.35<br>435.91               | 2.49<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13                             | 557.12<br>484.48<br>484.48<br>484.48<br>484.48<br>484.48<br>436.04                     | 557.12<br>491.02<br>484.48<br>484.48<br>484.48<br>484.48<br>467.40                     |
|                                                          | Whitnall Park Creek    | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 4.52<br>4.52<br>0.00<br>0.00<br>0.00<br>0.00<br>4.52            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 4.52<br>4.52<br>0.00<br>0.00<br>0.00<br>0.00<br>4.52        | 1,309.52<br>1,066.05<br>1,066.05<br>1,066.05<br>1,066.05<br>1,066.05<br>959.45   | 100.59<br>92.55<br>92.55<br>92.55<br>92.55<br>92.55<br>83.33                     | 1,410.11<br>1,158.60<br>1,158.60<br>1,158.60<br>1,158.60<br>1,158.60<br>1,042.78       | 1,414.63<br>1,163.12<br>1,158.60<br>1,158.60<br>1,158.60<br>1,158.60<br>1,047.30       |
|                                                          | Watershed Total        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 19.65<br>31.88<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>65.92 | 3.29<br>4.33<br>4.33<br>4.33<br>4.33<br>4.33<br>4.33        | 22.94<br>36.21<br>4.33<br>4.33<br>4.33<br>4.33<br>70.25     | 9,213.70<br>7,743.72<br>7,743.72<br>7,743.72<br>7,743.72<br>7,743.72<br>6,933.69 | 2,543.51<br>2,355.01<br>2,355.01<br>2,355.01<br>2,355.01<br>2,355.01<br>1,926.74 | 11,757.21<br>10,098.73<br>10,098.73<br>10,098.73<br>10,098.73<br>10,098.73<br>8,860.43 | 11,780.15<br>10,134.94<br>10,103.06<br>10,103.06<br>10,103.06<br>10,103.06<br>8,930.68 |
| Total Nitrogen (pounds)                                  | Lower Root River       | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 540<br>540<br>540<br>540<br>540<br>540<br>540        | 30<br>30<br>0<br>0<br>0<br>0<br>0<br>30                         | 0<br>0<br>0<br>0<br>0<br>0                                  | 570<br>570<br>540<br>540<br>540<br>540<br>540               | 48,810<br>44,820<br>44,820<br>44,820<br>44,820<br>44,820<br>43,180               | 232,290<br>170,470<br>170,470<br>170,470<br>170,470<br>170,470<br>166,420        | 281,100<br>215,290<br>215,290<br>215,290<br>215,290<br>215,290<br>209,600              | 281,670<br>215,860<br>215,830<br>215,830<br>215,830<br>215,830<br>210,170              |
|                                                          | Middle Root River      | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0                                  | 24,170<br>24,470<br>24,470<br>24,470<br>24,470<br>24,470<br>23,660               | 76,660<br>43,480<br>43,480<br>43,480<br>43,480<br>43,480<br>42,390               | 100,830<br>67,950<br>67,950<br>67,950<br>67,950<br>67,950<br>66,050                    | 100,830<br>67,950<br>67,950<br>67,950<br>67,950<br>67,950<br>66,050                    |
|                                                          | Upper Root River       | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                           | <10<br>10<br>0<br>0<br>0<br>0<br>0<br>30                        | 0<br>0<br>0<br>0<br>0<br>0                                  | <10<br>10<br>0<br>0<br>0<br>0<br>0<br>30                    | 38,610<br>30,000<br>30,000<br>30,000<br>30,000<br>30,000<br>29,050               | 1,220<br>770<br>770<br>770<br>770<br>770<br>770                                  | 39,830<br>30,770<br>30,770<br>30,770<br>30,770<br>30,770<br>29,820                     | 39,830<br>30,780<br>30,770<br>30,770<br>30,770<br>30,770<br>29,850                     |
|                                                          | Hoods Creek            | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0<br>0                                      | 3,980<br>5,690<br>5,690<br>5,690<br>5,690<br>5,690<br>5,690 | 3,980<br>5,690<br>5,690<br>5,690<br>5,690<br>5,690<br>5,690 | 6,060<br>5,940<br>5,940<br>5,940<br>5,940<br>5,940<br>5,710                      | 97,320<br>72,550<br>72,550<br>72,550<br>72,550<br>72,550<br>70,930               | 103,380<br>78,490<br>78,490<br>78,490<br>78,490<br>78,490<br>76,640                    | 107,360<br>84,180<br>84,180<br>84,180<br>84,180<br>84,180<br>82,330                    |

Table H-5 (continued)

|                                     |                              |                                               |                                               | Point S                               | Sources                                                            |                                                                    | N                                                                         | onpoint Source                                                            | e <sup>a</sup>                                                              |                                                                                        |
|-------------------------------------|------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Water Quality Indicator             | Subwatershed                 | Screening Alternative                         | Industrial<br>Point<br>Sources                | SSOs <sup>b</sup>                     | WWTPs                                                              | Subtotal                                                           | Urban                                                                     | Rural <sup>C</sup>                                                        | Subtotal                                                                    | Total                                                                                  |
| Total Nitrogen (pounds) (continued) | Root River Canal             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | 1,180<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,070               | 89,940<br>80,550<br>80,550<br>80,550<br>80,550<br>80,550<br>78,580        | 91,120<br>81,700<br>81,700<br>81,700<br>81,700<br>81,700<br>79,650          | 91,120<br>81,700<br>81,700<br>81,700<br>81,700<br>81,700<br>79,650                     |
|                                     | East Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0            | 1,820<br>1,820<br>1,820<br>1,820<br>1,820<br>1,820<br>1,820        | 1,820<br>1,820<br>1,820<br>1,820<br>1,820<br>1,820<br>1,820        | 2,600<br>2,960<br>2,960<br>2,960<br>2,960<br>2,960<br>2,760               | 132,080<br>116,320<br>116,320<br>116,320<br>116,320<br>116,320<br>113,410 | 134,680<br>119,280<br>119,280<br>119,280<br>119,280<br>119,280<br>116,170   | 136,500<br>121,100<br>121,100<br>121,100<br>121,100<br>121,100<br>117,990              |
|                                     | West Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <10<br><10<br><10<br><10<br><10<br><10<br><10 | 0<br>0<br>0<br>0<br>0<br>0            | 20,720<br>27,340<br>27,340<br>27,340<br>27,340<br>27,340<br>27,340 | 20,720<br>27,340<br>27,340<br>27,340<br>27,340<br>27,340<br>27,340 | 6,720<br>6,800<br>6,800<br>6,800<br>6,800<br>6,800<br>6,460               | 305,720<br>271,210<br>271,210<br>271,210<br>271,210<br>271,210<br>264,650 | 312,440<br>278,010<br>278,010<br>278,010<br>278,010<br>278,010<br>271,110   | 333,160<br>305,350<br>305,350<br>305,350<br>305,350<br>305,350<br>298,450              |
|                                     | East Branch Root River       | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>10<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>10<br>0<br>0<br>0<br>0<br>0                                   | 10,570<br>9,900<br>9,900<br>9,900<br>9,900<br>9,900<br>9,600              | 4,030<br>400<br>400<br>400<br>400<br>400<br>400<br>400                    | 14,600<br>10,300<br>10,300<br>10,300<br>10,300<br>10,300<br>10,000          | 14,600<br>10,310<br>10,300<br>10,300<br>10,300<br>10,300<br>10,060                     |
|                                     | Whitnall Park Creek          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0                    | 10<br>10<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0<br>0                                         | 10<br>10<br>0<br>0<br>0<br>0                                       | 23,440<br>20,030<br>20,030<br>20,030<br>20,030<br>20,030<br>19,410        | 14,650<br>5,010<br>5,010<br>5,010<br>5,010<br>5,010<br>4,920              | 38,090<br>25,040<br>25,040<br>25,040<br>25,040<br>25,040<br>24,330          | 38,100<br>25,050<br>25,040<br>25,040<br>25,040<br>25,040<br>24,340                     |
|                                     | Watershed Total              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 540<br>540<br>540<br>540<br>540<br>540<br>540 | 40<br>60<br>0<br>0<br>0<br>0<br>0     | 26,520<br>34,850<br>34,850<br>34,850<br>34,850<br>34,850<br>34,850 | 27,100<br>35,450<br>35,390<br>35,390<br>35,390<br>35,390<br>35,520 | 162,160<br>146,070<br>146,070<br>146,070<br>146,070<br>146,070<br>140,900 | 953,910<br>760,760<br>760,760<br>760,760<br>760,760<br>760,760<br>742,470 | 1,116,070<br>906,830<br>906,830<br>906,830<br>906,830<br>906,830<br>883,370 | 1,143,170<br>942,280<br>942,220<br>942,220<br>942,220<br>942,220<br>942,220<br>918,890 |
| Biochemical Oxygen Demand (pounds)  | Lower Root River             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 820<br>820<br>820<br>820<br>820<br>820<br>820 | 180<br>180<br>0<br>0<br>0<br>0<br>180 | 0<br>0<br>0<br>0<br>0<br>0                                         | 1,000<br>1,000<br>820<br>820<br>820<br>820<br>820<br>1,000         | 215,660<br>197,370<br>197,370<br>197,370<br>197,370<br>197,370<br>196,580 | 577,910<br>525,540<br>525,540<br>525,540<br>525,540<br>525,540<br>494,090 | 793,570<br>722,910<br>722,910<br>722,910<br>722,910<br>722,910<br>690,670   | 794,570<br>723,910<br>723,730<br>723,730<br>723,730<br>723,730<br>691,670              |

|                                                |                              |                                               |                                  | Point S                             | Sources                                                            |                                                           | N                                                                         | onpoint Source                                                            | e <sup>a</sup>                                                            |                                                                            |
|------------------------------------------------|------------------------------|-----------------------------------------------|----------------------------------|-------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                |                              |                                               | Industrial<br>Point              |                                     |                                                                    |                                                           |                                                                           |                                                                           |                                                                           |                                                                            |
| Water Quality Indicator                        | Subwatershed                 | Screening Alternative                         | Sources                          | SSOs <sup>b</sup>                   | WWTPs                                                              | Subtotal                                                  | Urban                                                                     | Rural <sup>C</sup>                                                        | Subtotal                                                                  | Total                                                                      |
| Biochemical Oxygen Demand (pounds) (continued) | Middle Root River            | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0                                | 105,600<br>113,860<br>113,860<br>113,860<br>113,860<br>113,860<br>113,580 | 186,700<br>125,680<br>125,680<br>125,680<br>125,680<br>125,680<br>120,090 | 292,300<br>239,540<br>239,540<br>239,540<br>239,540<br>239,540<br>233,670 | 292,300<br>239,540<br>239,540<br>239,540<br>239,540<br>239,540<br>233,670  |
|                                                | Upper Root River             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0       | 20<br>90<br>0<br>0<br>0<br>0<br>210 | 0<br>0<br>0<br>0<br>0<br>0                                         | 20<br>90<br>0<br>0<br>0<br>0<br>210                       | 169,850<br>126,890<br>126,890<br>126,890<br>126,890<br>126,890<br>126,890 | 6,380<br>4,570<br>4,570<br>4,570<br>4,570<br>4,570<br>4,570               | 176,230<br>131,460<br>131,460<br>131,460<br>131,460<br>131,460<br>131,460 | 176,250<br>131,550<br>131,460<br>131,460<br>131,460<br>131,460<br>131,670  |
|                                                | Hoods Creek                  | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0               | 990<br>1,410<br>1,410<br>1,410<br>1,410<br>1,410<br>1,410          | 990<br>1,410<br>1,410<br>1,410<br>1,410<br>1,410<br>1,410 | 37,740<br>35,610<br>35,610<br>35,610<br>35,610<br>35,610<br>35,610        | 214,960<br>198,010<br>198,010<br>198,010<br>198,010<br>198,010<br>185,790 | 252,700<br>233,620<br>233,620<br>233,620<br>233,620<br>233,620<br>221,400 | 253,690<br>235,030<br>235,030<br>235,030<br>235,030<br>235,030<br>222,810  |
|                                                | Root River Canal             | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0               | 0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0                                     | 8,330<br>8,010<br>8,010<br>8,010<br>8,010<br>8,010<br>7,600               | 230,680<br>246,990<br>246,990<br>246,990<br>246,990<br>246,990<br>230,270 | 239,010<br>255,000<br>255,000<br>255,000<br>255,000<br>255,000<br>237,870 | 239,010<br>255,000<br>255,000<br>255,000<br>255,000<br>255,000<br>237,870  |
|                                                | East Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0<br>0          | 750<br>750<br>750<br>750<br>750<br>750<br>750                      | 750<br>750<br>750<br>750<br>750<br>750<br>750             | 19,720<br>23,540<br>23,540<br>23,540<br>23,540<br>23,540<br>22,380        | 383,470<br>407,750<br>407,750<br>407,750<br>407,750<br>407,750<br>379,230 | 403,190<br>431,290<br>431,290<br>431,290<br>431,290<br>431,290<br>401,610 | 403,940<br>432,040<br>432,040<br>432,040<br>432,040<br>432,040<br>402,360  |
|                                                | West Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 10<br>10<br>10<br>10<br>10<br>10 | 0<br>0<br>0<br>0<br>0<br>0          | 11,280<br>14,890<br>14,890<br>14,890<br>14,890<br>14,890<br>14,890 | 11,290<br>14,900<br>14,900<br>14,900<br>14,900<br>14,900  | 36,630<br>35,170<br>35,170<br>35,170<br>35,170<br>35,170<br>34,290        | 870,200<br>931,950<br>931,950<br>931,950<br>931,950<br>931,950<br>867,880 | 906,830<br>967,120<br>967,120<br>967,120<br>967,120<br>967,120<br>902,170 | 918,120<br>982,020<br>982,020<br>982,020<br>982,020<br>982,020<br>9817,070 |
|                                                | East Branch Root River       | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0       | 0<br>80<br>0<br>0<br>0<br>0<br>400  | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>80<br>0<br>0<br>0<br>0<br>400                        | 42,060<br>37,340<br>37,340<br>37,340<br>37,340<br>37,340                  | 8,260<br>1,990<br>1,990<br>1,990<br>1,990<br>1,990                        | 50,320<br>39,330<br>39,330<br>39,330<br>39,330<br>39,330                  | 50,320<br>39,410<br>39,330<br>39,330<br>39,330<br>39,330<br>39,730         |

Table H-5 (continued)

|                                                |                     |                                                                 |                                               | Point S                                    | Sources                                                  |                                                                    | N                                                                         | onpoint Source                                                                          | <sub>e</sub> a                                                                          |                                                                                         |
|------------------------------------------------|---------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed        | Screening Alternative                                           | Industrial<br>Point<br>Sources                | SSOs <sup>b</sup>                          | WWTPs                                                    | Subtotal                                                           | Urban                                                                     | Rural <sup>C</sup>                                                                      | Subtotal                                                                                | Total                                                                                   |
| Biochemical Oxygen Demand (pounds) (continued) | Whitnall Park Creek | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                    | 60<br>60<br>0<br>0<br>0<br>0               | 0<br>0<br>0<br>0<br>0<br>0                               | 60<br>60<br>0<br>0<br>0<br>0                                       | 99,220<br>83,330<br>83,330<br>83,330<br>83,330<br>83,330<br>83,330        | 31,140<br>14,280<br>14,280<br>14,280<br>14,280<br>14,280<br>14,280                      | 130,360<br>97,610<br>97,610<br>97,610<br>97,610<br>97,610<br>97,610                     | 130,420<br>97,670<br>97,610<br>97,610<br>97,610<br>97,610<br>97,670                     |
|                                                | Watershed Total     | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 830<br>830<br>830<br>830<br>830<br>830<br>830 | 260<br>410<br>0<br>0<br>0<br>0<br>0<br>850 | 13,020<br>17,050<br>17,050<br>17,050<br>17,050<br>17,050 | 14,110<br>18,290<br>17,880<br>17,880<br>17,880<br>17,880<br>18,730 | 734,810<br>661,120<br>661,120<br>661,120<br>661,120<br>661,120<br>657,600 | 2,509,700<br>2,456,760<br>2,456,760<br>2,456,760<br>2,456,760<br>2,456,760<br>2,298,190 | 3,244,510<br>3,117,880<br>3,117,880<br>3,117,880<br>3,117,880<br>3,117,880<br>2,955,790 | 3,258,620<br>3,136,170<br>3,135,760<br>3,135,760<br>3,135,760<br>3,135,760<br>2,974,520 |
| Copper (pounds)                                | Lower Root River    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 3<br>3<br>3<br>3<br>3<br>3                    | <1<br><1<br>0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0<br>0                               | 3<br>3<br>3<br>3<br>3<br>3                                         | 404<br>340<br>340<br>340<br>340<br>340<br>340<br>338                      | 171<br>145<br>145<br>145<br>145<br>145<br>141                                           | 575<br>485<br>485<br>485<br>485<br>485<br>479                                           | 578<br>488<br>488<br>488<br>488<br>488<br>488                                           |
|                                                | Middle Root River   | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                         | 194<br>189<br>189<br>189<br>189<br>189                                    | 70<br>71<br>71<br>71<br>71<br>71<br>71                                                  | 264<br>260<br>260<br>260<br>260<br>260<br>258                                           | 264<br>260<br>260<br>260<br>260<br>260<br>258                                           |
|                                                | Upper Root River    | Existing<br>2020 Future (baseline)<br>1A<br>1B<br>1C<br>1D<br>2 | 0<br>0<br>0<br>0<br>0<br>0                    | <1<br><1<br>0<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0<br>0                               | <1<br><1<br>0<br>0<br>0<br>0<br>0                                  | 305<br>218<br>218<br>218<br>218<br>218<br>218                             | 2<br>1<br>1<br>1<br>1<br>1<br>1                                                         | 307<br>219<br>219<br>219<br>219<br>219<br>219                                           | 307<br>219<br>219<br>219<br>219<br>219<br>219                                           |
|                                                | Hoods Creek         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                 | 4<br>5<br>5<br>5<br>5<br>5<br>5                          | 4<br>5<br>5<br>5<br>5<br>5<br>5                                    | 69<br>59<br>59<br>59<br>59<br>59                                          | 64<br>54<br>54<br>54<br>54<br>54<br>54<br>53                                            | 133<br>113<br>113<br>113<br>113<br>113<br>113                                           | 137<br>118<br>118<br>118<br>118<br>118<br>117                                           |
|                                                | Root River Canal    | Existing 2020 Future (baseline) 1A 1B 1C 1D 2                   | 0<br>0<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                         | 15<br>14<br>14<br>14<br>14<br>14                                          | 42<br>41<br>41<br>41<br>41<br>41<br>38                                                  | 57<br>55<br>55<br>55<br>55<br>55<br>55                                                  | 57<br>55<br>55<br>55<br>55<br>55<br>55                                                  |

Table H-5 (continued)

|                             |                              |                                               |                                | Point S                                | Sources                                      |                                        | N                                                           | onpoint Source                                       | ea                                                          |                                                             |
|-----------------------------|------------------------------|-----------------------------------------------|--------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Water Quality Indicator     | Subwatershed                 | Screening Alternative                         | Industrial<br>Point<br>Sources | SSOs <sup>b</sup>                      | WWTPs                                        | Subtotal                               | Urban                                                       | Rural <sup>C</sup>                                   | Subtotal                                                    | Total                                                       |
| Copper (pounds) (continued) | East Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0             | 1<br>1<br>1<br>1<br>1<br>1<br>1              | 1<br>1<br>1<br>1<br>1<br>1             | 36<br>42<br>42<br>42<br>42<br>42<br>42<br>39                | 55<br>51<br>51<br>51<br>51<br>51<br>48               | 91<br>93<br>93<br>93<br>93<br>93<br>93<br>87                | 92<br>94<br>94<br>94<br>94<br>94<br>88                      |
|                             | West Branch Root River Canal | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0             | 35<br>47<br>47<br>47<br>47<br>47<br>47       | 35<br>47<br>47<br>47<br>47<br>47<br>47 | 67<br>63<br>63<br>63<br>63<br>63<br>61                      | 122<br>112<br>112<br>112<br>112<br>112<br>112<br>106 | 189<br>175<br>175<br>175<br>175<br>175<br>175               | 224<br>222<br>222<br>222<br>222<br>222<br>222<br>214        |
|                             | East Branch Root River       | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0          | 0<br><1<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0                        | 0<br><1<br>0<br>0<br>0<br>0<br>0       | 77<br>63<br>63<br>63<br>63<br>63<br>63                      | 2<br>1<br>1<br>1<br>1<br>1                           | 79<br>64<br>64<br>64<br>64<br>64<br>64                      | 79<br>64<br>64<br>64<br>64<br>64<br>64                      |
|                             | Whitnall Park Creek          | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 0<br>0<br>0<br>0<br>0<br>0     | <1<br><1<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0                   | <1<br><1<br>0<br>0<br>0<br>0<br>0      | 181<br>142<br>142<br>142<br>142<br>142<br>142               | 20<br>16<br>16<br>16<br>16<br>16                     | 201<br>158<br>158<br>158<br>158<br>158<br>158               | 201<br>158<br>158<br>158<br>158<br>158<br>158               |
|                             | Watershed Total              | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 3<br>3<br>3<br>3<br>3<br>3     | <1<br><1<br>0<br>0<br>0<br>0<br>0<br>0 | 40<br>53<br>53<br>53<br>53<br>53<br>53<br>53 | 43<br>56<br>56<br>56<br>56<br>56<br>56 | 1,348<br>1,130<br>1,130<br>1,130<br>1,130<br>1,130<br>1,122 | 548<br>492<br>492<br>492<br>492<br>492<br>474        | 1,896<br>1,622<br>1,622<br>1,622<br>1,622<br>1,622<br>1,596 | 1,939<br>1,678<br>1,678<br>1,678<br>1,678<br>1,678<br>1,652 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>Loads presented in this table for the 2020 future (baseline) condition reflect refinements that were made to the MMSD conveyance system model after the screening alternatives were evaluated. This results in certain anomalies in the load comparisons presented herein, particularly regarding SSO loads with Screening Alternative 2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

Table H-6

AVERAGE ANNUAL POLLUTANT LOADS FOR SCREENING ALTERNATIVES: NEARSHORE LAKE MICHIGAN AREA

|                                 |                                       |                                               |                                              | Point S                                        | Sources                                                                                 |                                                                                         | N                                                                                       | onpoint Source                                                            | e <sup>a</sup>                                                                          |                                                                                         |
|---------------------------------|---------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator         | Location                              | Screening Alternative                         | SSOs <sup>b</sup>                            | CSOs                                           | WWTPs                                                                                   | Subtotal                                                                                | Urban                                                                                   | Rural <sup>C</sup>                                                        | Subtotal                                                                                | Total                                                                                   |
| Total Phosphorus (pounds)       | Ozaukee County                        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 10<br>10<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                                                              | 10<br>10<br>0<br>0<br>0<br>0<br>0                                                       | 2,370<br>2,120<br>2,120<br>2,120<br>2,120<br>2,120<br>2,120<br>1,990                    | 630<br>560<br>560<br>560<br>560<br>560<br>520                             | 3,000<br>2,680<br>2,680<br>2,680<br>2,680<br>2,680<br>2,510                             | 3,010<br>2,690<br>2,680<br>2,680<br>2,680<br>2,680<br>2,520                             |
|                                 | Milwaukee County                      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 30<br>10<br>0<br>0<br>0<br>0                 | 160<br>120<br>0<br>0<br>0<br>0<br>0            | 316,550<br>371,700<br>371,700<br>371,700<br>371,700<br>371,700<br>371,700               | 316,740<br>371,830<br>371,700<br>371,700<br>371,700<br>371,700<br>371,820               | 5,930<br>5,180<br>5,180<br>5,180<br>5,180<br>5,180<br>4,870                             | 720<br>700<br>700<br>700<br>700<br>700<br>700<br>610                      | 6,650<br>5,880<br>5,880<br>5,880<br>5,880<br>5,880<br>5,480                             | 323,390<br>377,710<br>377,580<br>377,580<br>377,580<br>377,580<br>377,300               |
|                                 | Racine County                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <10<br><10<br>0<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0                                                                   | <10<br><10<br>0<br>0<br>0<br>0<br>0<br>0                                                | 4,880<br>4,290<br>4,290<br>4,290<br>4,290<br>4,290<br>3,880                             | 890<br>530<br>530<br>530<br>530<br>530<br>620                             | 5,770<br>4,820<br>4,820<br>4,820<br>4,820<br>4,820<br>4,820<br>4,500                    | 5,770<br>4,820<br>4,820<br>4,820<br>4,820<br>4,820<br>4,500                             |
|                                 | Nearshore Lake Michigan<br>Area Total | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 40<br>20<br>0<br>0<br>0<br>0<br>0            | 160<br>120<br>0<br>0<br>0<br>0<br>0            | 316,550<br>371,700<br>371,700<br>371,700<br>371,700<br>371,700<br>371,700               | 316,750<br>371,840<br>371,700<br>371,700<br>371,700<br>371,700<br>371,830               | 13,180<br>11,590<br>11,590<br>11,590<br>11,590<br>11,590<br>10,740                      | 2,240<br>1,790<br>1,790<br>1,790<br>1,790<br>1,790<br>1,750               | 15,420<br>13,380<br>13,380<br>13,380<br>13,380<br>13,380<br>12,490                      | 332,170<br>385,220<br>385,080<br>385,080<br>385,080<br>385,080<br>384,320               |
| Total Suspended Solids (pounds) | Ozaukee County                        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 310<br>430<br>0<br>0<br>0<br>0<br>0<br>360   | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0                                                                   | 310<br>430<br>0<br>0<br>0<br>0<br>0<br>360                                              | 838,280<br>659,900<br>659,900<br>659,900<br>659,900<br>659,900<br>676,650               | 397,340<br>361,640<br>361,640<br>361,640<br>361,640<br>361,640<br>317,730 | 1,235,620<br>1,021,540<br>1,021,540<br>1,021,540<br>1,021,540<br>1,021,540<br>994,380   | 1,235,930<br>1,021,970<br>1,021,540<br>1,021,540<br>1,021,540<br>1,021,540<br>994,740   |
|                                 | Milwaukee County                      | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 1,160<br>200<br>0<br>0<br>0<br>0<br>0<br>230 | 16,040<br>11,750<br>0<br>0<br>0<br>0<br>10,630 | 6,926,460<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720 | 6,943,660<br>7,770,670<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,769,580 | 2,770,770<br>2,066,830<br>2,066,830<br>2,066,830<br>2,066,830<br>2,066,830<br>2,132,150 | 126,260<br>140,430<br>140,430<br>140,430<br>140,430<br>140,430<br>73,650  | 2,897,030<br>2,207,260<br>2,207,260<br>2,207,260<br>2,207,260<br>2,207,260<br>2,205,800 | 9,840,690<br>9,977,930<br>9,965,980<br>9,965,980<br>9,965,980<br>9,965,980<br>9,975,380 |

|                                              |                                       |                                               |                                                              | Point S                                                  | Sources                                                                                              |                                                                                                      | N                                                                                       | onpoint Source                                                                         | <sub>j</sub> a                                                                          |                                                                                                              |
|----------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Water Quality Indicator                      | Location                              | Screening Alternative                         | SSOs <sup>b</sup>                                            | CSOs                                                     | WWTPs                                                                                                | Subtotal                                                                                             | Urban                                                                                   | Rural <sup>C</sup>                                                                     | Subtotal                                                                                | Total                                                                                                        |
| Total Suspended Solids (pounds) (continued)  | Racine County                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 130<br>130<br>0<br>0<br>0<br>0<br>0<br>130                   | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                                                           | 130<br>130<br>0<br>0<br>0<br>0<br>0<br>130                                                           | 1,932,680<br>1,650,890<br>1,650,890<br>1,650,890<br>1,650,890<br>1,650,890<br>1,426,310 | 703,620<br>325,090<br>325,090<br>325,090<br>325,090<br>325,090<br>499,930              | 2,636,300<br>1,975,980<br>1,975,980<br>1,975,980<br>1,975,980<br>1,975,980<br>1,926,240 | 2,636,430<br>1,976,110<br>1,975,980<br>1,975,980<br>1,975,980<br>1,975,980<br>1,926,370                      |
|                                              | Nearshore Lake Michigan<br>Area Total | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 1,600<br>760<br>0<br>0<br>0<br>0<br>0<br>720                 | 16,040<br>11,750<br>0<br>0<br>0<br>0<br>0<br>10,630      | 6,926,460<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720 | 6,944,100<br>7,771,230<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,758,720<br>7,770,070 | 5,541,730<br>4,377,620<br>4,377,620<br>4,377,620<br>4,377,620<br>4,377,620<br>4,235,110 | 1,227,220<br>827,160<br>827,160<br>827,160<br>827,160<br>827,160<br>827,160<br>891,310 | 6,768,950<br>5,204,780<br>5,204,780<br>5,204,780<br>5,204,780<br>5,204,780<br>5,126,420 | 13,713,050<br>12,976,010<br>12,963,500<br>12,963,500<br>12,963,500<br>12,963,500<br>12,963,500<br>12,896,490 |
| Fecal Coliform Bacteria (trillions of cells) | Ozaukee County                        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 5.87<br>8.24<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>6.87 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                 | 5.87<br>8.24<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>6.87                                         | 682.50<br>561.25<br>561.25<br>561.25<br>561.25<br>561.25<br>561.25<br>530.88            | 60.95<br>80.21<br>80.21<br>80.21<br>80.21<br>80.21<br>44.94                            | 743.45<br>641.46<br>641.46<br>641.46<br>641.46<br>641.46<br>575.82                      | 749.32<br>649.70<br>641.46<br>641.46<br>641.46<br>641.46<br>582.69                                           |
|                                              | Milwaukee County                      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 25.07<br>4.22<br>0.00<br>0.00<br>0.00<br>0.00<br>4.87        | 132.23<br>96.91<br>0.00<br>0.00<br>0.00<br>0.00<br>87.64 | 2,043.01<br>2,345.05<br>2,345.05<br>2,345.05<br>2,345.05<br>2,345.05<br>2,345.05                     | 2,200.31<br>2,446.18<br>2,345.05<br>2,345.05<br>2,345.05<br>2,345.05<br>2,437.56                     | 1,971.96<br>1,615.25<br>1,615.25<br>1,615.25<br>1,615.25<br>1,615.25<br>1,512.08        | 43.48<br>114.57<br>114.57<br>114.57<br>114.57<br>114.57<br>44.71                       | 2,015.44<br>1,729.82<br>1,729.82<br>1,729.82<br>1,729.82<br>1,729.82<br>1,556.79        | 4,215.75<br>4,176.00<br>4,074.87<br>4,074.87<br>4,074.87<br>4,074.87<br>3,994.35                             |
|                                              | Racine County                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 2.88<br>2.88<br>0.00<br>0.00<br>0.00<br>0.00<br>2.88         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                 | 2.88<br>2.88<br>0.00<br>0.00<br>0.00<br>0.00<br>2.88                                                 | 1,252.98<br>1,002.16<br>1,002.16<br>1,002.16<br>1,002.16<br>1,002.16<br>929.05          | 50.70<br>70.11<br>70.11<br>70.11<br>70.11<br>70.11<br>34.25                            | 1,303.68<br>1,072.27<br>1,072.27<br>1,072.27<br>1,072.27<br>1,072.27<br>963.30          | 1,306.56<br>1,075.15<br>1,072.27<br>1,072.27<br>1,072.27<br>1,072.27<br>966.18                               |
|                                              | Nearshore Lake Michigan<br>Area Total | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 33.82<br>15.34<br>0.00<br>0.00<br>0.00<br>0.00<br>14.62      | 132.23<br>96.91<br>0.00<br>0.00<br>0.00<br>0.00<br>87.64 | 2,043.01<br>2,345.05<br>2,345.05<br>2,345.05<br>2,345.05<br>2,345.05<br>2,345.05                     | 2,209.06<br>2,457.30<br>2,345.05<br>2,345.05<br>2,345.05<br>2,345.05<br>2,447.31                     | 3,907.44<br>3,178.66<br>3,178.66<br>3,178.66<br>3,178.66<br>3,178.66<br>2,972.01        | 155.13<br>264.89<br>264.89<br>264.89<br>264.89<br>264.89<br>123.90                     | 4,062.57<br>3,443.55<br>3,443.55<br>3,443.55<br>3,443.55<br>3,443.55<br>3,095.91        | 6,271.63<br>5,900.85<br>5,788.60<br>5,788.60<br>5,788.60<br>5,788.60<br>5,788.60<br>5,543.22                 |
| Total Nitrogen (pounds)                      | Ozaukee County                        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 10<br>20<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                                                           | 10<br>20<br>0<br>0<br>0<br>0<br>0                                                                    | 15,310<br>14,700<br>14,700<br>14,700<br>14,700<br>14,700<br>13,730                      | 9,910<br>8,810<br>8,810<br>8,810<br>8,810<br>8,810<br>9,240                            | 25,220<br>23,510<br>23,510<br>23,510<br>23,510<br>23,510<br>22,970                      | 25,230<br>23,530<br>23,510<br>23,510<br>23,510<br>23,510<br>22,980                                           |

Table H-6 (continued)

|                                     |                                       |                                               |                                         | Point S                                      | Sources                                                                                 |                                                                                         | N                                                                         | onpoint Source                                                         | ea                                                                        |                                                                                         |
|-------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Water Quality Indicator             | Location                              | Screening Alternative                         | SSOs <sup>b</sup>                       | CSOs                                         | WWTPs                                                                                   | Subtotal                                                                                | Urban                                                                     | Rural <sup>C</sup>                                                     | Subtotal                                                                  | Total                                                                                   |
| Total Nitrogen (pounds) (continued) | Milwaukee County                      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 60<br>10<br>0<br>0<br>0<br>0<br>0       | 1,120<br>820<br>0<br>0<br>0<br>0<br>0<br>740 | 8,261,880<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380 | 8,263,060<br>9,648,210<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380<br>9,648,130 | 38,940<br>35,890<br>35,890<br>35,890<br>35,890<br>35,890<br>34,250        | 7,650<br>5,520<br>5,520<br>5,520<br>5,520<br>5,520<br>5,960            | 46,590<br>41,410<br>41,410<br>41,410<br>41,410<br>41,410<br>40,210        | 8,309,650<br>9,689,620<br>9,688,790<br>9,688,790<br>9,688,790<br>9,688,790<br>9,688,340 |
|                                     | Racine County                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 10<br>10<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0                                                              | 10<br>10<br>0<br>0<br>0<br>0<br>0                                                       | 33,130<br>35,330<br>35,330<br>35,330<br>35,330<br>35,330<br>28,740        | 20,450<br>9,120<br>9,120<br>9,120<br>9,120<br>9,120<br>9,120<br>14,550 | 53,580<br>44,450<br>44,450<br>44,450<br>44,450<br>44,450<br>43,290        | 53,590<br>44,460<br>44,450<br>44,450<br>44,450<br>44,450<br>43,300                      |
|                                     | Nearshore Lake Michigan<br>Area Total | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 80<br>40<br>0<br>0<br>0<br>0<br>0<br>30 | 1,120<br>820<br>0<br>0<br>0<br>0<br>0<br>740 | 8,261,880<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380 | 8,263,080<br>9,648,240<br>9,647,380<br>9,647,380<br>9,647,380<br>9,647,380<br>9,648,150 | 87,380<br>85,920<br>85,920<br>85,920<br>85,920<br>85,920<br>76,720        | 38,010<br>23,450<br>23,450<br>23,450<br>23,450<br>23,450<br>29,750     | 125,390<br>109,370<br>109,370<br>109,370<br>109,370<br>109,370<br>106,470 | 8,388,470<br>9,757,610<br>9,756,750<br>9,756,750<br>9,756,750<br>9,756,750<br>9,754,620 |
| Biochemical Oxygen Demand (pounds)  | Ozaukee County                        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 80<br>110<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0                                                              | 80<br>110<br>0<br>0<br>0<br>0<br>0                                                      | 52,360<br>46,160<br>46,160<br>46,160<br>46,160<br>46,160<br>46,010        | 16,560<br>21,640<br>21,640<br>21,640<br>21,640<br>21,640<br>20,910     | 68,920<br>67,800<br>67,800<br>67,800<br>67,800<br>67,800<br>66,920        | 69,000<br>67,910<br>67,800<br>67,800<br>67,800<br>67,800<br>67,010                      |
|                                     | Milwaukee County                      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 320<br>50<br>0<br>0<br>0<br>0<br>0      | 2,980<br>2,190<br>0<br>0<br>0<br>0<br>1,980  | 7,380,790<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960 | 7,384,090<br>8,398,200<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960<br>8,398,000 | 162,330<br>136,190<br>136,190<br>136,190<br>136,190<br>136,190<br>138,690 | 15,420<br>15,080<br>15,080<br>15,080<br>15,080<br>15,080<br>12,430     | 177,750<br>151,270<br>151,270<br>151,270<br>151,270<br>151,270<br>151,120 | 7,561,840<br>8,549,470<br>8,547,230<br>8,547,230<br>8,547,230<br>8,547,230<br>8,549,120 |
|                                     | Racine County                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | 40<br>40<br>0<br>0<br>0<br>0<br>0<br>40 | 0<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>0                                                              | 40<br>40<br>0<br>0<br>0<br>0<br>0<br>40                                                 | 119,170<br>113,800<br>113,800<br>113,800<br>113,800<br>113,800<br>96,820  | 31,920<br>20,060<br>20,060<br>20,060<br>20,060<br>20,060<br>34,930     | 151,090<br>133,860<br>133,860<br>133,860<br>133,860<br>133,750            | 151,130<br>133,900<br>133,860<br>133,860<br>133,860<br>133,860<br>131,790               |
|                                     | Nearshore Lake Michigan<br>Area Total | Existing 2020 Future (baseline) 1A 1B 1C 1D   | 440<br>200<br>0<br>0<br>0<br>0<br>0     | 2,980<br>2,190<br>0<br>0<br>0<br>0<br>1,980  | 7,380,790<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960 | 7,384,210<br>8,398,350<br>8,395,960<br>8,395,960<br>8,395,960<br>8,395,960<br>8,398,130 | 333,860<br>296,150<br>296,150<br>296,150<br>296,150<br>296,150<br>281,520 | 63,900<br>56,780<br>56,780<br>56,780<br>56,780<br>56,780<br>68,270     | 397,760<br>352,930<br>352,930<br>352,930<br>352,930<br>352,930<br>349,790 | 7,781,970<br>8,751,280<br>8,748,890<br>8,748,890<br>8,748,890<br>8,748,890<br>8,747,920 |

Table H-6 (continued)

|                         |                                       |                                               |                                         | Point S                         | Sources                                                            |                                                                    | N                                             | onpoint Source                         | a                                                    |                                                                    |
|-------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator | Location                              | Screening Alternative                         | SSOs <sup>b</sup>                       | CSOs                            | WWTPs                                                              | Subtotal                                                           | Urban                                         | Rural <sup>C</sup>                     | Subtotal                                             | Total                                                              |
| Copper (pounds)         | Ozaukee County                        | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <1<br><1<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0                                         | <1<br><1<br>0<br>0<br>0<br>0<br>0                                  | 96<br>78<br>78<br>78<br>78<br>78<br>78<br>82  | 13<br>15<br>15<br>15<br>15<br>15       | 109<br>93<br>93<br>93<br>93<br>93<br>93              | 109<br>93<br>93<br>93<br>93<br>93<br>93                            |
|                         | Milwaukee County                      | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <1<br><1<br>0<br>0<br>0<br>0<br>0<br><1 | 4<br>3<br>0<br>0<br>0<br>0<br>0 | 10,445<br>11,843<br>11,843<br>11,843<br>11,843<br>11,843<br>11,843 | 10,449<br>11,846<br>11,843<br>11,843<br>11,843<br>11,843<br>11,845 | 298<br>234<br>234<br>234<br>234<br>234<br>243 | 17<br>24<br>24<br>24<br>24<br>24<br>24 | 315<br>258<br>258<br>258<br>258<br>258<br>258<br>257 | 10,764<br>12,104<br>12,101<br>12,101<br>12,101<br>12,101<br>12,102 |
|                         | Racine County                         | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <1<br><1<br>0<br>0<br>0<br>0<br>0<br><1 | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0                                              | <1<br><1<br>0<br>0<br>0<br>0<br>0                                  | 228<br>175<br>175<br>175<br>175<br>175<br>177 | 18<br>15<br>15<br>15<br>15<br>15       | 246<br>190<br>190<br>190<br>190<br>190               | 246<br>190<br>190<br>190<br>190<br>190<br>190                      |
|                         | Nearshore Lake Michigan<br>Area Total | Existing 2020 Future (baseline) 1A 1B 1C 1D 2 | <1<br><1<br>0<br>0<br>0<br>0<br>0<br><1 | 4<br>3<br>0<br>0<br>0<br>0<br>2 | 10,445<br>11,843<br>11,843<br>11,843<br>11,843<br>11,843           | 10,449<br>11,846<br>11,843<br>11,843<br>11,843<br>11,845           | 622<br>487<br>487<br>487<br>487<br>487<br>502 | 48<br>54<br>54<br>54<br>54<br>54<br>38 | 670<br>541<br>541<br>541<br>541<br>541<br>540        | 11,119<br>12,387<br>12,384<br>12,384<br>12,384<br>12,384<br>12,385 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; HydroQual, Inc.; and SEWRPC.

bLoads presented in this table for the 2020 future (baseline) condition reflect refinements that were made to the MMSD conveyance system model after the screening alternatives were evaluated. This results in certain anomalies in the load comparisons presented herein, particularly regarding SSO loads with Screening Alternative 2.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominantly urban setting.

# Appendix I

# COMPARISON OF WATER QUALITY SUMMARY STATISTICS FOR SCREENING ALTERNATIVES

Table I-1
WATER QUALITY SUMMARY STATISTICS FOR SCREENING ALTERNATIVES: KINNICKINNIC RIVER WATERSHED

|                                                    |                                 |                                                                                        |          |                              |        | Sci    | eening Alterna | tive   |        |
|----------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                                   | Water Quality Indicator         | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| KK-9                                               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 5,785    | 4,899                        | 4,484  | 4,481  | 4,508          | 4,508  | 4,512  |
| Kinnickinnic River<br>Downstream of<br>Wilson Park | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 74       | 75                           | 75     | 75     | 75             | 75     | 75     |
| Creek                                              |                                 | Geometric mean (cells per 100 ml)                                                      | 654      | 563                          | 557    | 557    | 559            | 559    | 507    |
|                                                    |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 254      | 265                          | 265    | 265    | 265            | 265    | 272    |
|                                                    | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,360    | 3,004                        | 2,314  | 2,311  | 2,363          | 2,363  | 2,983  |
|                                                    | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 87       | 86                           | 86     | 86     | 86             | 86     | 87     |
|                                                    |                                 | Geometric mean (cells per 100 ml)                                                      | 343      | 295                          | 290    | 290    | 292            | 292    | 267    |
|                                                    |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 146      | 148                          | 148    | 148    | 148            | 148    | 150    |
|                                                    | Dissolved Oxygen                | Mean (mg/l)                                                                            | 11.3     | 11.3                         | 11.3   | 11.3   | 11.3           | 11.3   | 11.3   |
|                                                    |                                 | Median (mg/l)                                                                          | 11.4     | 11.4                         | 11.4   | 11.4   | 11.4           | 11.4   | 11.4   |
|                                                    |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                          | 100    | 100    | 100            | 100    | 100    |
|                                                    | Total Phosphorus                | Mean (mg/l)                                                                            | 0.206    | 0.199                        | 0.197  | 0.197  | 0.197          | 0.197  | 0.196  |
|                                                    |                                 | Median (mg/l)                                                                          | 0.171    | 0.164                        | 0.164  | 0.164  | 0.164          | 0.164  | 0.161  |
|                                                    |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 24       | 24                           | 24     | 25     | 24             | 24     | 25     |
|                                                    | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.39     | 1.3                          | 1.29   | 1.29   | 1.29           | 1.29   | 1.29   |
|                                                    |                                 | Median (mg/l)                                                                          | 1.22     | 1.13                         | 1.12   | 1.12   | 1.12           | 1.12   | 1.12   |
|                                                    | Total Suspended Solids          | Mean (mg/l)                                                                            | 14.5     | 11.5                         | 11.4   | 11.4   | 11.4           | 11.4   | 11.5   |
|                                                    |                                 | Median (mg/l)                                                                          | 4.8      | 3.8                          | 3.8    | 3.8    | 3.8            | 3.8    | 3.8    |
|                                                    | Copper                          | Mean (mg/l)                                                                            | 0.0047   | 0.0018                       | 0.0041 | 0.0041 | 0.0041         | 0.0041 | 0.0041 |
|                                                    |                                 | Median (mg/l)                                                                          | 0.0019   | 0.0041                       | 0.0018 | 0.0018 | 0.0018         | 0.0018 | 0.0018 |

Table I-1 (continued)

|                                                         |                                 |                                                                                        |          |                              |        | Scr    | eening Alterna | tive   |        |
|---------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                                        | Water Quality Indicator         | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| KK-10                                                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 5,859    | 4,909                        | 4,493  | 4,487  | 4,549          | 4,549  | 4,499  |
| Kinnickinnic River<br>near Upstream<br>Limit of Estuary | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 74       | 75                           | 75     | 75     | 75             | 75     | 75     |
| ,                                                       |                                 | Geometric mean (cells per 100 ml)                                                      | 842      | 703                          | 678    | 681    | 687            | 687    | 635    |
|                                                         |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 229      | 250                          | 256    | 256    | 255            | 255    | 258    |
|                                                         | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,401    | 3,000                        | 2,297  | 2,288  | 2,404          | 2,404  | 2,934  |
|                                                         | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 86       | 86                           | 86     | 86     | 86             | 86     | 87     |
|                                                         |                                 | Geometric mean (cells per 100 ml)                                                      | 498      | 415                          | 391    | 391    | 398            | 398    | 378    |
|                                                         |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 131      | 140                          | 146    | 146    | 145            | 145    | 141    |
|                                                         | Dissolved Oxygen                | Mean (mg/l)                                                                            | 11.4     | 11.4                         | 11.4   | 11.4   | 11.4           | 11.4   | 11.4   |
|                                                         |                                 | Median (mg/l)                                                                          | 11.5     | 11.5                         | 11.5   | 11.5   | 11.5           | 11.5   | 11.5   |
|                                                         |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                          | 100    | 100    | 100            | 100    | 100    |
|                                                         | Total Phosphorus                | Mean (mg/l)                                                                            | 0.196    | 0.189                        | 0.187  | 0.187  | 0.187          | 0.187  | 0.186  |
|                                                         |                                 | Median (mg/l)                                                                          | 0.165    | 0.158                        | 0.157  | 0.157  | 0.157          | 0.157  | 0.155  |
|                                                         |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 27       | 27                           | 27     | 27     | 27             | 27     | 28     |
|                                                         | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.36     | 1.26                         | 1.26   | 1.26   | 1.26           | 1.26   | 1.25   |
|                                                         |                                 | Median (mg/l)                                                                          | 1.21     | 1.12                         | 1.11   | 1.11   | 1.11           | 1.11   | 1.11   |
|                                                         | Total Suspended Solids          | Mean (mg/l)                                                                            | 13.2     | 10.5                         | 10.4   | 10.4   | 10.4           | 10.4   | 10.5   |
|                                                         |                                 | Median (mg/l)                                                                          | 4.7      | 3.8                          | 3.8    | 3.8    | 3.8            | 3.8    | 3.8    |
|                                                         | Copper                          | Mean (mg/l)                                                                            | 0.0048   | 0.0041                       | 0.0041 | 0.0041 | 0.0041         | 0.0041 | 0.0041 |
|                                                         |                                 | Median (mg/l)                                                                          | 0.0019   | 0.0017                       | 0.0017 | 0.0017 | 0.0017         | 0.0017 | 0.0017 |

<sup>&</sup>lt;sup>a</sup>Variance Standard in Chapter NR 104 of the Wisconsin Administrative Code.

Table I-2
WATER QUALITY SUMMARY STATISTICS FOR SCREENING ALTERNATIVES: MENOMONEE RIVER WATERSHED

|                                      |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|--------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                     | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| MN-5                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,417    | 1,605                        | 1,604  | 1,604  | 1,604          | 1,604  | 1,354  |
| Menomonee<br>River at<br>Washington- | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 68       | 65                           | 65     | 65     | 65             | 65     | 66     |
| Waukesha<br>County Line              |                                 | Geometric mean (cells per 100 ml)                                       | 205      | 234                          | 233    | 233    | 233            | 233    | 187    |
|                                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 202      | 184                          | 184    | 184    | 184            | 184    | 210    |
|                                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 890      | 982                          | 980    | 980    | 980            | 980    | 831    |
|                                      | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 82       | 79                           | 79     | 79     | 79             | 79     | 80     |
|                                      |                                 | Geometric mean (cells per 100 ml)                                       | 105      | 118                          | 117    | 117    | 117            | 117    | 93     |
|                                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 82       | 114                          | 114    | 114    | 114            | 114    | 129    |
|                                      | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.5     | 10.5                         | 10.5   | 10.5   | 10.5           | 10.5   | 10.5   |
|                                      |                                 | Median (mg/l)                                                           | 10.7     | 10.7                         | 10.7   | 10.7   | 10.7           | 10.7   | 10.7   |
|                                      |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                           | 99     | 99     | 99             | 99     | 99     |
|                                      | Total Phosphorus                | Mean (mg/l)                                                             | 0.097    | 0.105                        | 0.105  | 0.105  | 0.105          | 0.105  | 0.1    |
|                                      |                                 | Median (mg/l)                                                           | 0.063    | 0.066                        | 0.066  | 0.066  | 0.066          | 0.066  | 0.064  |
|                                      |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 70       | 68                           | 68     | 68     | 68             | 68     | 69     |
|                                      | Total Nitrogen                  | Mean (mg/l)                                                             | 1.21     | 1.07                         | 1.07   | 1.07   | 1.07           | 1.07   | 1.04   |
|                                      |                                 | Median (mg/l)                                                           | 1.08     | 0.97                         | 0.97   | 0.97   | 0.97           | 0.97   | 0.95   |
|                                      | Total Suspended Solids          | Mean (mg/l)                                                             | 10.2     | 10.2                         | 10.2   | 10.2   | 10.2           | 10.2   | 9.4    |
|                                      |                                 | Median (mg/l)                                                           | 6        | 5.8                          | 5.8    | 5.8    | 5.8            | 5.8    | 5.5    |
|                                      | Copper                          | Mean (mg/l)                                                             | 0.0041   | 0.0047                       | 0.0047 | 0.0047 | 0.0047         | 0.0047 | 0.0043 |
|                                      |                                 | Median (mg/l)                                                           | 0.0016   | 0.0017                       | 0.0017 | 0.0017 | 0.0017         | 0.0017 | 0.0016 |

Table I-2 (continued)

|                                              |                                                               |                                                                         |          |                  |        | Scr    | eening Alterna | tive   |        |
|----------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------|--------|--------|----------------|--------|--------|
|                                              |                                                               |                                                                         |          | Original         |        |        |                |        |        |
| Assessment Point                             | Water Quality Indicator                                       | Statistic                                                               | Existing | 2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| MN-9                                         | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 2,828    | 2,728            | 2,726  | 2,726  | 2,726          | 2,726  | 2,387  |
| Menomonee<br>River Down-<br>stream of Butler | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 57       | 56               | 56     | 56     | 56             | 56     | 57     |
| Ditch                                        |                                                               | Geometric mean (cells per 100 ml)                                       | 489      | 489              | 487    | 487    | 487            | 487    | 420    |
|                                              |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 72       | 78               | 79     | 79     | 79             | 79     | 105    |
|                                              | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 1,571    | 1,438            | 1,433  | 1,433  | 1,433          | 1,433  | 1,265  |
|                                              |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 76       | 74               | 74     | 74     | 74             | 74     | 75     |
|                                              |                                                               | Geometric mean (cells per 100 ml)                                       | 229      | 216              | 214    | 214    | 214            | 214    | 186    |
|                                              |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 51       | 57               | 58     | 58     | 58             | 58     | 77     |
|                                              | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 10.8     | 10.8             | 10.8   | 10.8   | 10.8           | 10.8   | 10.8   |
|                                              |                                                               | Median (mg/l)                                                           | 11       | 11               | 11     | 11     | 11             | 11     | 11     |
|                                              |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99               | 99     | 99     | 99             | 99     | 99     |
|                                              | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.101    | 0.102            | 0.102  | 0.102  | 0.102          | 0.102  | 0.097  |
|                                              |                                                               | Median (mg/l)                                                           | 0.061    | 0.065            | 0.065  | 0.065  | 0.065          | 0.065  | 0.063  |
|                                              |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 69       | 66               | 66     | 66     | 66             | 66     | 68     |
|                                              | Total Nitrogen                                                | Mean (mg/l)                                                             | 1.08     | 0.92             | 0.92   | 0.92   | 0.92           | 0.92   | 0.89   |
|                                              |                                                               | Median (mg/l)                                                           | 1        | 0.86             | 0.86   | 0.86   | 0.86           | 0.86   | 0.84   |
|                                              | Total Suspended Solids                                        | Mean (mg/l)                                                             | 15.7     | 13.3             | 13.3   | 13.3   | 13.3           | 13.3   | 12.8   |
|                                              |                                                               | Median (mg/l)                                                           | 6        | 5.2              | 5.2    | 5.2    | 5.2            | 5.2    | 5      |
|                                              | Copper                                                        | Mean (mg/l)                                                             | 0.0052   | 0.0052           | 0.0052 | 0.0052 | 0.0052         | 0.0052 | 0.005  |
|                                              |                                                               | Median (mg/l)                                                           | 0.0019   | 0.002            | 0.002  | 0.002  | 0.002          | 0.002  | 0.0018 |

|                                 |                                  |                                                                         |          |                  |        | Scr    | eening Alterna | tive   |        |
|---------------------------------|----------------------------------|-------------------------------------------------------------------------|----------|------------------|--------|--------|----------------|--------|--------|
|                                 |                                  |                                                                         |          | Original<br>2020 |        |        |                |        | _      |
| Assessment Point                | Water Quality Indicator          | Statistic                                                               | Existing | Baseline         | 1A     | 1B     | 1C             | 1D     | 2      |
| MN-12<br>Menomonee              | Fecal Coliform Bacteria (annual) | Mean (cells per 100 ml)                                                 | 4,366    | 3,913            | 3,911  | 3,911  | 3,911          | 3,911  | 3,476  |
| River Down-<br>stream of Little | (aimuai)                         | Percent compliance with single sample standard (<400 cells per 100 ml)  | 50       | 49               | 49     | 49     | 49             | 49     | 50     |
| Menomonee<br>River              |                                  | Geometric mean (cells per 100 ml)                                       | 795      | 746              | 744    | 744    | 744            | 744    | 651    |
|                                 |                                  | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 31       | 38               | 39     | 39     | 39             | 39     | 49     |
|                                 | Fecal Coliform Bacteria          | Mean (cells per 100 ml)                                                 | 2,175    | 1,895            | 1,891  | 1,891  | 1,891          | 1,891  | 1,689  |
|                                 | (May-September: 153 days total)  | Percent compliance with single sample standard (<400 cells per 100 ml)  | 69       | 68               | 68     | 68     | 68             | 68     | 69     |
|                                 |                                  | Geometric mean (cells per 100 ml)                                       | 348      | 314              | 312    | 312    | 312            | 312    | 274    |
|                                 |                                  | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 21       | 26               | 26     | 26     | 26             | 26     | 34     |
|                                 | Dissolved Oxygen                 | Mean (mg/l)                                                             | 10.7     | 10.7             | 10.7   | 10.7   | 10.7           | 10.7   | 10.7   |
|                                 |                                  | Median (mg/l)                                                           | 10.9     | 10.9             | 10.9   | 10.9   | 10.9           | 10.9   | 10.9   |
|                                 |                                  | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99               | 99     | 99     | 99             | 99     | 99     |
|                                 | Total Phosphorus                 | Mean (mg/l)                                                             | 0.1      | 0.1              | 0.1    | 0.1    | 0.1            | 0.1    | 0.095  |
|                                 |                                  | Median (mg/l)                                                           | 0.061    | 0.064            | 0.064  | 0.064  | 0.064          | 0.064  | 0.062  |
|                                 |                                  | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 69       | 68               | 68     | 68     | 68             | 68     | 69     |
|                                 | Total Nitrogen                   | Mean (mg/l)                                                             | 1.07     | 0.9              | 0.9    | 0.9    | 0.9            | 0.9    | 0.88   |
|                                 |                                  | Median (mg/l)                                                           | 1.01     | 0.86             | 0.86   | 0.86   | 0.86           | 0.86   | 0.84   |
|                                 | Total Suspended Solids           | Mean (mg/l)                                                             | 13.4     | 11.2             | 11.2   | 11.2   | 11.2           | 11.2   | 10.8   |
|                                 |                                  | Median (mg/l)                                                           | 5.2      | 4.4              | 4.4    | 4.4    | 4.4            | 4.4    | 4.2    |
|                                 | Copper                           | Mean (mg/l)                                                             | 0.0054   | 0.0052           | 0.0052 | 0.0052 | 0.0052         | 0.0052 | 0.005  |
|                                 |                                  | Median (mg/l)                                                           | 0.0021   | 0.0021           | 0.0021 | 0.0021 | 0.0021         | 0.0021 | 0.0021 |

Table I-2 (continued)

|                                             |                                 |                                                                                        |          |                              |        | Scr    | eening Alterna | tive   |        |
|---------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                            | Water Quality Indicator         | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| MN-17                                       | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 6,926    | 5,878                        | 5,771  | 5,763  | 5,825          | 5,825  | 5,263  |
| Menomonee<br>River Down-<br>stream of Honey | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 63       | 63                           | 63     | 63     | 63             | 63     | 64     |
| Creek                                       |                                 | Geometric mean (cells per 100 ml)                                                      | 1,124    | 1,000                        | 990    | 987    | 993            | 993    | 883    |
|                                             |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 196      | 205                          | 206    | 206    | 206            | 206    | 215    |
|                                             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,622    | 3,051                        | 2,843  | 2,828  | 2,952          | 2,952  | 2,732  |
|                                             | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 81       | 81                           | 81     | 81     | 81             | 81     | 82     |
|                                             |                                 | Geometric mean (cells per 100 ml)                                                      | 496      | 423                          | 416    | 413    | 419            | 419    | 374    |
|                                             |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 130      | 137                          | 137    | 138    | 137            | 137    | 140    |
|                                             | Dissolved Oxygen                | Mean (mg/l)                                                                            | 11.1     | 10.9                         | 10.9   | 10.9   | 10.9           | 10.9   | 10.9   |
|                                             |                                 | Median (mg/l)                                                                          | 11.1     | 11                           | 11     | 11     | 11             | 11     | 11     |
|                                             |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                          | 100    | 100    | 100            | 100    | 100    |
|                                             | Total Phosphorus                | Mean (mg/l)                                                                            | 0.111    | 0.108                        | 0.107  | 0.107  | 0.107          | 0.107  | 0.103  |
|                                             |                                 | Median (mg/l)                                                                          | 0.074    | 0.077                        | 0.077  | 0.077  | 0.077          | 0.077  | 0.075  |
|                                             |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 66       | 65                           | 65     | 65     | 65             | 65     | 67     |
|                                             | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.13     | 0.97                         | 0.97   | 0.97   | 0.97           | 0.97   | 0.95   |
|                                             |                                 | Median (mg/l)                                                                          | 1.07     | 0.93                         | 0.93   | 0.93   | 0.93           | 0.93   | 0.91   |
|                                             | Total Suspended Solids          | Mean (mg/l)                                                                            | 16.3     | 13.3                         | 13.4   | 13.3   | 13.3           | 13.3   | 13.1   |
|                                             |                                 | Median (mg/l)                                                                          | 6        | 4.9                          | 4.9    | 4.9    | 4.9            | 4.9    | 4.8    |
|                                             | Copper                          | Mean (mg/l)                                                                            | 0.0057   | 0.0052                       | 0.0052 | 0.0052 | 0.0052         | 0.0052 | 0.0051 |
|                                             |                                 | Median (mg/l)                                                                          | 0.0024   | 0.0024                       | 0.0024 | 0.0024 | 0.0024         | 0.0024 | 0.0023 |

|                                           |                                    |                                                                                        |          |                              |        | Scr    | eening Alterna | tive   |        |
|-------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                          | Water Quality Indicator            | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| MN-18                                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 6,889    | 5,922                        | 5,819  | 5,816  | 5,867          | 5,867  | 5,305  |
| Menomonee<br>River near<br>Upstream Limit | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 64       | 63                           | 63     | 63     | 63             | 63     | 64     |
| of Estuary                                |                                    | Geometric mean (cells per 100 ml)                                                      | 1,081    | 972                          | 963    | 960    | 965            | 965    | 859    |
|                                           |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 200      | 207                          | 207    | 207    | 207            | 207    | 217    |
|                                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 3,557    | 3,062                        | 2,865  | 2,859  | 2,957          | 2,957  | 2,745  |
|                                           | (May-September: 153<br>days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 81       | 81                           | 82     | 82     | 82             | 82     | 82     |
|                                           |                                    | Geometric mean (cells per 100 ml)                                                      | 468      | 407                          | 400    | 397    | 402            | 402    | 360    |
|                                           |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 133      | 137                          | 138    | 138    | 138            | 138    | 140    |
|                                           | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 11       | 10.9                         | 10.9   | 10.9   | 10.9           | 10.9   | 10.9   |
|                                           |                                    | Median (mg/l)                                                                          | 11       | 10.9                         | 10.9   | 10.9   | 10.9           | 10.9   | 10.9   |
|                                           |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                          | 100    | 100    | 100            | 100    | 100    |
|                                           | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.133    | 0.13                         | 0.13   | 0.13   | 0.13           | 0.13   | 0.126  |
|                                           |                                    | Median (mg/l)                                                                          | 0.104    | 0.106                        | 0.105  | 0.105  | 0.105          | 0.105  | 0.103  |
|                                           |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 52       | 50                           | 51     | 51     | 51             | 51     | 52     |
|                                           | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.25     | 1.1                          | 1.1    | 1.1    | 1.1            | 1.1    | 1.08   |
|                                           |                                    | Median (mg/l)                                                                          | 1.2      | 1.07                         | 1.06   | 1.06   | 1.07           | 1.07   | 1.04   |
|                                           | Total Suspended Solids             | Mean (mg/l)                                                                            | 16       | 13.3                         | 13.3   | 13.3   | 13.3           | 13.3   | 13     |
|                                           |                                    | Median (mg/l)                                                                          | 5.5      | 4.8                          | 4.8    | 4.8    | 4.8            | 4.8    | 4.7    |
|                                           | Copper                             | Mean (mg/l)                                                                            | 0.0056   | 0.0051                       | 0.0051 | 0.0051 | 0.0051         | 0.0051 | 0.005  |
|                                           |                                    | Median (mg/l)                                                                          | 0.0023   | 0.0023                       | 0.0023 | 0.0023 | 0.0023         | 0.0023 | 0.0022 |

<sup>&</sup>lt;sup>a</sup>Variance Standard in Chapter NR 104 of the Wisconsin Administrative Code.

Table I-3
WATER QUALITY SUMMARY STATISTICS FOR SCREENING ALTERNATIVES: MILWAUKEE RIVER WATERSHED

|                                                        |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|--------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                                       | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| ML-29                                                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,107    | 618                          | 620    | 617    | 617            | 617    | 573    |
| Milwaukee River<br>at the Milwaukee-<br>Ozaukee County | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 42       | 54                           | 54     | 54     | 54             | 54     | 55     |
| Line                                                   |                                 | Geometric mean (cells per 100 ml)                                       | 385      | 222                          | 223    | 222    | 222            | 222    | 212    |
|                                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 127      | 155                          | 155    | 155    | 155            | 155    | 157    |
|                                                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 358      | 157                          | 156    | 156    | 156            | 156    | 145    |
|                                                        | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 90                           | 90     | 90     | 90             | 90     | 91     |
|                                                        |                                 | Geometric mean (cells per 100 ml)                                       | 112      | 63                           | 99     | 63     | 63             | 63     | 60     |
|                                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 103      | 117                          | 129    | 117    | 117            | 117    | 118    |
|                                                        | Dissolved Oxygen                | Mean (mg/l)                                                             | 11       | 11                           | 11     | 11     | 11             | 11     | 11     |
|                                                        |                                 | Median (mg/l)                                                           | 11.1     | 11.1                         | 11     | 11.1   | 11.1           | 11.1   | 11.1   |
|                                                        |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                           | 98     | 98     | 98             | 98     | 98     |
|                                                        | Total Phosphorus                | Mean (mg/l)                                                             | 0.132    | 0.142                        | 0.142  | 0.142  | 0.142          | 0.142  | 0.139  |
|                                                        |                                 | Median (mg/l)                                                           | 0.119    | 0.131                        | 0.131  | 0.131  | 0.131          | 0.131  | 0.128  |
|                                                        |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 41       | 35                           | 35     | 35     | 35             | 35     | 36     |
|                                                        | Total Nitrogen                  | Mean (mg/l)                                                             | 1.69     | 1.62                         | 1.62   | 1.62   | 1.62           | 1.62   | 1.61   |
|                                                        |                                 | Median (mg/l)                                                           | 1.62     | 1.56                         | 1.56   | 1.56   | 1.56           | 1.56   | 1.55   |
|                                                        | Total Suspended Solids          | Mean (mg/l)                                                             | 17.8     | 17.5                         | 17.5   | 17.5   | 17.5           | 17.5   | 16.3   |
|                                                        |                                 | Median (mg/l)                                                           | 13.9     | 13.7                         | 13.7   | 13.7   | 13.7           | 13.7   | 12.8   |
|                                                        | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0053                       | 0.0053 | 0.0053 | 0.0053         | 0.0053 | 0.0053 |
|                                                        |                                 | Median (mg/l)                                                           | 0.0048   | 0.0052                       | 0.0052 | 0.0052 | 0.0052         | 0.0052 | 0.0052 |

|                                            |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|--------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                           | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| ML-30                                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,359    | 1,022                        | 1,020  | 1,019  | 1,019          | 1,019  | 918    |
| Milwaukee River Downstream of Beaver Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 42       | 47                           | 47     | 47     | 47             | 47     | 48     |
|                                            |                                 | Geometric mean (cells per 100 ml)                                       | 442      | 321                          | 321    | 321    | 321            | 321    | 298    |
|                                            |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 120      | 145                          | 145    | 145    | 145            | 145    | 149    |
|                                            | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 543      | 460                          | 455    | 454    | 454            | 454    | 409    |
|                                            | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 77                           | 77     | 77     | 77             | 77     | 78     |
|                                            |                                 | Geometric mean (cells per 100 ml)                                       | 143      | 106                          | 168    | 105    | 105            | 105    | 99     |
|                                            |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 94       | 110                          | 122    | 110    | 110            | 110    | 113    |
|                                            | Dissolved Oxygen                | Mean (mg/l)                                                             | 11       | 10.9                         | 10.9   | 10.9   | 10.9           | 10.9   | 10.9   |
|                                            |                                 | Median (mg/l)                                                           | 11       | 11                           | 11     | 11     | 11             | 11     | 11     |
|                                            |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 99                           | 99     | 99     | 99             | 99     | 99     |
|                                            | Total Phosphorus                | Mean (mg/l)                                                             | 0.134    | 0.143                        | 0.143  | 0.143  | 0.143          | 0.143  | 0.138  |
|                                            |                                 | Median (mg/l)                                                           | 0.122    | 0.132                        | 0.132  | 0.132  | 0.132          | 0.132  | 0.128  |
|                                            |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 39       | 34                           | 34     | 34     | 34             | 34     | 35     |
|                                            | Total Nitrogen                  | Mean (mg/l)                                                             | 1.67     | 1.58                         | 1.58   | 1.58   | 1.58           | 1.58   | 1.57   |
|                                            |                                 | Median (mg/l)                                                           | 1.6      | 1.52                         | 1.52   | 1.52   | 1.52           | 1.52   | 1.51   |
|                                            | Total Suspended Solids          | Mean (mg/l)                                                             | 20.7     | 19.9                         | 19.9   | 19.9   | 19.9           | 19.9   | 18.5   |
|                                            |                                 | Median (mg/l)                                                           | 16.1     | 15.7                         | 15.7   | 15.7   | 15.7           | 15.7   | 14.7   |
|                                            | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0052                       | 0.0052 | 0.0052 | 0.0052         | 0.0052 | 0.0052 |
|                                            |                                 | Median (mg/l)                                                           | 0.0048   | 0.0051                       | 0.0051 | 0.0051 | 0.0051         | 0.0051 | 0.0051 |

Table I-3 (continued)

|                                                   |                                                               |                                                                         |          |                  |        | Scr    | eening Alterna | tive   |        |
|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------|--------|--------|----------------|--------|--------|
|                                                   |                                                               |                                                                         |          | Original<br>2020 |        |        |                |        |        |
| Assessment Point                                  | Water Quality Indicator                                       | Statistic                                                               | Existing | Baseline         | 1A     | 1B     | 1C             | 1D     | 2      |
| ML-33                                             | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 1,559    | 1,328            | 1,309  | 1,308  | 1,311          | 1,311  | 1,193  |
| Milwaukee River<br>at Lincoln/<br>Estabrook Parks | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 43       | 46               | 46     | 46     | 46             | 46     | 47     |
|                                                   |                                                               | Geometric mean (cells per 100 ml)                                       | 354      | 273              | 271    | 270    | 271            | 271    | 249    |
|                                                   |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 140      | 152              | 153    | 153    | 152            | 152    | 154    |
|                                                   | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 596      | 598              | 562    | 561    | 567            | 567    | 552    |
|                                                   |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 76               | 76     | 76     | 76             | 76     | 77     |
|                                                   |                                                               | Geometric mean (cells per 100 ml)                                       | 84       | 64               | 96     | 63     | 63             | 63     | 59     |
|                                                   |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 107      | 114              | 127    | 115    | 115            | 115    | 116    |
|                                                   | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 10.8     | 10.8             | 10.8   | 10.8   | 10.8           | 10.8   | 10.8   |
|                                                   |                                                               | Median (mg/l)                                                           | 10.9     | 10.9             | 10.9   | 10.9   | 10.9           | 10.9   | 10.9   |
|                                                   |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98               | 98     | 98     | 98             | 98     | 98     |
|                                                   | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.139    | 0.145            | 0.145  | 0.145  | 0.145          | 0.145  | 0.141  |
|                                                   |                                                               | Median (mg/l)                                                           | 0.128    | 0.135            | 0.135  | 0.135  | 0.135          | 0.135  | 0.131  |
|                                                   |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 35       | 32               | 32     | 32     | 32             | 32     | 33     |
|                                                   | Total Nitrogen                                                | Mean (mg/l)                                                             | 1.63     | 1.54             | 1.54   | 1.54   | 1.54           | 1.54   | 1.53   |
|                                                   |                                                               | Median (mg/l)                                                           | 1.57     | 1.49             | 1.49   | 1.49   | 1.49           | 1.49   | 1.48   |
|                                                   | Total Suspended Solids                                        | Mean (mg/l)                                                             | 24.2     | 22.4             | 22.4   | 22.4   | 22.4           | 22.4   | 20.7   |
|                                                   |                                                               | Median (mg/l)                                                           | 18.7     | 17.7             | 17.7   | 17.7   | 17.7           | 17.7   | 16.4   |
|                                                   | Copper                                                        | Mean (mg/l)                                                             | 0.0052   | 0.0053           | 0.0053 | 0.0053 | 0.0053         | 0.0053 | 0.0053 |
|                                                   |                                                               | Median (mg/l)                                                           | 0.0051   | 0.0053           | 0.0053 | 0.0053 | 0.0053         | 0.0053 | 0.0053 |

Table I-3 (continued)

|                                                  |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|--------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                                 | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| ML-34                                            | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,380    | 1,155                        | 1,114  | 1,106  | 1,139          | 1,139  | 1,025  |
| Milwaukee River<br>at the Former<br>North Avenue | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 79                           | 79     | 80     | 79             | 79     | 82     |
| Dam                                              |                                 | Geometric mean (cells per 100 ml)                                       | 311      | 245                          | 244    | 240    | 243            | 243    | 223    |
|                                                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 236      | 255                          | 255    | 256    | 255            | 255    | 265    |
|                                                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 515      | 502                          | 422    | 410    | 477            | 477    | 443    |
|                                                  | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 92       | 93                           | 93     | 94     | 93             | 93     | 94     |
|                                                  |                                 | Geometric mean (cells per 100 ml)                                       | 73       | 58                           | 84     | 55     | 57             | 57     | 53     |
|                                                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 145      | 149                          | 165    | 149    | 149            | 149    | 150    |
|                                                  | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.6     | 10.6                         | 10.6   | 10.6   | 10.6           | 10.6   | 10.6   |
|                                                  |                                 | Median (mg/l)                                                           | 10.6     | 10.6                         | 10.6   | 10.6   | 10.6           | 10.6   | 10.7   |
|                                                  |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100    | 100    | 100            | 100    | 100    |
|                                                  | Total Phosphorus                | Mean (mg/l)                                                             | 0.169    | 0.174                        | 0.173  | 0.173  | 0.173          | 0.173  | 0.169  |
|                                                  |                                 | Median (mg/l)                                                           | 0.16     | 0.166                        | 0.165  | 0.165  | 0.166          | 0.166  | 0.161  |
|                                                  |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 24       | 22                           | 22     | 22     | 22             | 22     | 24     |
|                                                  | Total Nitrogen                  | Mean (mg/l)                                                             | 1.6      | 1.52                         | 1.52   | 1.52   | 1.52           | 1.52   | 1.5    |
|                                                  |                                 | Median (mg/l)                                                           | 1.53     | 1.46                         | 1.46   | 1.46   | 1.46           | 1.46   | 1.45   |
|                                                  | Total Suspended Solids          | Mean (mg/l)                                                             | 24.8     | 22.6                         | 22.6   | 22.6   | 22.6           | 22.6   | 20.9   |
|                                                  |                                 | Median (mg/l)                                                           | 19.3     | 17.8                         | 17.9   | 17.8   | 17.8           | 17.8   | 16.6   |
|                                                  | Copper                          | Mean (mg/l)                                                             | 0.0051   | 0.0052                       | 0.0052 | 0.0052 | 0.0052         | 0.0052 | 0.0052 |
|                                                  |                                 | Median (mg/l)                                                           | 0.005    | 0.0051                       | 0.0051 | 0.0051 | 0.0051         | 0.0051 | 0.0051 |

Table I-4
WATER QUALITY SUMMARY STATISTICS FOR SCREENING ALTERNATIVES: OAK CREEK WATERSHED

|                  |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| OK-1             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,905    | 3,928                        | 3,928  | 3,928  | 3,928          | 3,928  | 3,536  |
| Upper Oak Creek  | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 64                           | 64     | 64     | 64             | 64     | 65     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 541      | 504                          | 504    | 504    | 504            | 504    | 456    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 65       | 67                           | 67     | 67     | 67             | 67     | 80     |
|                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,012    | 1,666                        | 1,666  | 1,666  | 1,666          | 1,666  | 1,500  |
|                  | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 84       | 82                           | 82     | 82     | 82             | 82     | 82     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 256      | 260                          | 260    | 260    | 260            | 260    | 236    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 47       | 47                           | 47     | 47     | 47             | 47     | 55     |
|                  | Dissolved Oxygen                | Mean (mg/l)                                                             | 8.4      | 8.2                          | 8.2    | 8.2    | 8.2            | 8.2    | 8.2    |
|                  |                                 | Median (mg/l)                                                           | 8.7      | 8.6                          | 8.6    | 8.6    | 8.6            | 8.6    | 8.6    |
|                  |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 77       | 72                           | 72     | 72     | 72             | 72     | 72     |
|                  | Total Phosphorus                | Mean (mg/l)                                                             | 0.075    | 0.066                        | 0.066  | 0.066  | 0.066          | 0.066  | 0.063  |
|                  |                                 | Median (mg/l)                                                           | 0.031    | 0.025                        | 0.025  | 0.025  | 0.025          | 0.025  | 0.025  |
|                  |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 83       | 82                           | 82     | 82     | 82             | 82     | 83     |
|                  | Total Nitrogen                  | Mean (mg/l)                                                             | 1.51     | 0.89                         | 0.89   | 0.89   | 0.89           | 0.89   | 0.88   |
|                  |                                 | Median (mg/l)                                                           | 1.38     | 0.84                         | 0.84   | 0.84   | 0.84           | 0.84   | 0.83   |
|                  | Total Suspended Solids          | Mean (mg/l)                                                             | 13.7     | 7.2                          | 7.2    | 7.2    | 7.2            | 7.2    | 7.2    |
|                  |                                 | Median (mg/l)                                                           | 7.8      | 4.4                          | 4.4    | 4.4    | 4.4            | 4.4    | 4.4    |
|                  | Copper                          | Mean (mg/l)                                                             | 0.0038   | 0.0031                       | 0.0031 | 0.0031 | 0.0031         | 0.0031 | 0.0031 |
|                  |                                 | Median (mg/l)                                                           | 0.0012   | 0.0007                       | 0.0007 | 0.0007 | 0.0007         | 0.0007 | 0.0007 |

|                                      |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|--------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                     | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| OK-3                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 10,233   | 8,236                        | 8,236  | 8,236  | 8,236          | 8,236  | 7,414  |
| Oak Creek Downstream of North Branch | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 55       | 55                           | 55     | 55     | 55             | 55     | 55     |
| of Oak Creek                         |                                 | Geometric mean (cells per 100 ml)                                       | 1,191    | 1,060                        | 1,060  | 1,060  | 1,060          | 1,060  | 960    |
|                                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 20                           | 20     | 20     | 20             | 20     | 22     |
|                                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,750    | 3,735                        | 3,735  | 3,735  | 3,735          | 3,735  | 3,363  |
|                                      | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 72       | 72                           | 72     | 72     | 72             | 72     | 73     |
|                                      |                                 | Geometric mean (cells per 100 ml)                                       | 555      | 508                          | 508    | 508    | 508            | 508    | 462    |
|                                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 15       | 17                           | 17     | 17     | 17             | 17     | 19     |
|                                      | Dissolved Oxygen                | Mean (mg/l)                                                             | 10       | 9.7                          | 9.7    | 9.7    | 9.7            | 9.7    | 9.7    |
|                                      |                                 | Median (mg/l)                                                           | 10.5     | 10.3                         | 10.3   | 10.3   | 10.3           | 10.3   | 10.3   |
|                                      |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 83       | 80                           | 80     | 80     | 80             | 80     | 80     |
|                                      | Total Phosphorus                | Mean (mg/l)                                                             | 0.086    | 0.076                        | 0.076  | 0.076  | 0.076          | 0.076  | 0.073  |
|                                      |                                 | Median (mg/l)                                                           | 0.032    | 0.029                        | 0.029  | 0.029  | 0.029          | 0.029  | 0.029  |
|                                      |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 79       | 79                           | 79     | 79     | 79             | 79     | 80     |
|                                      | Total Nitrogen                  | Mean (mg/l)                                                             | 1.37     | 0.89                         | 0.89   | 0.89   | 0.89           | 0.89   | 0.88   |
|                                      |                                 | Median (mg/l)                                                           | 1.24     | 0.81                         | 0.81   | 0.81   | 0.81           | 0.81   | 0.80   |
|                                      | Total Suspended Solids          | Mean (mg/l)                                                             | 20.9     | 12.9                         | 12.9   | 12.9   | 12.9           | 12.9   | 12.9   |
|                                      |                                 | Median (mg/l)                                                           | 8.5      | 5.7                          | 5.7    | 5.7    | 5.7            | 5.7    | 5.7    |
|                                      | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0038                       | 0.0038 | 0.0038 | 0.0038         | 0.0038 | 0.0038 |
|                                      |                                 | Median (mg/l)                                                           | 0.0013   | 0.001                        | 0.001  | 0.001  | 0.001          | 0.001  | 0.001  |

Table I-4 (continued)

|                  |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| OK-4             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,953    | 6,806                        | 6,806  | 6,806  | 6,806          | 6,806  | 6,126  |
| Middle Oak Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 51       | 52                           | 52     | 52     | 52             | 52     | 53     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 1,041    | 946                          | 946    | 946    | 946            | 946    | 857    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 20       | 22                           | 22     | 22     | 22             | 22     | 26     |
|                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,103    | 2,731                        | 2,731  | 2,731  | 2,731          | 2,731  | 2,459  |
|                  | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 69       | 70                           | 70     | 70     | 70             | 70     | 71     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 463      | 445                          | 445    | 445    | 445            | 445    | 404    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 18                           | 18     | 18     | 18             | 18     | 21     |
|                  | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.4      | 9.2                          | 9.2    | 9.2    | 9.2            | 9.2    | 9.2    |
|                  |                                 | Median (mg/l)                                                           | 9.6      | 9.4                          | 9.4    | 9.4    | 9.4            | 9.4    | 9.4    |
|                  |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 85       | 82                           | 82     | 82     | 82             | 82     | 82     |
|                  | Total Phosphorus                | Mean (mg/l)                                                             | 0.081    | 0.073                        | 0.073  | 0.073  | 0.073          | 0.073  | 0.07   |
|                  |                                 | Median (mg/l)                                                           | 0.032    | 0.03                         | 0.03   | 0.03   | 0.03           | 0.03   | 0.029  |
|                  |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 79       | 80                           | 80     | 80     | 80             | 80     | 81     |
|                  | Total Nitrogen                  | Mean (mg/l)                                                             | 1.33     | 0.86                         | 0.86   | 0.86   | 0.86           | 0.86   | 0.85   |
|                  |                                 | Median (mg/l)                                                           | 1.17     | 0.76                         | 0.76   | 0.76   | 0.76           | 0.76   | 0.75   |
|                  | Total Suspended Solids          | Mean (mg/l)                                                             | 14.9     | 9.4                          | 9.4    | 9.4    | 9.4            | 9.4    | 9.4    |
|                  |                                 | Median (mg/l)                                                           | 7.9      | 5.2                          | 5.2    | 5.2    | 5.2            | 5.2    | 5.2    |
|                  | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0039                       | 0.0039 | 0.0039 | 0.0039         | 0.0039 | 0.0039 |
|                  |                                 | Median (mg/l)                                                           | 0.0013   | 0.001                        | 0.001  | 0.001  | 0.001          | 0.001  | 0.001  |

|                                        |                                 |                                                                         |          |                              |       | Scr   | eening Alterna | tive  |       |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|-------|-------|----------------|-------|-------|
| Assessment Point                       | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A    | 1B    | 1C             | 1D    | 2     |
| OK-7                                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,729    | 6,753                        | 6,753 | 6,753 | 6,753          | 6,753 | 6,078 |
| Oak Creek Downstream of Mitchell Field | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 49       | 51                           | 51    | 51    | 51             | 51    | 53    |
| Drainage Ditch                         |                                 | Geometric mean (cells per 100 ml)                                       | 1,190    | 1,035                        | 1,035 | 1,035 | 1,035          | 1,035 | 935   |
|                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 13       | 18                           | 18    | 18    | 18             | 18    | 21    |
|                                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,136    | 2,788                        | 2,788 | 2,788 | 2,788          | 2,788 | 2,510 |
|                                        | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 69                           | 69    | 69    | 69             | 69    | 71    |
|                                        |                                 | Geometric mean (cells per 100 ml)                                       | 543      | 476                          | 476   | 476   | 476            | 476   | 430   |
|                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 11       | 16                           | 16    | 16    | 16             | 16    | 18    |
|                                        | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.3      | 9.1                          | 9.1   | 9.1   | 9.1            | 9.1   | 9.1   |
|                                        |                                 | Median (mg/l)                                                           | 9.2      | 9.3                          | 9.3   | 9.3   | 9.3            | 9.3   | 9.3   |
|                                        |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 81       | 79                           | 79    | 79    | 79             | 79    | 80    |
|                                        | Total Phosphorus                | Mean (mg/l)                                                             | 0.091    | 0.091                        | 0.091 | 0.091 | 0.091          | 0.091 | 0.087 |
|                                        |                                 | Median (mg/l)                                                           | 0.056    | 0.06                         | 0.06  | 0.06  | 0.06           | 0.06  | 0.058 |
|                                        |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 76       | 73                           | 73    | 73    | 73             | 73    | 75    |
|                                        | Total Nitrogen                  | Mean (mg/l)                                                             | 1.37     | 0.99                         | 0.99  | 0.99  | 0.99           | 0.99  | 0.97  |
|                                        |                                 | Median (mg/l)                                                           | 1.24     | 0.92                         | 0.92  | 0.92  | 0.92           | 0.92  | 0.9   |
|                                        | Total Suspended Solids          | Mean (mg/l)                                                             | 14.9     | 9.5                          | 9.5   | 9.5   | 9.5            | 9.5   | 9.5   |
|                                        |                                 | Median (mg/l)                                                           | 7.3      | 4.6                          | 4.6   | 4.6   | 4.6            | 4.6   | 4.6   |
|                                        | Copper                          | Mean (mg/l)                                                             | 0.0051   | 0.004                        | 0.004 | 0.004 | 0.004          | 0.004 | 0.004 |
|                                        |                                 | Median (mg/l)                                                           | 0.0013   | 0.001                        | 0.001 | 0.001 | 0.001          | 0.001 | 0.001 |

Table I-4 (continued)

|                  |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| OK-8             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 15,506   | 13,474                       | 13,469 | 13,469 | 13,469         | 13,469 | 12,129 |
| Lower Oak Creek  | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 17       | 23                           | 23     | 23     | 23             | 23     | 28     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 2,700    | 2,360                        | 2,358  | 2,358  | 2,358          | 2,358  | 2,129  |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 11                           | 11     | 11     | 11             | 11     | 12     |
|                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6,370    | 5,564                        | 5,555  | 5,555  | 5,555          | 5,555  | 5,010  |
|                  | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 31       | 41                           | 41     | 41     | 41             | 41     | 46     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 1,079    | 909                          | 908    | 908    | 908            | 908    | 821    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 11                           | 11     | 11     | 11             | 11     | 11     |
|                  | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.2     | 10.2                         | 10.2   | 10.2   | 10.2           | 10.2   | 10.2   |
|                  |                                 | Median (mg/l)                                                           | 10       | 10.1                         | 10.1   | 10.1   | 10.1           | 10.1   | 10.2   |
|                  |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 93       | 92                           | 92     | 92     | 92             | 92     | 92     |
|                  | Total Phosphorus                | Mean (mg/l)                                                             | 0.091    | 0.091                        | 0.091  | 0.091  | 0.091          | 0.091  | 0.087  |
|                  |                                 | Median (mg/l)                                                           | 0.058    | 0.063                        | 0.063  | 0.063  | 0.063          | 0.063  | 0.06   |
|                  | Total Phosphorus                | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 76       | 73                           | 73     | 73     | 73             | 73     | 75     |
|                  | Total Nitrogen                  | Mean (mg/l)                                                             | 1.27     | 0.94                         | 0.94   | 0.94   | 0.94           | 0.94   | 0.92   |
|                  |                                 | Median (mg/l)                                                           | 1.15     | 0.88                         | 0.88   | 0.88   | 0.88           | 0.88   | 0.86   |
|                  | Total Suspended Solids          | Mean (mg/l)                                                             | 15.9     | 10.2                         | 10.2   | 10.2   | 10.2           | 10.2   | 10.2   |
|                  |                                 | Median (mg/l)                                                           | 7.3      | 4.6                          | 4.6    | 4.6    | 4.6            | 4.6    | 4.6    |
|                  | Copper                          | Mean (mg/l)                                                             | 0.0052   | 0.0041                       | 0.0041 | 0.0041 | 0.0041         | 0.0041 | 0.0041 |
|                  |                                 | Median (mg/l)                                                           | 0.0014   | 0.001                        | 0.001  | 0.001  | 0.001          | 0.001  | 0.001  |

|                  |                                                               |                                                                         |          |                              |        | Sci    | eening Alterna | tive   |        |
|------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point | Water Quality Indicator                                       | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| OK-9             | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 7,401    | 6,376                        | 6,374  | 6,374  | 6,374          | 6,374  | 5,739  |
| Lower Oak Creek  | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 51       | 54                           | 54     | 54     | 54             | 54     | 54     |
|                  |                                                               | Geometric mean (cells per 100 ml)                                       | 993      | 783                          | 783    | 783    | 783            | 783    | 708    |
|                  |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 26       | 40                           | 40     | 40     | 40             | 40     | 45     |
|                  | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 3,061    | 2,633                        | 2,629  | 2,629  | 2,629          | 2,629  | 2,371  |
|                  |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 71       | 73                           | 73     | 73     | 73             | 73     | 74     |
|                  |                                                               | Geometric mean (cells per 100 ml)                                       | 388      | 283                          | 282    | 282    | 282            | 282    | 256    |
|                  |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 21       | 32                           | 32     | 32     | 32             | 32     | 35     |
|                  | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 10.5     | 10.5                         | 10.5   | 10.5   | 10.5           | 10.5   | 10.6   |
|                  |                                                               | Median (mg/l)                                                           | 10.3     | 10.3                         | 10.3   | 10.3   | 10.3           | 10.3   | 10.4   |
|                  |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                           | 96     | 96     | 96             | 96     | 96     |
|                  | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.092    | 0.087                        | 0.087  | 0.087  | 0.087          | 0.087  | 0.084  |
|                  |                                                               | Median (mg/l)                                                           | 0.062    | 0.065                        | 0.065  | 0.065  | 0.065          | 0.065  | 0.063  |
|                  |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 75       | 74                           | 74     | 74     | 74             | 74     | 76     |
|                  | Total Nitrogen                                                | Mean (mg/l)                                                             | 1.24     | 0.93                         | 0.93   | 0.93   | 0.93           | 0.93   | 0.91   |
|                  |                                                               | Median (mg/l)                                                           | 1.12     | 0.89                         | 0.89   | 0.89   | 0.89           | 0.89   | 0.88   |
|                  | Total Suspended Solids                                        | Mean (mg/l)                                                             | 16       | 10.3                         | 10.3   | 10.3   | 10.3           | 10.3   | 10.3   |
|                  |                                                               | Median (mg/l)                                                           | 6.7      | 4.3                          | 4.3    | 4.3    | 4.3            | 4.3    | 4.3    |
|                  | Copper                                                        | Mean (mg/l)                                                             | 0.0052   | 0.0041                       | 0.0041 | 0.0041 | 0.0041         | 0.0041 | 0.0041 |
|                  |                                                               | Median (mg/l)                                                           | 0.0013   | 0.001                        | 0.001  | 0.001  | 0.001          | 0.001  | 0.001  |

Table I-4 (continued)

|                  |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| OK-10            | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6,643    | 5,738                        | 5,735  | 5,735  | 5,735          | 5,735  | 5,165  |
| Lower Oak Creek  | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 48                           | 48     | 48     | 48             | 48     | 49     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 752      | 604                          | 604    | 604    | 604            | 604    | 547    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 70       | 86                           | 86     | 86     | 86             | 86     | 93     |
|                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,504    | 2,171                        | 2,167  | 2,167  | 2,167          | 2,167  | 1,955  |
|                  | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 71       | 71                           | 71     | 71     | 71             | 71     | 71     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 179      | 132                          | 132    | 132    | 132            | 132    | 120    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 59       | 70                           | 70     | 70     | 70             | 70     | 75     |
|                  | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.2     | 11.2                         | 11.2   | 11.2   | 11.2           | 11.2   | 11.2   |
|                  |                                 | Median (mg/l)                                                           | 11.2     | 11.2                         | 11.2   | 11.2   | 11.2           | 11.2   | 11.2   |
|                  |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100    | 100    | 100            | 100    | 100    |
|                  | Total Phosphorus                | Mean (mg/l)                                                             | 0.078    | 0.072                        | 0.072  | 0.072  | 0.072          | 0.072  | 0.069  |
|                  |                                 | Median (mg/l)                                                           | 0.046    | 0.045                        | 0.045  | 0.045  | 0.045          | 0.045  | 0.043  |
|                  |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 79                           | 79     | 79     | 79             | 79     | 80     |
|                  | Total Nitrogen                  | Mean (mg/l)                                                             | 1        | 0.75                         | 0.75   | 0.75   | 0.75           | 0.75   | 0.74   |
|                  |                                 | Median (mg/l)                                                           | 0.9      | 0.65                         | 0.65   | 0.65   | 0.65           | 0.65   | 0.64   |
|                  | Total Suspended Solids          | Mean (mg/l)                                                             | 19.6     | 12.5                         | 12.5   | 12.5   | 12.5           | 12.5   | 12.5   |
|                  |                                 | Median (mg/l)                                                           | 7.4      | 5                            | 5      | 5      | 5              | 5      | 5      |
|                  | Copper                          | Mean (mg/l)                                                             | 0.006    | 0.0048                       | 0.0048 | 0.0048 | 0.0048         | 0.0048 | 0.0048 |
|                  |                                 | Median (mg/l)                                                           | 0.0025   | 0.0022                       | 0.0022 | 0.0022 | 0.0022         | 0.0022 | 0.0022 |

Table I-5
WATER QUALITY SUMMARY STATISTICS FOR SCREENING ALTERNATIVES: ROOT RIVER WATERSHED

|                                         |                                                               |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|-----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                        | Water Quality Indicator                                       | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| RT-1                                    | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 5,644    | 4,648                        | 4,648  | 4,648  | 4,648          | 4,648  | 4,184  |
| Root River<br>Upstream of<br>Hale Creek | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 70       | 71                           | 71     | 71     | 71             | 71     | 71     |
|                                         |                                                               | Geometric mean (cells per 100 ml)                                       | 525      | 409                          | 409    | 409    | 409            | 409    | 369    |
|                                         |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 33       | 61                           | 61     | 61     | 61             | 61     | 74     |
|                                         | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 3,385    | 2,781                        | 2,781  | 2,781  | 2,781          | 2,781  | 2,503  |
|                                         |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 80       | 81                           | 81     | 81     | 81             | 81     | 82     |
|                                         |                                                               | Geometric mean (cells per 100 ml)                                       | 393      | 303                          | 303    | 303    | 303            | 303    | 274    |
|                                         |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 13       | 27                           | 27     | 27     | 27             | 27     | 34     |
|                                         | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 10.8     | 10.8                         | 10.8   | 10.8   | 10.8           | 10.8   | 10.8   |
|                                         |                                                               | Median (mg/l)                                                           | 10.8     | 10.8                         | 10.8   | 10.8   | 10.8           | 10.8   | 10.8   |
|                                         |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                           | 96     | 96     | 96             | 96     | 96     |
|                                         | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.062    | 0.053                        | 0.053  | 0.053  | 0.053          | 0.053  | 0.051  |
|                                         |                                                               | Median (mg/l)                                                           | 0.025    | 0.021                        | 0.021  | 0.021  | 0.021          | 0.021  | 0.021  |
|                                         |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 87       | 88                           | 88     | 88     | 88             | 88     | 88     |
|                                         | Total Nitrogen                                                | Mean (mg/l)                                                             | 0.98     | 0.84                         | 0.84   | 0.84   | 0.84           | 0.84   | 0.84   |
|                                         |                                                               | Median (mg/l)                                                           | 1.01     | 0.87                         | 0.87   | 0.87   | 0.87           | 0.87   | 0.86   |
|                                         | Total Suspended Solids                                        | Mean (mg/l)                                                             | 6.9      | 5                            | 5      | 5      | 5              | 5      | 5      |
|                                         |                                                               | Median (mg/l)                                                           | 4.8      | 3.3                          | 3.3    | 3.3    | 3.3            | 3.3    | 3.3    |
|                                         | Copper                                                        | Mean (mg/l)                                                             | 0.0033   | 0.0026                       | 0.0026 | 0.0026 | 0.0026         | 0.0026 | 0.0026 |
|                                         |                                                               | Median (mg/l)                                                           | 0.0013   | 0.0009                       | 0.0009 | 0.0009 | 0.0009         | 0.0009 | 0.0009 |

|                  |                                 |                                                                         |          |                              |        | Scr    | eening Alterna | ıtive  |        |
|------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| RT-2             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,040    | 5,869                        | 5,862  | 5,862  | 5,862          | 5,862  | 5,283  |
| Root River       | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 66                           | 66     | 66     | 66             | 66     | 67     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 630      | 501                          | 501    | 501    | 501            | 501    | 452    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 27       | 46                           | 47     | 47     | 47             | 47     | 57     |
|                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,968    | 3,412                        | 3,397  | 3,397  | 3,397          | 3,397  | 3,073  |
|                  | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 77       | 76                           | 77     | 77     | 77             | 77     | 77     |
|                  |                                 | Geometric mean (cells per 100 ml)                                       | 464      | 371                          | 370    | 370    | 370            | 370    | 335    |
|                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 10       | 18                           | 19     | 19     | 19             | 19     | 24     |
|                  | Dissolved Oxygen                | Mean (mg/l)                                                             | 8.4      | 8.4                          | 8.4    | 8.4    | 8.4            | 8.4    | 8.4    |
|                  |                                 | Median (mg/l)                                                           | 8.4      | 8.4                          | 8.4    | 8.4    | 8.4            | 8.4    | 8.4    |
|                  |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                           | 96     | 96     | 96             | 96     | 96     |
|                  | Total Phosphorus                | Mean (mg/l)                                                             | 0.079    | 0.067                        | 0.067  | 0.067  | 0.067          | 0.067  | 0.064  |
|                  |                                 | Median (mg/l)                                                           | 0.025    | 0.02                         | 0.02   | 0.02   | 0.02           | 0.02   | 0.02   |
|                  |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 82       | 83                           | 83     | 83     | 83             | 83     | 84     |
|                  | Total Nitrogen                  | Mean (mg/l)                                                             | 1.13     | 0.96                         | 0.96   | 0.96   | 0.96           | 0.96   | 0.95   |
|                  |                                 | Median (mg/l)                                                           | 1.06     | 0.91                         | 0.91   | 0.91   | 0.91           | 0.91   | 0.91   |
|                  | Total Suspended Solids          | Mean (mg/l)                                                             | 6.3      | 4.6                          | 4.6    | 4.6    | 4.6            | 4.6    | 4.6    |
|                  |                                 | Median (mg/l)                                                           | 4.9      | 3.3                          | 3.3    | 3.3    | 3.3            | 3.3    | 3.3    |
|                  | Copper                          | Mean (mg/l)                                                             | 0.0047   | 0.0036                       | 0.0036 | 0.0036 | 0.0036         | 0.0036 | 0.0036 |
|                  |                                 | Median (mg/l)                                                           | 0.0013   | 0.0009                       | 0.0009 | 0.0009 | 0.0009         | 0.0009 | 0.0009 |

|                                |                                                               |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|--------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point               | Water Quality Indicator                                       | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| RT-3                           | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 7,328    | 6,066                        | 6,061  | 6,061  | 6,061          | 6,061  | 5,465  |
| Root River at<br>Wildcat Creek | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 64       | 64                           | 64     | 64     | 64             | 64     | 65     |
|                                |                                                               | Geometric mean (cells per 100 ml)                                       | 645      | 518                          | 517    | 517    | 517            | 517    | 467    |
|                                |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 27       | 43                           | 44     | 44     | 44             | 44     | 53     |
|                                | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 4,228    | 3,537                        | 3,526  | 3,526  | 3,526          | 3,526  | 3,194  |
|                                |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 74                           | 74     | 74     | 74             | 74     | 75     |
|                                |                                                               | Geometric mean (cells per 100 ml)                                       | 477      | 383                          | 382    | 382    | 382            | 382    | 346    |
|                                |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 10       | 17                           | 17     | 17     | 17             | 17     | 22     |
|                                | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 8.9      | 8.9                          | 8.9    | 8.9    | 8.9            | 8.9    | 8.9    |
|                                |                                                               | Median (mg/l)                                                           | 8.7      | 8.7                          | 8.7    | 8.7    | 8.7            | 8.7    | 8.7    |
|                                |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 87       | 88                           | 88     | 88     | 88             | 88     | 88     |
|                                | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.078    | 0.066                        | 0.066  | 0.066  | 0.066          | 0.066  | 0.063  |
|                                |                                                               | Median (mg/l)                                                           | 0.022    | 0.018                        | 0.018  | 0.018  | 0.018          | 0.018  | 0.018  |
|                                |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 81       | 82                           | 82     | 82     | 82             | 82     | 83     |
|                                | Total Nitrogen                                                | Mean (mg/l)                                                             | 1.07     | 0.92                         | 0.92   | 0.92   | 0.92           | 0.92   | 0.91   |
|                                |                                                               | Median (mg/l)                                                           | 0.97     | 0.83                         | 0.83   | 0.83   | 0.83           | 0.83   | 0.82   |
|                                | Total Suspended Solids                                        | Mean (mg/l)                                                             | 9.2      | 6.7                          | 6.7    | 6.7    | 6.7            | 6.7    | 6.7    |
|                                |                                                               | Median (mg/l)                                                           | 4.8      | 3.3                          | 3.3    | 3.3    | 3.3            | 3.3    | 3.2    |
|                                | Copper                                                        | Mean (mg/l)                                                             | 0.0049   | 0.0038                       | 0.0038 | 0.0038 | 0.0038         | 0.0038 | 0.0038 |
|                                |                                                               | Median (mg/l)                                                           | 0.0013   | 0.0009                       | 0.0009 | 0.0009 | 0.0009         | 0.0009 | 0.0009 |

|                  |                                    |                                                                         |          |                              |        | Scr    | eening Alterna | ıtive  |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| RT-4             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 7,101    | 5,914                        | 5,910  | 5,910  | 5,910          | 5,910  | 5,325  |
| Root River       | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 56       | 58                           | 58     | 58     | 58             | 58     | 59     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 865      | 697                          | 696    | 696    | 696            | 696    | 629    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 19       | 29                           | 29     | 29     | 29             | 29     | 35     |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,018    | 3,370                        | 3,363  | 3,363  | 3,363          | 3,363  | 3,038  |
|                  | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 68                           | 68     | 68     | 68             | 68     | 68     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 603      | 491                          | 489    | 489    | 489            | 489    | 443    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 7        | 11                           | 11     | 11     | 11             | 11     | 15     |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 9.6      | 9.5                          | 9.5    | 9.5    | 9.5            | 9.5    | 9.5    |
|                  |                                    | Median (mg/l)                                                           | 9.4      | 9.3                          | 9.3    | 9.3    | 9.3            | 9.3    | 9.3    |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 95       | 95                           | 95     | 95     | 95             | 95     | 95     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.08     | 0.068                        | 0.068  | 0.068  | 0.068          | 0.068  | 0.065  |
|                  |                                    | Median (mg/l)                                                           | 0.022    | 0.019                        | 0.019  | 0.019  | 0.019          | 0.019  | 0.018  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 80                           | 80     | 80     | 80             | 80     | 81     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.1      | 0.87                         | 0.87   | 0.87   | 0.87           | 0.87   | 0.86   |
|                  |                                    | Median (mg/l)                                                           | 0.98     | 0.75                         | 0.75   | 0.75   | 0.75           | 0.75   | 0.74   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 10.3     | 7.2                          | 7.2    | 7.2    | 7.2            | 7.2    | 7.2    |
|                  |                                    | Median (mg/l)                                                           | 4.7      | 3.2                          | 3.2    | 3.2    | 3.2            | 3.2    | 3.2    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0054   | 0.0043                       | 0.0043 | 0.0043 | 0.0043         | 0.0043 | 0.0043 |
|                  |                                    | Median (mg/l)                                                           | 0.0014   | 0.001                        | 0.001  | 0.001  | 0.001          | 0.001  | 0.001  |

|                                         |                                                               |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|-----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                        | Water Quality Indicator                                       | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| RT-10                                   | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 6,995    | 5,966                        | 5,964  | 5,964  | 5,964          | 5,964  | 5,374  |
| Root River<br>Upstream of<br>Ryan Creek | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 51                           | 51     | 51     | 51             | 51     | 52     |
| ,                                       |                                                               | Geometric mean (cells per 100 ml)                                       | 1,189    | 985                          | 984    | 984    | 984            | 984    | 888    |
|                                         |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 9        | 18                           | 18     | 18     | 18             | 18     | 21     |
|                                         | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 3,768    | 3,213                        | 3,210  | 3,210  | 3,210          | 3,210  | 2,901  |
|                                         |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 59       | 62                           | 62     | 62     | 62             | 62     | 64     |
|                                         |                                                               | Geometric mean (cells per 100 ml)                                       | 717      | 593                          | 591    | 591    | 591            | 591    | 535    |
|                                         |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 4        | 9                            | 9      | 9      | 9              | 9      | 13     |
|                                         | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 11.3     | 11.3                         | 11.3   | 11.3   | 11.3           | 11.3   | 11.3   |
|                                         |                                                               | Median (mg/l)                                                           | 11.6     | 11.6                         | 11.6   | 11.6   | 11.6           | 11.6   | 11.6   |
|                                         |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                           | 98     | 98     | 98             | 98     | 98     |
|                                         | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.087    | 0.077                        | 0.077  | 0.077  | 0.077          | 0.077  | 0.073  |
|                                         |                                                               | Median (mg/l)                                                           | 0.057    | 0.052                        | 0.052  | 0.052  | 0.052          | 0.052  | 0.05   |
|                                         |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 73       | 76                           | 76     | 76     | 76             | 76     | 77     |
|                                         | Total Nitrogen                                                | Mean (mg/l)                                                             | 1.12     | 0.88                         | 0.88   | 0.88   | 0.88           | 0.88   | 0.87   |
|                                         |                                                               | Median (mg/l)                                                           | 1.1      | 0.87                         | 0.87   | 0.87   | 0.87           | 0.87   | 0.85   |
|                                         | Total Suspended Solids                                        | Mean (mg/l)                                                             | 12.9     | 8.6                          | 8.6    | 8.6    | 8.6            | 8.6    | 8.6    |
|                                         |                                                               | Median (mg/l)                                                           | 4.8      | 3.2                          | 3.2    | 3.2    | 3.2            | 3.2    | 3.2    |
|                                         | Copper                                                        | Mean (mg/l)                                                             | 0.002    | 0.0017                       | 0.0017 | 0.0017 | 0.0017         | 0.0017 | 0.0017 |
|                                         |                                                               | Median (mg/l)                                                           | 0.0006   | 0.0005                       | 0.0005 | 0.0005 | 0.0005         | 0.0005 | 0.0005 |

Table I-5 (continued)

|                                                       |                                                               |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|-------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                                      | Water Quality Indicator                                       | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| RT-17                                                 | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 4,656    | 4,048                        | 4,047  | 4,047  | 4,047          | 4,047  | 3,613  |
| Root River at<br>Upstream Cross-<br>ing of Milwaukee- | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 43       | 45                           | 45     | 45     | 45             | 45     | 48     |
| Racine County Line and Down-                          |                                                               | Geometric mean (cells per 100 ml)                                       | 1,123    | 1,012                        | 1,011  | 1,011  | 1,011          | 1,011  | 882    |
| stream of Root<br>River Canal                         |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 7        | 9                            | 9      | 9      | 9              | 9      | 10     |
|                                                       | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 2,994    | 2,536                        | 2,535  | 2,535  | 2,535          | 2,535  | 2,265  |
|                                                       |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 55       | 57                           | 57     | 57     | 57             | 57     | 59     |
|                                                       |                                                               | Geometric mean (cells per 100 ml)                                       | 720      | 642                          | 641    | 641    | 641            | 641    | 564    |
|                                                       |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 4        | 4                            | 4      | 4      | 4              | 4      | 6      |
|                                                       | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 11.5     | 11.5                         | 11.5   | 11.5   | 11.5           | 11.5   | 11.5   |
|                                                       |                                                               | Median (mg/l)                                                           | 11.7     | 11.7                         | 11.7   | 11.7   | 11.7           | 11.7   | 11.7   |
|                                                       |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                           | 99     | 99     | 99             | 99     | 99     |
|                                                       | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.104    | 0.094                        | 0.096  | 0.096  | 0.096          | 0.096  | 0.091  |
|                                                       |                                                               | Median (mg/l)                                                           | 0.071    | 0.067                        | 0.067  | 0.067  | 0.067          | 0.067  | 0.065  |
|                                                       |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 71       | 73                           | 73     | 73     | 73             | 73     | 75     |
|                                                       | Total Nitrogen                                                | Mean (mg/l)                                                             | 1.66     | 1.45                         | 1.47   | 1.47   | 1.47           | 1.47   | 1.44   |
|                                                       |                                                               | Median (mg/l)                                                           | 1.37     | 1.2                          | 1.2    | 1.2    | 1.2            | 1.2    | 1.19   |
|                                                       | Total Suspended Solids                                        | Mean (mg/l)                                                             | 20.6     | 16.2                         | 16.2   | 16.2   | 16.2           | 16.2   | 15.2   |
|                                                       |                                                               | Median (mg/l)                                                           | 4.6      | 3.8                          | 3.8    | 3.8    | 3.8            | 3.8    | 3.8    |
|                                                       | Copper                                                        | Mean (mg/l)                                                             | 0.0006   | 0.0006                       | 0.0006 | 0.0006 | 0.0006         | 0.0006 | 0.0006 |
|                                                       |                                                               | Median (mg/l)                                                           | 0.0001   | 0.0001                       | 0.0001 | 0.0001 | 0.0001         | 0.0001 | 0.0001 |

Table I-5 (continued)

|                                            |                                                               |                                                                         |          |                              |        | Scr    | eening Alterna | tive   |        |
|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|--------|--------|----------------|--------|--------|
| Assessment Point                           | Water Quality Indicator                                       | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A     | 1B     | 1C             | 1D     | 2      |
| RT-22                                      | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 4,924    | 4,132                        | 4,125  | 4,125  | 4,125          | 4,125  | 3,703  |
| Mouth of Root<br>River at Lake<br>Michigan | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 47       | 48                           | 48     | 48     | 48             | 48     | 49     |
| 3 9 3                                      |                                                               | Geometric mean (cells per 100 ml)                                       | 869      | 763                          | 762    | 762    | 762            | 762    | 668    |
|                                            |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 28       | 34                           | 34     | 34     | 34             | 34     | 44     |
|                                            | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 3,327    | 2,710                        | 2,696  | 2,696  | 2,696          | 2,696  | 2,434  |
|                                            |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 62       | 62                           | 62     | 62     | 62             | 62     | 64     |
|                                            |                                                               | Geometric mean (cells per 100 ml)                                       | 440      | 383                          | 382    | 382    | 382            | 382    | 338    |
|                                            |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 22       | 28                           | 28     | 28     | 28             | 28     | 36     |
|                                            | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 11.1     | 11.1                         | 11.1   | 11.1   | 11.1           | 11.1   | 11.1   |
|                                            |                                                               | Median (mg/l)                                                           | 11.3     | 11.3                         | 11.3   | 11.3   | 11.3           | 11.3   | 11.4   |
|                                            |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                           | 99     | 99     | 99             | 99     | 99     |
|                                            | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.115    | 0.102                        | 0.104  | 0.104  | 0.104          | 0.104  | 0.099  |
|                                            |                                                               | Median (mg/l)                                                           | 0.079    | 0.074                        | 0.074  | 0.074  | 0.074          | 0.074  | 0.072  |
|                                            |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 65       | 68                           | 68     | 68     | 68             | 68     | 70     |
|                                            | Total Nitrogen                                                | Mean (mg/l)                                                             | 1.49     | 1.29                         | 1.30   | 1.30   | 1.30           | 1.30   | 1.28   |
|                                            |                                                               | Median (mg/l)                                                           | 1.17     | 1.03                         | 1.03   | 1.03   | 1.03           | 1.03   | 1.02   |
|                                            | Total Suspended Solids                                        | Mean (mg/l)                                                             | 38.5     | 28.8                         | 28.8   | 28.8   | 28.8           | 28.8   | 27.1   |
|                                            |                                                               | Median (mg/l)                                                           | 9.4      | 8.0                          | 8.0    | 8.0    | 8.0            | 8.0    | 7.7    |
|                                            | Copper                                                        | Mean (mg/l)                                                             | 0.0015   | 0.0011                       | 0.0011 | 0.0011 | 0.0011         | 0.0011 | 0.0011 |
|                                            |                                                               | Median (mg/l)                                                           | 0.0002   | 0.0002                       | 0.0002 | 0.0002 | 0.0002         | 0.0002 | 0.0002 |

Table I-6
WATER QUALITY SUMMARY STATISTICS FOR SCREENING ALTERNATIVES: NEARSHORE LAKE MICHIGAN AREA

|                     |                                                               |                                                                                        |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point | Water Quality Indicator                                       | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-1                | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                                | 1,101    | 788                          | 708     | 708     | 776            | 776     | 691     |
| Milwaukee River     | (annual)                                                      | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 79       | 87                           | 89      | 89      | 87             | 87      | 91      |
|                     |                                                               | Geometric mean (cells per 100 ml)                                                      | 175      | 123                          | 113     | 113     | 195            | 195     | 109     |
|                     |                                                               | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 254      | 291                          | 292     | 292     | 289            | 289     | 303     |
|                     | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                                | 457      | 332                          | 183     | 183     | 295            | 295     | 278     |
|                     |                                                               | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 95       | 97                           | 99      | 99      | 97             | 97      | 98      |
|                     |                                                               | Geometric mean (cells per 100 ml)                                                      | 26       | 17                           | 15      | 15      | 43             | 43      | 15      |
|                     |                                                               | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 147      | 152                          | 152     | 152     | 151            | 151     | 152     |
|                     | Dissolved Oxygen                                              | Mean (mg/l)                                                                            | 9.96     | 9.94                         | 9.94    | 9.94    | 9.94           | 9.94    | 9.99    |
|                     |                                                               | Median (mg/l)                                                                          | 10.85    | 10.84                        | 10.84   | 10.84   | 10.84          | 10.84   | 10.86   |
|                     |                                                               | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 99       | 99                           | 99      | 99      | 99             | 99      | 99      |
|                     | Total Phosphorus                                              | Mean (mg/l)                                                                            | 0.0657   | 0.0653                       | 0.065   | 0.065   | 0.0651         | 0.0651  | 0.0636  |
|                     |                                                               | Median (mg/l)                                                                          | 0.0550   | 0.0554                       | 0.0552  | 0.0552  | 0.0553         | 0.0553  | 0.0536  |
|                     |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 78       | 79                           | 79      | 79      | 79             | 79      | 79      |
|                     | Total Nitrogen                                                | Mean (mg/l)                                                                            | 1.69     | 1.62                         | 1.63    | 1.63    | 1.63           | 1.63    | 1.61    |
|                     |                                                               | Median (mg/l)                                                                          | 1.48     | 1.43                         | 1.43    | 1.43    | 1.44           | 1.44    | 1.42    |
|                     | Total Suspended Solids                                        | Mean (mg/l)                                                                            | 22.46    | 20.72                        | 20.85   | 20.85   | 20.89          | 20.89   | 19.31   |
|                     |                                                               | Median (mg/l)                                                                          | 13.09    | 12.41                        | 12.51   | 12.51   | 12.53          | 12.53   | 11.81   |
|                     | Copper                                                        | Mean (mg/l)                                                                            | 0.00454  | 0.00460                      | 0.00465 | 0.00465 | 0.00463        | 0.00463 | 0.00462 |
|                     |                                                               | Median (mg/l)                                                                          | 0.00442  | 0.00445                      | 0.0045  | 0.0045  | 0.00448        | 0.00448 | 0.00448 |

|                    |                                 |                                                                                        |          |                  |         | Scr     | eening Alterna | tive    |         |
|--------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|------------------|---------|---------|----------------|---------|---------|
| Assessment         |                                 |                                                                                        |          | Original<br>2020 |         |         |                |         |         |
| Point              | Water Quality Indicator         | Statistic                                                                              | Existing | Baseline         | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-2               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,466    | 3,187            | 2,125   | 2,125   | 2,281          | 2,281   | 2,037   |
| Menomonee<br>River | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 58       | 59               | 67      | 67      | 66             | 66      | 69      |
|                    |                                 | Geometric mean (cells per 100 ml)                                                      | 595      | 538              | 293     | 293     | 348            | 348     | 277     |
|                    |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 208      | 212              | 237     | 237     | 234            | 234     | 242     |
|                    | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 1,250    | 1,119            | 676     | 676     | 894            | 894     | 831     |
|                    | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 84       | 85               | 90      | 90      | 88             | 88      | 90      |
|                    |                                 | Geometric mean (cells per 100 ml)                                                      | 135      | 118              | 58      | 58      | 77             | 77      | 57      |
|                    |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 139      | 142              | 150     | 150     | 150            | 150     | 151     |
|                    | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.26     | 9.44             | 9.48    | 9.48    | 9.44           | 9.44    | 9.49    |
|                    |                                 | Median (mg/l)                                                                          | 9.71     | 9.94             | 9.97    | 9.97    | 9.95           | 9.95    | 9.98    |
|                    |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100              | 100     | 100     | 100            | 100     | 100     |
|                    | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0704   | 0.0701           | 0.0693  | 0.0693  | 0.0703         | 0.0703  | 0.0672  |
|                    |                                 | Median (mg/l)                                                                          | 0.0645   | 0.0664           | 0.0653  | 0.0653  | 0.0664         | 0.0664  | 0.0637  |
|                    |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 86       | 88               | 89      | 89      | 87             | 87      | 90      |
|                    | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.53     | 1.33             | 1.31    | 1.31    | 1.32           | 1.32    | 1.29    |
|                    |                                 | Median (mg/l)                                                                          | 1.51     | 1.31             | 1.29    | 1.29    | 1.3            | 1.3     | 1.27    |
|                    | Total Suspended Solids          | Mean (mg/l)                                                                            | 20.09    | 18.13            | 18.15   | 18.15   | 18.27          | 18.27   | 17.57   |
|                    |                                 | Median (mg/l)                                                                          | 11.64    | 11.26            | 11.26   | 11.26   | 11.36          | 11.36   | 10.81   |
|                    | Copper                          | Mean (mg/l)                                                                            | 0.01867  | 0.01866          | 0.01872 | 0.01872 | 0.01875        | 0.01875 | 0.01853 |
|                    |                                 | Median (mg/l)                                                                          | 0.01413  | 0.01372          | 0.01376 | 0.01376 | 0.01377        | 0.01377 | 0.01377 |

|                     |                                 |                                                                                        |          |                              |         | Scr     | reening Alterna | tive    |         |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|---------|---------|-----------------|---------|---------|
| Assessment<br>Point | Water Quality Indicator         | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C              | 1D      | 2       |
| LM-3                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 931      | 813                          | 576     | 576     | 637             | 637     | 585     |
| Menomonee<br>River  | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 86       | 88                           | 92      | 92      | 91              | 91      | 93      |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 141      | 120                          | 86      | 86      | 96              | 96      | 81      |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 308      | 324                          | 344     | 344     | 343             | 343     | 351     |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 494      | 446                          | 261     | 261     | 354             | 354     | 348     |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 94       | 94                           | 97      | 97      | 95              | 95      | 96      |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 40       | 33                           | 21      | 21      | 25              | 25      | 21      |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 150      | 151                          | 153     | 153     | 153             | 153     | 153     |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.12     | 9.27                         | 9.3     | 9.3     | 9.27            | 9.27    | 9.32    |
|                     |                                 | Median (mg/l)                                                                          | 9.74     | 9.92                         | 9.95    | 9.95    | 9.94            | 9.94    | 9.96    |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                     | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0620   | 0.0621                       | 0.0613  | 0.0613  | 0.062           | 0.062   | 0.0596  |
|                     |                                 | Median (mg/l)                                                                          | 0.0589   | 0.0601                       | 0.0591  | 0.0591  | 0.0597          | 0.0597  | 0.0576  |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 93       | 94                           | 94      | 94      | 94              | 94      | 95      |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.53     | 1.40                         | 1.37    | 1.37    | 1.38            | 1.38    | 1.36    |
|                     |                                 | Median (mg/l)                                                                          | 1.44     | 1.31                         | 1.28    | 1.28    | 1.29            | 1.29    | 1.27    |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                            | 19.00    | 17.59                        | 17.64   | 17.64   | 17.73           | 17.73   | 16.84   |
|                     |                                 | Median (mg/l)                                                                          | 12.24    | 11.70                        | 11.72   | 11.72   | 11.8            | 11.8    | 11.2    |
|                     | Copper                          | Mean (mg/l)                                                                            | 0.00561  | 0.00540                      | 0.00543 | 0.00543 | 0.00543         | 0.00543 | 0.00537 |
|                     |                                 | Median (mg/l)                                                                          | 0.00509  | 0.00485                      | 0.00488 | 0.00488 | 0.00488         | 0.00488 | 0.00484 |

|                     |                                 |                                                                                        |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point | Water Quality Indicator         | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-4                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 850      | 693                          | 556     | 556     | 611            | 611     | 551     |
| Milwaukee River     | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 85       | 90                           | 94      | 94      | 92             | 92      | 94      |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 147      | 121                          | 97      | 97      | 111            | 111     | 92      |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 298      | 316                          | 327     | 327     | 324            | 324     | 339     |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 399      | 341                          | 200     | 200     | 287            | 287     | 273     |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 95       | 96                           | 98      | 98      | 96             | 96      | 97      |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 37       | 29                           | 21      | 21      | 26             | 26      | 20      |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 150      | 152                          | 153     | 153     | 152            | 152     | 152     |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.51     | 9.62                         | 9.65    | 9.65    | 9.63           | 9.63    | 9.67    |
|                     |                                 | Median (mg/l)                                                                          | 10.13    | 10.32                        | 10.35   | 10.35   | 10.34          | 10.34   | 10.36   |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                     | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0591   | 0.0596                       | 0.0589  | 0.0589  | 0.0593         | 0.0593  | 0.0574  |
|                     |                                 | Median (mg/l)                                                                          | 0.0545   | 0.0550                       | 0.0541  | 0.0541  | 0.0545         | 0.0545  | 0.0526  |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 92       | 91                           | 92      | 92      | 91             | 91      | 91      |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.58     | 1.49                         | 1.46    | 1.46    | 1.47           | 1.47    | 1.45    |
|                     |                                 | Median (mg/l)                                                                          | 1.42     | 1.34                         | 1.31    | 1.31    | 1.31           | 1.31    | 1.29    |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                            | 19.03    | 17.90                        | 17.99   | 17.99   | 18.05          | 18.05   | 16.94   |
|                     |                                 | Median (mg/l)                                                                          | 12.06    | 11.76                        | 11.82   | 11.82   | 11.88          | 11.88   | 11.19   |
|                     | Copper                          | Mean (mg/l)                                                                            | 0.00543  | 0.00527                      | 0.00531 | 0.00531 | 0.0053         | 0.0053  | 0.00527 |
|                     |                                 | Median (mg/l)                                                                          | 0.00515  | 0.00500                      | 0.00505 | 0.00505 | 0.00503        | 0.00503 | 0.00499 |

|                       |                                 |                                                                                        |          |                              |         | Scr     | eening Alterna | tive    |         |
|-----------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point   | Water Quality Indicator         | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-5                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 352      | 368                          | 190     | 190     | 235            | 235     | 345     |
| Kinnickinnic<br>River | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 98       | 98                           | 99      | 99      | 98             | 98      | 99      |
|                       |                                 | Geometric mean (cells per 100 ml)                                                      | 52       | 46                           | 40      | 40      | 43             | 43      | 39      |
|                       |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 363      | 363                          | 364     | 364     | 364            | 364     | 363     |
|                       | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 255      | 320                          | 71      | 71      | 142            | 142     | 300     |
|                       | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 98       | 99                           | 100     | 100     | 99             | 99      | 99      |
|                       |                                 | Geometric mean (cells per 100 ml)                                                      | 17       | 15                           | 12      | 12      | 13             | 13      | 12      |
|                       |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 152      | 152                          | 153     | 153     | 153            | 153     | 152     |
|                       | Dissolved Oxygen                | Mean (mg/l)                                                                            | 8.09     | 8.24                         | 8.37    | 8.37    | 8.33           | 8.33    | 8.34    |
|                       |                                 | Median (mg/l)                                                                          | 8.58     | 8.73                         | 8.86    | 8.86    | 8.83           | 8.83    | 8.83    |
|                       |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                       | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0490   | 0.0484                       | 0.0457  | 0.0457  | 0.0462         | 0.0462  | 0.046   |
|                       |                                 | Median (mg/l)                                                                          | 0.0436   | 0.0431                       | 0.0419  | 0.0419  | 0.0421         | 0.0421  | 0.0406  |
|                       |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 97       | 97                           | 98      | 98      | 98             | 98      | 98      |
|                       | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.39     | 1.32                         | 1.22    | 1.22    | 1.22           | 1.22    | 1.21    |
|                       |                                 | Median (mg/l)                                                                          | 1.30     | 1.24                         | 1.14    | 1.14    | 1.15           | 1.15    | 1.13    |
|                       | Total Suspended Solids          | Mean (mg/l)                                                                            | 12.16    | 11.30                        | 11.22   | 11.22   | 11.29          | 11.29   | 10.78   |
|                       |                                 | Median (mg/l)                                                                          | 7.83     | 7.46                         | 7.47    | 7.47    | 7.5            | 7.5     | 7.12    |
|                       | Copper                          | Mean (mg/l)                                                                            | 0.00694  | 0.00662                      | 0.00665 | 0.00665 | 0.00665        | 0.00665 | 0.00662 |
|                       |                                 | Median (mg/l)                                                                          | 0.00698  | 0.00662                      | 0.00666 | 0.00666 | 0.00665        | 0.00665 | 0.00662 |

|                             |                                 |                                                                                        |          |                              |         | Scr     | reening Alterna | tive    |         |
|-----------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|------------------------------|---------|---------|-----------------|---------|---------|
| Assessment<br>Point         | Water Quality Indicator         | Statistic                                                                              | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C              | 1D      | 2       |
| LM-6                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 445      | 379                          | 294     | 294     | 332             | 332     | 311     |
| Mouth of<br>Milwaukee River | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 95       | 97                           | 98      | 98      | 97              | 97      | 98      |
|                             |                                 | Geometric mean (cells per 100 ml)                                                      | 78       | 69                           | 59      | 59      | 63              | 63      | 57      |
|                             |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 352      | 360                          | 364     | 364     | 364             | 364     | 363     |
|                             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 229      | 202                          | 107     | 107     | 166             | 166     | 170     |
|                             | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>a</sup>  | 98       | 98                           | 100     | 100     | 98              | 98      | 99      |
|                             |                                 | Geometric mean (cells per 100 ml)                                                      | 26       | 22                           | 18      | 18      | 20              | 20      | 18      |
|                             |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>a</sup> | 152      | 152                          | 153     | 153     | 153             | 153     | 152     |
|                             | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.46     | 9.54                         | 9.64    | 9.64    | 9.62            | 9.62    | 9.65    |
|                             |                                 | Median (mg/l)                                                                          | 9.97     | 10.09                        | 10.18   | 10.18   | 10.17           | 10.17   | 10.17   |
|                             |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                             | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0471   | 0.0475                       | 0.0453  | 0.0453  | 0.0457          | 0.0457  | 0.0445  |
|                             |                                 | Median (mg/l)                                                                          | 0.0424   | 0.0430                       | 0.0406  | 0.0406  | 0.0408          | 0.0408  | 0.0395  |
|                             |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 97       | 97                           | 97      | 97      | 97              | 97      | 97      |
|                             | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.51     | 1.45                         | 1.24    | 1.24    | 1.24            | 1.24    | 1.23    |
|                             |                                 | Median (mg/l)                                                                          | 1.44     | 1.39                         | 1.14    | 1.14    | 1.15            | 1.15    | 1.13    |
|                             | Total Suspended Solids          | Mean (mg/l)                                                                            | 13.28    | 12.66                        | 12.65   | 12.65   | 12.7            | 12.7    | 11.99   |
|                             |                                 | Median (mg/l)                                                                          | 8.48     | 8.30                         | 8.3     | 8.3     | 8.34            | 8.34    | 7.95    |
|                             | Copper                          | Mean (mg/l)                                                                            | 0.00722  | 0.00698                      | 0.00701 | 0.00701 | 0.007           | 0.007   | 0.00698 |
|                             |                                 | Median (mg/l)                                                                          | 0.00727  | 0.00697                      | 0.007   | 0.007   | 0.00699         | 0.00699 | 0.00697 |

|                     |                                 |                                                                         |          |                              |         | Scr     | reening Alterna | tive    |         |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|-----------------|---------|---------|
| Assessment<br>Point | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C              | 1D      | 2       |
| LM-7                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 91       | 82                           | 57      | 57      | 70              | 70      | 71      |
| Outer Harbor        | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 96       | 97                           | 98      | 98      | 97              | 97      | 98      |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 21       | 20                           | 17      | 17      | 18              | 18      | 17      |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 360      | 362                          | 365     | 365     | 365             | 365     | 363     |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 81       | 74                           | 37      | 37      | 60              | 60      | 66      |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                           | 99      | 99      | 98              | 98      | 98      |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 13       | 12                           | 10      | 10      | 11              | 11      | 11      |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152                          | 153     | 153     | 153             | 153     | 152     |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.34    | 10.36                        | 10.49   | 10.49   | 10.48           | 10.48   | 10.49   |
|                     |                                 | Median (mg/l)                                                           | 10.69    | 10.73                        | 10.88   | 10.88   | 10.87           | 10.87   | 10.87   |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.0274   | 0.0278                       | 0.0250  | 0.0250  | 0.0251          | 0.0251  | 0.0248  |
|                     |                                 | Median (mg/l)                                                           | 0.0242   | 0.0248                       | 0.0218  | 0.0218  | 0.0219          | 0.0219  | 0.0216  |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 99                           | 99      | 99      | 99              | 99      | 99      |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.15     | 1.13                         | 0.83    | 0.83    | 0.83            | 0.83    | 0.82    |
|                     |                                 | Median (mg/l)                                                           | 1.09     | 1.08                         | 0.76    | 0.76    | 0.76            | 0.76    | 0.76    |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 6.45     | 6.24                         | 6.18    | 6.18    | 6.2             | 6.2     | 5.95    |
|                     |                                 | Median (mg/l)                                                           | 4.01     | 4.05                         | 4.00    | 4.00    | 4.01            | 4.01    | 3.9     |
|                     | Copper                          | Mean (mg/l)                                                             | 0.00940  | 0.00931                      | 0.00932 | 0.00932 | 0.00932         | 0.00932 | 0.00931 |
|                     |                                 | Median (mg/l)                                                           | 0.00959  | 0.00952                      | 0.00952 | 0.00952 | 0.00952         | 0.00952 | 0.00951 |

|              |                                 |                                                                         |          |                  |         | Scr     | eening Alterna | tive    |         |
|--------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------|---------|---------|----------------|---------|---------|
| Assessment   |                                 |                                                                         |          | Original<br>2020 |         |         |                |         |         |
| Point        | Water Quality Indicator         | Statistic                                                               | Existing | Baseline         | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-8         | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 66       | 60               | 39      | 39      | 49             | 49      | 53      |
| Outer Harbor | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 98       | 98               | 99      | 99      | 98             | 98      | 98      |
|              |                                 | Geometric mean (cells per 100 ml)                                       | 15       | 14               | 12      | 12      | 13             | 13      | 13      |
|              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 363      | 363              | 365     | 365     | 364            | 364     | 363     |
|              | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 65       | 59               | 30      | 30      | 48             | 48      | 53      |
|              | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98               | 99      | 99      | 98             | 98      | 98      |
|              |                                 | Geometric mean (cells per 100 ml)                                       | 11       | 10               | 8       | 8       | 9              | 9       | 9       |
|              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152              | 153     | 153     | 152            | 152     | 152     |
|              | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.51    | 10.52            | 10.63   | 10.63   | 10.63          | 10.63   | 10.63   |
|              |                                 | Median (mg/l)                                                           | 10.80    | 10.83            | 10.99   | 10.99   | 10.98          | 10.98   | 10.98   |
|              |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100              | 100     | 100     | 100            | 100     | 100     |
|              | Total Phosphorus                | Mean (mg/l)                                                             | 0.0236   | 0.0239           | 0.0217  | 0.0217  | 0.0218         | 0.0218  | 0.0215  |
|              |                                 | Median (mg/l)                                                           | 0.0195   | 0.0201           | 0.0183  | 0.0183  | 0.0184         | 0.0184  | 0.0182  |
|              |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 99               | 100     | 100     | 99             | 99      | 100     |
|              | Total Nitrogen                  | Mean (mg/l)                                                             | 1.04     | 1.02             | 0.78    | 0.78    | 0.78           | 0.78    | 0.78    |
|              |                                 | Median (mg/l)                                                           | 0.98     | 0.97             | 0.71    | 0.71    | 0.71           | 0.71    | 0.71    |
|              | Total Suspended Solids          | Mean (mg/l)                                                             | 5.74     | 5.57             | 5.51    | 5.51    | 5.53           | 5.53    | 5.33    |
|              |                                 | Median (mg/l)                                                           | 3.51     | 3.55             | 3.51    | 3.51    | 3.52           | 3.52    | 3.43    |
|              | Copper                          | Mean (mg/l)                                                             | 0.00950  | 0.00943          | 0.00943 | 0.00943 | 0.00943        | 0.00943 | 0.00943 |
|              |                                 | Median (mg/l)                                                           | 0.00970  | 0.00964          | 0.00965 | 0.00965 | 0.00965        | 0.00965 | 0.00964 |

|                     |                                 |                                                                         |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-9                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 47       | 42                           | 32      | 32      | 36             | 36      | 36      |
| Outer Harbor        | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 99       | 99                           | 100     | 100     | 100            | 100     | 99      |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 11       | 10                           | 9       | 9       | 10             | 10      | 9       |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                          | 365     | 365     | 365            | 365     | 365     |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 26       | 24                           | 12      | 12      | 19             | 19      | 22      |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 98       | 99                           | 99      | 99      | 99             | 99      | 99      |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 6        | 6                            | 4       | 4       | 5              | 5       | 5       |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153            | 153     | 153     |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.68    | 10.70                        | 10.8    | 10.8    | 10.79          | 10.79   | 10.8    |
|                     |                                 | Median (mg/l)                                                           | 10.94    | 10.97                        | 11.12   | 11.12   | 11.12          | 11.12   | 11.12   |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.0205   | 0.0206                       | 0.0187  | 0.0187  | 0.0187         | 0.0187  | 0.0185  |
|                     |                                 | Median (mg/l)                                                           | 0.0179   | 0.0183                       | 0.0163  | 0.0163  | 0.0164         | 0.0164  | 0.0162  |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 0.95     | 0.94                         | 0.70    | 0.70    | 0.70           | 0.70    | 0.70    |
|                     |                                 | Median (mg/l)                                                           | 0.84     | 0.83                         | 0.64    | 0.64    | 0.64           | 0.64    | 0.64    |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 4.64     | 4.51                         | 4.46    | 4.46    | 4.47           | 4.47    | 4.33    |
|                     |                                 | Median (mg/l)                                                           | 3.19     | 3.21                         | 3.16    | 3.16    | 3.16           | 3.16    | 3.1     |
|                     | Copper                          | Mean (mg/l)                                                             | 0.00969  | 0.00964                      | 0.00964 | 0.00964 | 0.00964        | 0.00964 | 0.00964 |
|                     |                                 | Median (mg/l)                                                           | 0.00987  | 0.00982                      | 0.00982 | 0.00982 | 0.00982        | 0.00982 | 0.00982 |

|                     |                                 |                                                                         |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-10               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 66       | 59                           | 42      | 42      | 51             | 51      | 53      |
| Outer Harbor        | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 98       | 98                           | 99      | 99      | 99             | 99      | 99      |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 17       | 16                           | 13      | 13      | 15             | 15      | 14      |
|                     | 510 W D                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 362      | 363                          | 363     | 363     | 363            | 363     | 363     |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 50       | 46                           | 25      | 25      | 38             | 38      | 41      |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                           | 99      | 99      | 98             | 98      | 99      |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 11       | 10                           | 9       | 9       | 10             | 10      | 9       |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152                          | 153     | 153     | 152            | 152     | 152     |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.37    | 10.38                        | 10.53   | 10.53   | 10.52          | 10.52   | 10.53   |
|                     |                                 | Median (mg/l)                                                           | 10.75    | 10.77                        | 10.93   | 10.93   | 10.93          | 10.93   | 10.93   |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.0262   | 0.0264                       | 0.0233  | 0.0233  | 0.0234         | 0.0234  | 0.0231  |
|                     |                                 | Median (mg/l)                                                           | 0.0233   | 0.0238                       | 0.0204  | 0.0204  | 0.0204         | 0.0204  | 0.0202  |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 100                          | 100     | 100     | 100            | 100     | 100     |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.14     | 1.13                         | 0.81    | 0.81    | 0.81           | 0.81    | 0.81    |
|                     |                                 | Median (mg/l)                                                           | 1.08     | 1.07                         | 0.75    | 0.75    | 0.75           | 0.75    | 0.75    |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 5.64     | 5.47                         | 5.39    | 5.39    | 5.41           | 5.41    | 5.21    |
|                     |                                 | Median (mg/l)                                                           | 3.68     | 3.73                         | 3.64    | 3.64    | 3.64           | 3.64    | 3.56    |
|                     | Copper                          | Mean (mg/l)                                                             | 0.00965  | 0.00957                      | 0.00957 | 0.00957 | 0.00957        | 0.00957 | 0.00957 |
|                     |                                 | Median (mg/l)                                                           | 0.00968  | 0.00963                      | 0.00963 | 0.00963 | 0.00963        | 0.00963 | 0.00963 |

|                                 |                                 |                                                                         |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point             | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-11                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 11       | 10                           | 7       | 7       | 9              | 9       | 9       |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 5        | 5                            | 3       | 3       | 5              | 5       | 4       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                          | 365     | 365     | 365            | 365     | 365     |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6        | 5                            | 3       | 3       | 5              | 5       | 5       |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 3        | 3                            | 2       | 2       | 3              | 3       | 3       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153            | 153     | 153     |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.21    | 11.21                        | 11.24   | 11.24   | 11.24          | 11.24   | 11.24   |
|                                 |                                 | Median (mg/l)                                                           | 11.49    | 11.50                        | 11.54   | 11.54   | 11.54          | 11.54   | 11.54   |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0095   | 0.0095                       | 0.0094  | 0.0094  | 0.0091         | 0.0091  | 0.009   |
|                                 |                                 | Median (mg/l)                                                           | 0.0076   | 0.0077                       | 0.0072  | 0.0072  | 0.0073         | 0.0073  | 0.0072  |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.62     | 0.62                         | 0.55    | 0.55    | 0.55           | 0.55    | 0.55    |
|                                 |                                 | Median (mg/l)                                                           | 0.55     | 0.55                         | 0.52    | 0.52    | 0.52           | 0.52    | 0.52    |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.64     | 2.61                         | 2.59    | 2.59    | 2.6            | 2.6     | 2.57    |
|                                 |                                 | Median (mg/l)                                                           | 2.34     | 2.34                         | 2.33    | 2.33    | 2.33           | 2.33    | 2.32    |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.00989  | 0.00990                      | 0.00990 | 0.00990 | 0.00990        | 0.00990 | 0.00990 |
|                                 |                                 | Median (mg/l)                                                           | 0.00999  | 0.00999                      | 0.00999 | 0.00999 | 0.00999        | 0.00999 | 0.00999 |

|                                 |                                 |                                                                         |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point             | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-12                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 12       | 11                           | 8       | 8       | 10             | 10      | 10      |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 5        | 5                            | 4       | 4       | 5              | 5       | 5       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                          | 365     | 365     | 365            | 365     | 365     |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6        | 6                            | 3       | 3       | 5              | 5       | 5       |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 4        | 3                            | 2       | 2       | 3              | 3       | 3       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153            | 153     | 153     |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.18    | 11.19                        | 11.21   | 11.21   | 11.21          | 11.21   | 11.21   |
|                                 |                                 | Median (mg/l)                                                           | 11.46    | 11.47                        | 11.52   | 11.52   | 11.52          | 11.52   | 11.52   |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0099   | 0.0099                       | 0.0094  | 0.0094  | 0.0094         | 0.0094  | 0.0093  |
|                                 |                                 | Median (mg/l)                                                           | 0.0080   | 0.0081                       | 0.0076  | 0.0076  | 0.0076         | 0.0076  | 0.0076  |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.63     | 0.63                         | 0.55    | 0.55    | 0.55           | 0.55    | 0.55    |
|                                 |                                 | Median (mg/l)                                                           | 0.56     | 0.56                         | 0.53    | 0.53    | 0.53           | 0.53    | 0.53    |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.71     | 2.68                         | 2.66    | 2.66    | 2.66           | 2.66    | 2.63    |
|                                 |                                 | Median (mg/l)                                                           | 2.39     | 2.38                         | 2.37    | 2.37    | 2.37           | 2.37    | 2.37    |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.00989  | 0.00988                      | 0.00988 | 0.00988 | 0.00988        | 0.00988 | 0.00988 |
|                                 |                                 | Median (mg/l)                                                           | 0.00999  | 0.00999                      | 0.00999 | 0.00999 | 0.00999        | 0.00999 | 0.00999 |

|                                 |                                 |                                                                         |          |                              |         | Scr     | reening Alterna | tive    |         |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|-----------------|---------|---------|
| Assessment<br>Point             | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C              | 1D      | 2       |
| LM-13                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 69       | 59                           | 14      | 14      | 57              | 57      | 53      |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                           | 100     | 100     | 98              | 98      | 99      |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 16       | 15                           | 5       | 5       | 14              | 14      | 13      |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 363      | 364                          | 365     | 365     | 364             | 364     | 364     |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 58       | 49                           | 7       | 7       | 47              | 47      | 45      |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                           | 100     | 100     | 98              | 98      | 99      |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 10       | 9                            | 3       | 3       | 9               | 9       | 8       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153             | 153     | 153     |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.87    | 10.89                        | 10.97   | 10.97   | 10.97           | 10.97   | 10.97   |
|                                 |                                 | Median (mg/l)                                                           | 11.14    | 11.16                        | 11.28   | 11.28   | 11.28           | 11.28   | 11.28   |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0195   | 0.0195                       | 0.0183  | 0.0183  | 0.0184          | 0.0184  | 0.0182  |
|                                 |                                 | Median (mg/l)                                                           | 0.0162   | 0.0164                       | 0.0154  | 0.0154  | 0.0155          | 0.0155  | 0.0153  |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.86     | 0.85                         | 0.68    | 0.68    | 0.68            | 0.68    | 0.68    |
|                                 |                                 | Median (mg/l)                                                           | 0.78     | 0.77                         | 0.63    | 0.63    | 0.63            | 0.63    | 0.63    |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 4.24     | 4.04                         | 4       | 4       | 4.01            | 4.01    | 3.92    |
|                                 |                                 | Median (mg/l)                                                           | 2.84     | 2.83                         | 2.79    | 2.79    | 2.79            | 2.79    | 2.75    |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.00984  | 0.00998                      | 0.00998 | 0.00998 | 0.00998         | 0.00998 | 0.00989 |
|                                 |                                 | Median (mg/l)                                                           | 0.00991  | 0.00988                      | 0.00988 | 0.00988 | 0.00988         | 0.00988 | 0.00988 |

|                                 |                                 |                                                                         |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point             | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-14                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3        | 3                            | 3       | 3       | 3              | 3       | 3       |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 2        | 2                            | 2       | 2       | 2              | 2       | 2       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                          | 365     | 365     | 365            | 365     | 365     |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2        | 2                            | 2       | 2       | 2              | 2       | 2       |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 2        | 2                            | 2       | 2       | 2              | 2       | 2       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153            | 153     | 153     |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.36    | 11.36                        | 11.37   | 11.37   | 11.37          | 11.37   | 11.37   |
|                                 |                                 | Median (mg/l)                                                           | 11.64    | 11.66                        | 11.66   | 11.66   | 11.66          | 11.66   | 11.66   |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0068   | 0.0068                       | 0.0067  | 0.0067  | 0.0067         | 0.0067  | 0.0067  |
|                                 |                                 | Median (mg/l)                                                           | 0.0049   | 0.0049                       | 0.0048  | 0.0048  | 0.0048         | 0.0048  | 0.0048  |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.54     | 0.54                         | 0.53    | 0.53    | 0.53           | 0.53    | 0.53    |
|                                 |                                 | Median (mg/l)                                                           | 0.53     | 0.53                         | 0.52    | 0.52    | 0.52           | 0.52    | 0.52    |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.39     | 2.38                         | 2.37    | 2.37    | 2.37           | 2.37    | 2.36    |
|                                 |                                 | Median (mg/l)                                                           | 2.33     | 2.32                         | 2.32    | 2.32    | 2.32           | 2.32    | 2.32    |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.00993  | 0.00992                      | 0.00992 | 0.00992 | 0.00992        | 0.00992 | 0.00992 |
|                                 |                                 | Median (mg/l)                                                           | 0.01000  | 0.01000                      | 0.01000 | 0.01000 | 0.01000        | 0.01000 | 0.01000 |

|                                    |                                                                         |                                                                         |          |                              |         | Scr     | reening Alterna | ıtive   |         |
|------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|-----------------|---------|---------|
| Assessment<br>Point                | Water Quality Indicator                                                 | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C              | 1D      | 2       |
| LM-15                              | Fecal Coliform Bacteria                                                 | Mean (cells per 100 ml)                                                 | 5        | 5                            | 3       | 3       | 4               | 4       | 4       |
| Nearshore Lake<br>Michigan Area    | (annual)                                                                | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                                    |                                                                         | Geometric mean (cells per 100 ml)                                       | 3        | 3                            | 3       | 3       | 3               | 3       | 3       |
|                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365                                                                     | 365      | 365                          | 365     | 365     | 365             | 365     |         |
|                                    | Fecal Coliform Bacteria                                                 | Mean (cells per 100 ml)                                                 | 8        | 7                            | 4       | 4       | 6               | 6       | 6       |
| (May-September: 15:<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100                                                                     | 100      | 100                          | 100     | 100     | 100             | 100     |         |
|                                    |                                                                         | Geometric mean (cells per 100 ml)                                       | 3        | 3                            | 3       | 3       | 3               | 3       | 3       |
|                                    |                                                                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153             | 153     | 153     |
|                                    | Dissolved Oxygen                                                        | Mean (mg/l)                                                             | 11.31    | 11.31                        | 11.33   | 11.33   | 11.33           | 11.33   | 11.33   |
|                                    |                                                                         | Median (mg/l)                                                           | 11.59    | 11.59                        | 11.62   | 11.62   | 11.62           | 11.62   | 11.62   |
|                                    |                                                                         | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                                    | Total Phosphorus                                                        | Mean (mg/l)                                                             | 0.0086   | 0.0086                       | 0.0084  | 0.0084  | 0.0084          | 0.0084  | 0.0084  |
|                                    |                                                                         | Median (mg/l)                                                           | 0.0064   | 0.0065                       | 0.0064  | 0.0064  | 0.0064          | 0.0064  | 0.0064  |
|                                    |                                                                         | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                                    | Total Nitrogen                                                          | Mean (mg/l)                                                             | 0.58     | 0.57                         | 0.55    | 0.55    | 0.55            | 0.55    | 0.55    |
|                                    |                                                                         | Median (mg/l)                                                           | 0.55     | 0.55                         | 0.53    | 0.53    | 0.53            | 0.53    | 0.53    |
|                                    | Total Suspended Solids                                                  | Mean (mg/l)                                                             | 2.67     | 2.63                         | 2.63    | 2.63    | 2.63            | 2.63    | 2.6     |
|                                    |                                                                         | Median (mg/l)                                                           | 2.31     | 2.31                         | 2.3     | 2.3     | 2.31            | 2.31    | 2.3     |
|                                    | Copper                                                                  | Mean (mg/l)                                                             | 0.00989  | 0.00988                      | 0.00988 | 0.00988 | 0.00989         | 0.00989 | 0.00988 |
|                                    |                                                                         | Median (mg/l)                                                           | 0.00999  | 0.00998                      | 0.00998 | 0.00998 | 0.00999         | 0.00999 | 0.00998 |

|                                 |                                 |                                                                         |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point             | Water Quality Indicator         | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-16                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 9        | 9                            | 6       | 6       | 8              | 8       | 8       |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 5        | 5                            | 4       | 4       | 4              | 4       | 4       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                          | 365     | 365     | 365            | 365     | 365     |
| Fecal Coliform Bacteria         | Mean (cells per 100 ml)         | 5                                                                       | 4        | 3                            | 3       | 4       | 4              | 4       |         |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 3        | 3                            | 2       | 2       | 3              | 3       | 3       |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153            | 153     | 153     |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.26    | 11.27                        | 11.3    | 11.3    | 11.3           | 11.3    | 11.3    |
|                                 |                                 | Median (mg/l)                                                           | 11.56    | 11.57                        | 11.61   | 11.61   | 11.61          | 11.61   | 11.61   |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0118   | 0.0118                       | 0.0119  | 0.0119  | 0.0119         | 0.0119  | 0.0118  |
|                                 |                                 | Median (mg/l)                                                           | 0.0101   | 0.0101                       | 0.0100  | 0.0100  | 0.0100         | 0.0100  | 0.0099  |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.65     | 0.65                         | 0.60    | 0.60    | 0.60           | 0.60    | 0.60    |
|                                 |                                 | Median (mg/l)                                                           | 0.62     | 0.62                         | 0.57    | 0.57    | 0.57           | 0.57    | 0.57    |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.57     | 2.53                         | 2.51    | 2.51    | 2.51           | 2.51    | 2.49    |
|                                 |                                 | Median (mg/l)                                                           | 2.30     | 2.29                         | 2.28    | 2.28    | 2.28           | 2.28    | 2.27    |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.00994  | 0.00998                      | 0.00998 | 0.00998 | 0.00998        | 0.00998 | 0.00995 |
|                                 |                                 | Median (mg/l)                                                           | 0.00999  | 0.00998                      | 0.00998 | 0.00998 | 0.00998        | 0.00998 | 0.00998 |

|                                 |                                                                        |                                                                         |          |                              |         | Scr     | reening Alterna | tive    |         |
|---------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|-----------------|---------|---------|
| Assessment<br>Point             | Water Quality Indicator                                                | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C              | 1D      | 2       |
| LM-17                           | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 21       | 20                           | 19      | 19      | 20              | 20      | 19      |
| Nearshore Lake<br>Michigan Area | (                                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                                 |                                                                        | Geometric mean (cells per 100 ml)                                       | 8        | 7                            | 7       | 7       | 7               | 7       | 7       |
|                                 |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 364      | 365                          | 365     | 365     | 365             | 365     | 365     |
|                                 | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 9        | 9                            | 8       | 8       | 9               | 9       | 9       |
| (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml) | 100                                                                     | 100      | 100                          | 100     | 100     | 100             | 100     |         |
|                                 |                                                                        | Geometric mean (cells per 100 ml)                                       | 5        | 5                            | 4       | 4       | 5               | 5       | 5       |
|                                 |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153             | 153     | 153     |
|                                 | Dissolved Oxygen                                                       | Mean (mg/l)                                                             | 11.19    | 11.19                        | 11.26   | 11.26   | 11.26           | 11.26   | 11.26   |
|                                 |                                                                        | Median (mg/l)                                                           | 11.39    | 11.40                        | 11.49   | 11.49   | 11.49           | 11.49   | 11.48   |
|                                 |                                                                        | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                                 | Total Phosphorus                                                       | Mean (mg/l)                                                             | 0.0196   | 0.0193                       | 0.0227  | 0.0227  | 0.0227          | 0.0227  | 0.0227  |
|                                 |                                                                        | Median (mg/l)                                                           | 0.0161   | 0.0158                       | 0.0187  | 0.0187  | 0.0187          | 0.0187  | 0.188   |
|                                 |                                                                        | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100             | 100     | 100     |
|                                 | Total Nitrogen                                                         | Mean (mg/l)                                                             | 0.97     | 0.96                         | 0.94    | 0.94    | 0.94            | 0.94    | 0.94    |
|                                 |                                                                        | Median (mg/l)                                                           | 0.88     | 0.88                         | 0.85    | 0.85    | 0.85            | 0.85    | 0.85    |
|                                 | Total Suspended Solids                                                 | Mean (mg/l)                                                             | 2.52     | 2.47                         | 2.4     | 2.4     | 2.4             | 2.4     | 2.39    |
|                                 |                                                                        | Median (mg/l)                                                           | 2.31     | 2.30                         | 2.26    | 2.26    | 2.26            | 2.26    | 2.25    |
|                                 |                                                                        | Mean (mg/l)                                                             | 0.01017  | 0.01015                      | 0.01015 | 0.01015 | 0.01015         | 0.01015 | 0.01015 |
|                                 |                                                                        | Median (mg/l)                                                           | 0.01006  | 0.01005                      | 0.01005 | 0.01005 | 0.01005         | 0.01005 | 0.01005 |

Table I-6 (continued)

|                                 |                                                                         |                                                                         |          |                              |         | Scr     | eening Alterna | tive    |         |
|---------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------|---------|---------|----------------|---------|---------|
| Assessment<br>Point             | Water Quality Indicator                                                 | Statistic                                                               | Existing | Original<br>2020<br>Baseline | 1A      | 1B      | 1C             | 1D      | 2       |
| LM-18                           | Fecal Coliform Bacteria                                                 | Mean (cells per 100 ml)                                                 | 3        | 3                            | 3       | 3       | 3              | 3       | 3       |
| Nearshore Lake<br>Michigan Area | (annual)                                                                | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 |                                                                         | Geometric mean (cells per 100 ml)                                       | 2        | 2                            | 2       | 2       | 2              | 2       | 2       |
|                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365                                                                     | 365      | 365                          | 365     | 365     | 365            | 365     |         |
|                                 | Fecal Coliform Bacteria                                                 | Mean (cells per 100 ml)                                                 | 2        | 2                            | 2       | 2       | 2              | 2       | 2       |
| (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100                                                                     | 100      | 100                          | 100     | 100     | 100            | 100     |         |
|                                 |                                                                         | Geometric mean (cells per 100 ml)                                       | 2        | 2                            | 2       | 2       | 2              | 2       | 2       |
|                                 |                                                                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                          | 153     | 153     | 153            | 153     | 153     |
|                                 | Dissolved Oxygen                                                        | Mean (mg/l)                                                             | 11.37    | 11.37                        | 11.38   | 11.38   | 11.38          | 11.38   | 11.38   |
|                                 |                                                                         | Median (mg/l)                                                           | 11.63    | 11.63                        | 11.64   | 11.64   | 11.64          | 11.64   | 11.64   |
|                                 |                                                                         | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Phosphorus                                                        | Mean (mg/l)                                                             | 0.0080   | 0.0079                       | 0.0081  | 0.0081  | 0.0081         | 0.0081  | 0.0081  |
|                                 |                                                                         | Median (mg/l)                                                           | 0.0062   | 0.0062                       | 0.0064  | 0.0064  | 0.0064         | 0.0064  | 0.0063  |
|                                 |                                                                         | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                          | 100     | 100     | 100            | 100     | 100     |
|                                 | Total Nitrogen                                                          | Mean (mg/l)                                                             | 0.57     | 0.57                         | 0.56    | 0.56    | 0.56           | 0.56    | 0.56    |
|                                 |                                                                         | Median (mg/l)                                                           | 0.56     | 0.56                         | 0.55    | 0.55    | 0.55           | 0.55    | 0.55    |
|                                 | Total Suspended Solids                                                  | Mean (mg/l)                                                             | 2.20     | 2.19                         | 2.19    | 2.19    | 2.19           | 2.19    | 2.19    |
|                                 |                                                                         | Median (mg/l)                                                           | 2.18     | 2.17                         | 2.17    | 2.17    | 2.17           | 2.17    | 2.17    |
|                                 | Copper                                                                  | Mean (mg/l)                                                             | 0.00993  | 0.00993                      | 0.00993 | 0.00993 | 0.00993        | 0.00993 | 0.00993 |
|                                 |                                                                         | Median (mg/l)                                                           | 0.00999  | 0.00999                      | 0.00999 | 0.00999 | 0.00999        | 0.00999 | 0.00999 |

<sup>&</sup>lt;sup>a</sup> Variance Standard in Chapter NR 104 of the Wisconsin Administrative Code.

Source: HydroQual, Inc., and SEWRPC.

# Appendix J (revised)

# COMPARISON OF WATER QUALITY SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS

Table J-1

WATER QUALITY SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: KINNICKINNIC RIVER WATERSHED

|                                                      |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                     | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| KK-3                                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 5,373    | 4,533                     | 4,522  | 4,522  | 3,960              | 3,960  |
| Kinnickinnic River<br>Upstream of<br>Confluence with | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 79       | 80                        | 80     | 80     | 80                 | 80     |
| Wilson Park Creek                                    |                                    | Geometric mean (cells per 100 ml)                                                      | 371      | 318                       | 318    | 318    | 282                | 282    |
|                                                      |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 305      | 317                       | 317    | 317    | 322                | 322    |
|                                                      | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 2,747    | 2,375                     | 2,348  | 2,348  | 1,831              | 1,831  |
|                                                      | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 89       | 89                        | 89     | 89     | 90                 | 90     |
|                                                      |                                    | Geometric mean (cells per 100 ml)                                                      | 260      | 228                       | 227    | 227    | 196                | 196    |
|                                                      |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 152      | 153                       | 153    | 153    | 153                | 153    |
|                                                      | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 9.4      | 9.4                       | 9.4    | 9.4    | 9.4                | 9.4    |
|                                                      |                                    | Median (mg/l)                                                                          | 8.8      | 8.8                       | 8.8    | 8.8    | 8.8                | 8.8    |
|                                                      |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>b</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                                      | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.222    | 0.214                     | 0.214  | 0.214  | 0.211              | 0.211  |
|                                                      |                                    | Median (mg/l)                                                                          | 0.206    | 0.199                     | 0.199  | 0.199  | 0.197              | 0.197  |
|                                                      |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 13       | 14                        | 14     | 14     | 14                 | 14     |
|                                                      | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.39     | 1.30                      | 1.30   | 1.30   | 1.29               | 1.29   |
|                                                      |                                    | Median (mg/l)                                                                          | 1.36     | 1.28                      | 1.28   | 1.28   | 1.27               | 1.27   |
|                                                      | Total Suspended Solids             | Mean (mg/l)                                                                            | 10.6     | 8.5                       | 8.5    | 8.5    | 8.5                | 8.5    |
|                                                      |                                    | Median (mg/l)                                                                          | 4.2      | 3.5                       | 3.5    | 3.5    | 3.5                | 3.5    |
|                                                      | Copper                             | Mean (mg/l)                                                                            | 0.0037   | 0.0030                    | 0.0030 | 0.0030 | 0.0030             | 0.0030 |
|                                                      |                                    | Median (mg/l)                                                                          | 0.0010   | 0.0008                    | 0.0008 | 0.0008 | 0.0008             | 0.0008 |

Table J-1 (continued)

|                                              |                                    |                                                                         |          |                           |        | Altern | native <sup>a</sup> |        |
|----------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point                             | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| KK-4                                         | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,897    | 3,244                     | 3,240  | 3,240  | 2,812               | 2,812  |
| Wilson Creek Upstream of Holmes Avenue Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 52       | 52                        | 52     | 52     | 56                  | 56     |
|                                              |                                    | Geometric mean (cells per 100 ml)                                       | 609      | 520                       | 520    | 520    | 422                 | 422    |
|                                              |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 54       | 72                        | 72     | 72     | 101                 | 101    |
|                                              | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,179    | 1,764                     | 1,755  | 1,755  | 1,329               | 1,329  |
|                                              | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 67       | 68                        | 68     | 68     | 76                  | 76     |
|                                              |                                    | Geometric mean (cells per 100 ml)                                       | 313      | 257                       | 257    | 257    | 181                 | 181    |
|                                              |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 36       | 47                        | 47     | 47     | 69                  | 69     |
|                                              | Dissolved Oxygen                   | Mean (mg/l)                                                             | 7.5      | 7.6                       | 7.6    | 7.6    | 7.6                 | 7.6    |
|                                              |                                    | Median (mg/l)                                                           | 7.3      | 7.3                       | 7.3    | 7.3    | 7.3                 | 7.3    |
|                                              |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                 | 100    |
|                                              | Total Phosphorus                   | Mean (mg/l)                                                             | 0.222    | 0.220                     | 0.220  | 0.220  | 0.217               | 0.217  |
|                                              |                                    | Median (mg/l)                                                           | 0.123    | 0.122                     | 0.122  | 0.122  | 0.121               | 0.121  |
|                                              |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 35       | 33                        | 33     | 33     | 34                  | 34     |
|                                              | Total Nitrogen                     | Mean (mg/l)                                                             | 1.65     | 1.57                      | 1.57   | 1.57   | 1.56                | 1.56   |
|                                              |                                    | Median (mg/l)                                                           | 0.99     | 0.89                      | 0.89   | 0.89   | 0.88                | 0.88   |
|                                              | Total Suspended Solids             | Mean (mg/l)                                                             | 20.1     | 15.2                      | 15.2   | 15.2   | 15.2                | 15.2   |
|                                              |                                    | Median (mg/l)                                                           | 6.5      | 5.4                       | 5.4    | 5.4    | 5.4                 | 5.4    |
|                                              | Copper                             | Mean (mg/l)                                                             | 0.0041   | 0.0036                    | 0.0036 | 0.0036 | 0.0036              | 0.0036 |
|                                              | Сорреі                             | Median (mg/l)                                                           | 0.0019   | 0.0019                    | 0.0019 | 0.0019 | 0.0019              | 0.0019 |

Table J-1 (continued)

|                                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|----------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                 | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| KK-8                             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 5,124    | 4,244                     | 4,243  | 4,243  | 3,679              | 3,679  |
| Wilson Park Creek,<br>USGS Gauge | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 56       | 57                        | 57     | 57     | 60                 | 60     |
|                                  |                                    | Geometric mean (cells per 100 ml)                                       | 697      | 598                       | 598    | 598    | 497                | 497    |
|                                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 35       | 49                        | 49     | 49     | 69                 | 69     |
|                                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,552    | 2,119                     | 2,118  | 2,118  | 1,571              | 1,571  |
|                                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 73                        | 73     | 73     | 78                 | 78     |
|                                  |                                    | Geometric mean (cells per 100 ml)                                       | 357      | 304                       | 304    | 304    | 226                | 226    |
|                                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 26       | 34                        | 34     | 34     | 48                 | 48     |
|                                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.9     | 10.9                      | 10.9   | 10.9   | 10.9               | 10.9   |
|                                  |                                    | Median (mg/l)                                                           | 11.2     | 11.2                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.200    | 0.194                     | 0.194  | 0.194  | 0.191              | 0.191  |
|                                  |                                    | Median (mg/l)                                                           | 0.142    | 0.139                     | 0.139  | 0.139  | 0.137              | 0.137  |
|                                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 33       | 33                        | 33     | 33     | 33                 | 33     |
|                                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.48     | 1.38                      | 1.38   | 1.38   | 1.37               | 1.37   |
|                                  |                                    | Median (mg/l)                                                           | 1.16     | 1.06                      | 1.06   | 1.06   | 1.05               | 1.05   |
|                                  | Total Suspended Solids             | Mean (mg/l)                                                             | 14.1     | 10.9                      | 10.9   | 10.9   | 10.9               | 10.9   |
|                                  |                                    | Median (mg/l)                                                           | 4.8      | 3.7                       | 3.7    | 3.7    | 3.7                | 3.7    |
|                                  | Copper                             | Mean (mg/l)                                                             | 0.0044   | 0.0038                    | 0.0038 | 0.0038 | 0.0038             | 0.0038 |
|                                  |                                    | Median (mg/l)                                                           | 0.0018   | 0.0016                    | 0.0016 | 0.0016 | 0.0016             | 0.0016 |

Table J-1 (continued)

|                                                    |                                    |                                                                                        |          |                           |        | Altern | native <sup>a</sup> |        |
|----------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point                                   | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| KK-9                                               | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 5,785    | 4,899                     | 4,517  | 4,616  | 4,362               | 4,362  |
| Kinnickinnic River Downstream of Wilson Park Creek | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 74       | 75                        | 75     | 75     | 76                  | 76     |
|                                                    |                                    | Geometric mean (cells per 100 ml)                                                      | 654      | 563                       | 558    | 561    | 473                 | 473    |
|                                                    |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 254      | 265                       | 265    | 265    | 274                 | 274    |
|                                                    | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 3,360    | 3,004                     | 2,394  | 2,579  | 2,625               | 2,625  |
|                                                    | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 87       | 86                        | 86     | 86     | 88                  | 88     |
|                                                    |                                    | Geometric mean (cells per 100 ml)                                                      | 343      | 295                       | 291    | 294    | 227                 | 227    |
|                                                    |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 146      | 148                       | 148    | 148    | 151                 | 151    |
|                                                    | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 11.3     | 11.3                      | 11.3   | 11.3   | 11.3                | 11.3   |
|                                                    |                                    | Median (mg/l)                                                                          | 11.4     | 11.4                      | 11.4   | 11.4   | 11.4                | 11.4   |
|                                                    |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>D</sup>               | 100      | 100                       | 100    | 100    | 100                 | 100    |
|                                                    | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.206    | 0.199                     | 0.197  | 0.197  | 0.196               | 0.196  |
|                                                    |                                    | Median (mg/l)                                                                          | 0.171    | 0.164                     | 0.164  | 0.164  | 0.161               | 0.161  |
|                                                    |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 24       | 24                        | 24     | 24     | 25                  | 25     |
|                                                    | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.40     | 1.30                      | 1.30   | 1.30   | 1.29                | 1.29   |
|                                                    |                                    | Median (mg/l)                                                                          | 1.22     | 1.13                      | 1.13   | 1.13   | 1.12                | 1.12   |
|                                                    | Total Suspended Solids             | Mean (mg/l)                                                                            | 14.5     | 11.5                      | 11.4   | 11.4   | 11.5                | 11.5   |
|                                                    |                                    | Median (mg/l)                                                                          | 4.8      | 3.8                       | 3.8    | 3.8    | 3.8                 | 3.8    |
|                                                    | Copper                             | Mean (mg/l)                                                                            | 0.0047   | 0.0041                    | 0.0041 | 0.0041 | 0.0041              | 0.0041 |
|                                                    |                                    | Median (mg/l)                                                                          | 0.0019   | 0.0018                    | 0.0018 | 0.0018 | 0.0018              | 0.0018 |

Table J-1 (continued)

|                                                         |                                    |                                                                                        |          |                           |        | Alterr | native <sup>a</sup> |        |
|---------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point                                        | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| KK-10                                                   | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 5,859    | 4,909                     | 4,541  | 4,625  | 4,293               | 4,293  |
| Kinnickinnic River<br>near Upstream Limit<br>of Estuary | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 74       | 75                        | 75     | 75     | 76                  | 76     |
| oo.,                                                    |                                    | Geometric mean (cells per 100 ml)                                                      | 842      | 703                       | 684    | 689    | 590                 | 590    |
|                                                         |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 229      | 250                       | 256    | 254    | 262                 | 262    |
|                                                         | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 3,401    | 3,000                     | 2,406  | 2,564  | 2,444               | 2,444  |
|                                                         | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 86       | 86                        | 86     | 86     | 88                  | 88     |
|                                                         |                                    | Geometric mean (cells per 100 ml)                                                      | 498      | 415                       | 395    | 401    | 317                 | 317    |
|                                                         |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 131      | 140                       | 145    | 144    | 146                 | 146    |
|                                                         | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 11.4     | 11.4                      | 11.4   | 11.4   | 11.4                | 11.4   |
|                                                         |                                    | Median (mg/l)                                                                          | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5                | 11.5   |
|                                                         |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>a</sup>               | 100      | 100                       | 100    | 100    | 100                 | 100    |
|                                                         | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.196    | 0.189                     | 0.187  | 0.188  | 0.186               | 0.186  |
|                                                         |                                    | Median (mg/l)                                                                          | 0.165    | 0.158                     | 0.157  | 0.158  | 0.155               | 0.155  |
|                                                         |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 27       | 27                        | 27     | 27     | 28                  | 28     |
|                                                         | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.36     | 1.27                      | 1.27   | 1.27   | 1.26                | 1.26   |
|                                                         |                                    | Median (mg/l)                                                                          | 1.22     | 1.12                      | 1.12   | 1.12   | 1.12                | 1.12   |
|                                                         | Total Suspended Solids             | Mean (mg/l)                                                                            | 13.2     | 10.5                      | 10.4   | 10.4   | 10.5                | 10.5   |
|                                                         |                                    | Median (mg/l)                                                                          | 4.7      | 3.8                       | 3.8    | 3.8    | 3.8                 | 3.8    |
|                                                         | Copper                             | Mean (mg/l)                                                                            | 0.0048   | 0.0041                    | 0.0041 | 0.0041 | 0.0041              | 0.0041 |
|                                                         |                                    | Median (mg/l)                                                                          | 0.0019   | 0.0017                    | 0.0017 | 0.0017 | 0.0017              | 0.0017 |

Source: Tetra Tech, Inc., and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>b</sup>Variance Standard in Chapter NR 104 of the Wisconsin Administrative Code.

Table J-2

WATER QUALITY SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: MENOMONEE RIVER WATERSHED

|                             |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|-----------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point            | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-2                        | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 797      | 983                       | 975    | 975    | 824                | 834    |
| Upper<br>Menomonee<br>River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 75       | 71                        | 72     | 72     | 73                 | 73     |
|                             |                                    | Geometric mean (cells per 100 ml)                                       | 124      | 150                       | 131    | 131    | 114                | 117    |
|                             |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 262      | 240                       | 249    | 249    | 262                | 260    |
|                             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 602      | 698                       | 692    | 692    | 588                | 598    |
|                             | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 86       | 83                        | 83     | 83     | 83                 | 83     |
|                             |                                    | Geometric mean (cells per 100 ml)                                       | 79       | 92                        | 77     | 77     | 68                 | 69     |
|                             |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 144      | 137                       | 140    | 140    | 143                | 143    |
|                             | Dissolved Oxygen                   | Mean (mg/l)                                                             | 9.3      | 9.4                       | 9.4    | 9.4    | 9.4                | 9.4    |
|                             |                                    | Median (mg/l)                                                           | 9.1      | 9.2                       | 9.2    | 9.2    | 9.2                | 9.2    |
|                             |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 96                 | 100    |
|                             | Total Phosphorus                   | Mean (mg/l)                                                             | 0.143    | 0.146                     | 0.145  | 0.145  | 0.143              | 0.145  |
|                             |                                    | Median (mg/l)                                                           | 0.111    | 0.112                     | 0.112  | 0.112  | 0.110              | 0.112  |
|                             |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 46       | 45                        | 46     | 46     | 46                 | 46     |
|                             | Total Nitrogen                     | Mean (mg/l)                                                             | 1.47     | 1.36                      | 1.35   | 1.35   | 1.34               | 1.24   |
|                             |                                    | Median (mg/l)                                                           | 1.35     | 1.26                      | 1.26   | 1.26   | 1.25               | 1.17   |
|                             | Total Suspended Solids             | Mean (mg/l)                                                             | 7.9      | 7.9                       | 7.8    | 7.8    | 7.5                | 7.4    |
|                             |                                    | Median (mg/l)                                                           | 5.7      | 5.7                       | 5.6    | 5.6    | 5.5                | 5.4    |
|                             | Copper                             | Mean (mg/l)                                                             | 0.0024   | 0.0026                    | 0.0026 | 0.0026 | 0.0024             | 0.0023 |
|                             |                                    | Median (mg/l)                                                           | 0.0012   | 0.0011                    | 0.0011 | 0.0011 | 0.0011             | 0.0010 |

Table J-2 (continued)

|                                                      |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                     | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-5                                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,417    | 1,605                     | 1,601  | 1,601  | 1,354              | 1,361  |
| Menomonee River<br>at Washington-<br>Waukesha County | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 68       | 65                        | 65     | 65     | 66                 | 66     |
| Line                                                 |                                    | Geometric mean (cells per 100 ml)                                       | 205      | 234                       | 220    | 220    | 187                | 190    |
|                                                      |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 202      | 184                       | 190    | 190    | 210                | 209    |
|                                                      | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 890      | 982                       | 979    | 979    | 831                | 837    |
|                                                      | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 82       | 79                        | 79     | 79     | 80                 | 80     |
|                                                      |                                    | Geometric mean (cells per 100 ml)                                       | 105      | 118                       | 109    | 109    | 93                 | 94     |
|                                                      |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 125      | 114                       | 118    | 118    | 129                | 129    |
|                                                      | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.5     | 10.5                      | 10.5   | 10.5   | 10.5               | 10.5   |
|                                                      |                                    | Median (mg/l)                                                           | 10.7     | 10.7                      | 10.7   | 10.7   | 10.7               | 10.8   |
|                                                      |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                        | 99     | 99     | 99                 | 99     |
|                                                      | Total Phosphorus                   | Mean (mg/l)                                                             | 0.097    | 0.105                     | 0.105  | 0.105  | 0.100              | 0.101  |
|                                                      |                                    | Median (mg/l)                                                           | 0.063    | 0.066                     | 0.066  | 0.066  | 0.064              | 0.065  |
|                                                      |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 70       | 68                        | 68     | 68     | 69                 | 69     |
|                                                      | Total Nitrogen                     | Mean (mg/l)                                                             | 1.23     | 1.09                      | 1.09   | 1.09   | 1.06               | 1.00   |
|                                                      |                                    | Median (mg/l)                                                           | 1.11     | 0.99                      | 0.99   | 0.99   | 0.96               | 0.91   |
|                                                      | Total Suspended Solids             | Mean (mg/l)                                                             | 10.2     | 10.2                      | 10.1   | 10.1   | 9.4                | 9.4    |
|                                                      |                                    | Median (mg/l)                                                           | 6.0      | 5.8                       | 5.8    | 5.8    | 5.5                | 5.5    |
|                                                      | Copper                             | Mean (mg/l)                                                             | 0.0041   | 0.0047                    | 0.0047 | 0.0047 | 0.0043             | 0.0043 |
|                                                      |                                    | Median (mg/l)                                                           | 0.0016   | 0.0017                    | 0.0017 | 0.0017 | 0.0016             | 0.0015 |

Table J-2 (continued)

|                                            |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|--------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                           | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-9                                       | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,828    | 2,728                     | 2,726  | 2,726  | 2,387              | 2,374  |
| Menomonee River Downstream of Butler Ditch | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 57       | 56                        | 56     | 56     | 57                 | 57     |
|                                            |                                    | Geometric mean (cells per 100 ml)                                       | 489      | 489                       | 482    | 482    | 420                | 421    |
|                                            |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 72       | 78                        | 81     | 81     | 105                | 104    |
|                                            | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,571    | 1,438                     | 1,437  | 1,437  | 1,265              | 1,232  |
|                                            | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 76       | 74                        | 74     | 74     | 75                 | 75     |
|                                            |                                    | Geometric mean (cells per 100 ml)                                       | 229      | 216                       | 212    | 212    | 186                | 186    |
|                                            |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 51       | 57                        | 59     | 59     | 77                 | 77     |
|                                            | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.8     | 10.8                      | 10.8   | 10.8   | 10.8               | 10.8   |
|                                            |                                    | Median (mg/l)                                                           | 11.0     | 11.0                      | 11.0   | 11.0   | 11.0               | 11.0   |
|                                            |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                        | 99     | 99     | 99                 | 99     |
|                                            | Total Phosphorus                   | Mean (mg/l)                                                             | 0.101    | 0.102                     | 0.102  | 0.102  | 0.097              | 0.098  |
|                                            |                                    | Median (mg/l)                                                           | 0.061    | 0.065                     | 0.065  | 0.065  | 0.063              | 0.064  |
|                                            |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 69       | 66                        | 66     | 66     | 68                 | 68     |
|                                            | Total Nitrogen                     | Mean (mg/l)                                                             | 1.10     | 0.94                      | 0.93   | 0.93   | 0.91               | 0.88   |
|                                            |                                    | Median (mg/l)                                                           | 1.01     | 0.87                      | 0.87   | 0.87   | 0.85               | 0.82   |
|                                            | Total Suspended Solids             | Mean (mg/l)                                                             | 15.7     | 13.3                      | 13.3   | 13.3   | 12.8               | 12.8   |
|                                            |                                    | Median (mg/l)                                                           | 6.0      | 5.2                       | 5.2    | 5.2    | 5.0                | 4.9    |
|                                            | Copper                             | Mean (mg/l)                                                             | 0.0052   | 0.0052                    | 0.0052 | 0.0052 | 0.0050             | 0.0050 |
|                                            |                                    | Median (mg/l)                                                           | 0.0019   | 0.0020                    | 0.0020 | 0.0020 | 0.0018             | 0.0018 |

Table J-2 (continued)

|                              |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point             | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-11                        | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 7,777    | 6,389                     | 6,390  | 6,390  | 5,750              | 5,777  |
| Little<br>Menomonee<br>River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 53       | 53                        | 53     | 53     | 54                 | 54     |
|                              |                                    | Geometric mean (cells per 100 ml)                                       | 700      | 589                       | 559    | 559    | 509                | 512    |
|                              |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 68       | 84                        | 88     | 88     | 97                 | 96     |
|                              | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,477    | 3,591                     | 3,589  | 3,589  | 3,232              | 3,254  |
|                              | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 70       | 70                        | 70     | 70     | 71                 | 71     |
|                              |                                    | Geometric mean (cells per 100 ml)                                       | 261      | 213                       | 197    | 197    | 180                | 181    |
|                              |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 48       | 60                        | 63     | 63     | 69                 | 69     |
|                              | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.4     | 10.4                      | 10.4   | 10.4   | 10.4               | 10.3   |
|                              |                                    | Median (mg/l)                                                           | 10.5     | 10.5                      | 10.5   | 10.5   | 10.5               | 10.5   |
|                              |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                        | 98     | 98     | 98                 | 98     |
|                              | Total Phosphorus                   | Mean (mg/l)                                                             | 0.111    | 0.105                     | 0.105  | 0.105  | 0.102              | 0.103  |
|                              |                                    | Median (mg/l)                                                           | 0.072    | 0.070                     | 0.070  | 0.070  | 0.069              | 0.070  |
|                              |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 68       | 69                        | 69     | 69     | 70                 | 69     |
|                              | Total Nitrogen                     | Mean (mg/l)                                                             | 1.24     | 1.01                      | 1.01   | 1.01   | 1.00               | 0.97   |
|                              |                                    | Median (mg/l)                                                           | 1.15     | 0.93                      | 0.93   | 0.93   | 0.92               | 0.90   |
|                              | Total Suspended Solids             | Mean (mg/l)                                                             | 13.2     | 9.8                       | 9.7    | 9.7    | 9.8                | 9.7    |
|                              |                                    | Median (mg/l)                                                           | 4.6      | 3.4                       | 3.4    | 3.4    | 3.4                | 3.4    |
|                              | Copper                             | Mean (mg/l)                                                             | 0.0050   | 0.0042                    | 0.0042 | 0.0042 | 0.0042             | 0.0042 |
|                              |                                    | Median (mg/l)                                                           | 0.0017   | 0.0015                    | 0.0015 | 0.0015 | 0.0015             | 0.0014 |

Table J-2 (continued)

|                                                            |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                           | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-12                                                      | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,366    | 3,913                     | 3,912  | 3,913  | 3,476              | 3,481  |
| Menomonee River<br>Downstream of Little<br>Menomonee River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 50       | 49                        | 49     | 49     | 50                 | 50     |
|                                                            |                                    | Geometric mean (cells per 100 ml)                                       | 795      | 746                       | 737    | 737    | 651                | 654    |
|                                                            |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 31       | 38                        | 39     | 39     | 49                 | 49     |
|                                                            | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,175    | 1,895                     | 1,894  | 1,896  | 1,689              | 1,682  |
|                                                            | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 69       | 68                        | 68     | 68     | 69                 | 69     |
|                                                            |                                    | Geometric mean (cells per 100 ml)                                       | 348      | 314                       | 309    | 309    | 274                | 275    |
|                                                            |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 21       | 26                        | 27     | 27     | 34                 | 34     |
|                                                            | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.7     | 10.7                      | 10.7   | 10.7   | 10.7               | 10.7   |
|                                                            |                                    | Median (mg/l)                                                           | 10.9     | 10.9                      | 10.9   | 10.9   | 10.9               | 10.9   |
|                                                            |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                        | 99     | 99     | 99                 | 99     |
|                                                            | Total Phosphorus                   | Mean (mg/l)                                                             | 0.100    | 0.100                     | 0.100  | 0.100  | 0.095              | 0.096  |
|                                                            |                                    | Median (mg/l)                                                           | 0.061    | 0.064                     | 0.064  | 0.064  | 0.062              | 0.063  |
|                                                            |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 69       | 68                        | 68     | 68     | 69                 | 69     |
|                                                            | Total Nitrogen                     | Mean (mg/l)                                                             | 1.09     | 0.91                      | 0.91   | 0.91   | 0.89               | 0.87   |
|                                                            |                                    | Median (mg/l)                                                           | 1.02     | 0.87                      | 0.87   | 0.87   | 0.85               | 0.82   |
|                                                            | Total Suspended Solids             | Mean (mg/l)                                                             | 13.4     | 11.2                      | 11.1   | 11.1   | 10.8               | 10.8   |
|                                                            |                                    | Median (mg/l)                                                           | 5.2      | 4.4                       | 4.3    | 4.3    | 4.2                | 4.2    |
|                                                            | Copper                             | Mean (mg/l)                                                             | 0.0054   | 0.0052                    | 0.0052 | 0.0052 | 0.0050             | 0.0050 |
|                                                            |                                    | Median (mg/l)                                                           | 0.0021   | 0.0021                    | 0.0021 | 0.0021 | 0.0021             | 0.0020 |

Table J-2 (continued)

|                  |                                     |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|-------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator             | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-14            | Fecal Coliform Bacteria<br>(annual) | Mean (cells per 100 ml)                                                                | 8,133    | 6,589                     | 6,589  | 6,589  | 5,823              | 5,793  |
| Underwood Creek  |                                     | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 71       | 71                        | 71     | 71     | 72                 | 72     |
|                  |                                     | Geometric mean (cells per 100 ml)                                                      | 691      | 552                       | 552    | 552    | 493                | 494    |
|                  |                                     | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 247      | 261                       | 261    | 261    | 267                | 267    |
|                  | Fecal Coliform Bacteria             | Mean (cells per 100 ml)                                                                | 2,964    | 2,459                     | 2,459  | 2,459  | 1,956              | 1,956  |
|                  | (May-September:<br>153 days total)  | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 86       | 86                        | 86     | 86     | 87                 | 87     |
|                  |                                     | Geometric mean (cells per 100 ml)                                                      | 351      | 278                       | 278    | 278    | 246                | 246    |
|                  |                                     | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 147      | 151                       | 151    | 151    | 152                | 152    |
|                  | Dissolved Oxygen                    | Mean (mg/l)                                                                            | 11.0     | 11.1                      | 11.1   | 11.1   | 11.1               | 11.1   |
|                  |                                     | Median (mg/l)                                                                          | 11.1     | 11.2                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                  |                                     | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>D</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                  | Total Phosphorus                    | Mean (mg/l)                                                                            | 0.096    | 0.084                     | 0.084  | 0.084  | 0.080              | 0.080  |
|                  |                                     | Median (mg/l)                                                                          | 0.061    | 0.055                     | 0.055  | 0.055  | 0.054              | 0.054  |
|                  |                                     | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 77       | 80                        | 80     | 80     | 81                 | 81     |
|                  | Total Nitrogen                      | Mean (mg/l)                                                                            | 1.17     | 1.00                      | 1.00   | 1.00   | 0.99               | 0.99   |
|                  |                                     | Median (mg/l)                                                                          | 1.11     | 0.95                      | 0.95   | 0.95   | 0.94               | 0.94   |
|                  | Total Suspended Solids              | Mean (mg/l)                                                                            | 16.8     | 12.4                      | 12.4   | 12.4   | 12.4               | 12.4   |
|                  |                                     | Median (mg/l)                                                                          | 7.9      | 5.7                       | 5.7    | 5.7    | 5.7                | 5.7    |
|                  | Copper                              | Mean (mg/l)                                                                            | 0.0048   | 0.0037                    | 0.0037 | 0.0037 | 0.0037             | 0.0037 |
|                  |                                     | Median (mg/l)                                                                          | 0.0013   | 0.0010                    | 0.0010 | 0.0010 | 0.0010             | 0.0010 |

Table J-2 (continued)

|                  |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-16            | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 9,286    | 7,750                     | 7,750  | 7,750  | 6,730              | 6,609  |
| Honey Creek      | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 72       | 73                        | 73     | 73     | 74                 | 74     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 612      | 511                       | 511    | 511    | 449                | 446    |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 259      | 270                       | 270    | 270    | 277                | 278    |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 4,073    | 3,404                     | 3,404  | 3,404  | 2,478              | 2,478  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 86       | 86                        | 86     | 86     | 88                 | 88     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 325      | 272                       | 272    | 272    | 230                | 230    |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 148      | 152                       | 152    | 152    | 153                | 153    |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 11.0     | 11.0                      | 11.0   | 11.0   | 11.0               | 11.0   |
|                  |                                    | Median (mg/l)                                                                          | 10.7     | 10.6                      | 10.6   | 10.6   | 10.6               | 10.6   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>b</sup>               | 97       | 98                        | 98     | 98     | 98                 | 98     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.118    | 0.110                     | 0.110  | 0.110  | 0.107              | 0.107  |
|                  |                                    | Median (mg/l)                                                                          | 0.084    | 0.080                     | 0.080  | 0.080  | 0.079              | 0.079  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 64       | 67                        | 67     | 67     | 68                 | 68     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.28     | 1.17                      | 1.17   | 1.17   | 1.16               | 1.16   |
|                  |                                    | Median (mg/l)                                                                          | 1.22     | 1.12                      | 1.12   | 1.12   | 1.10               | 1.10   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                                            | 14.4     | 11.1                      | 11.1   | 11.1   | 11.1               | 11.1   |
|                  |                                    | Median (mg/l)                                                                          | 7.2      | 5.6                       | 5.6    | 5.6    | 5.6                | 5.6    |
|                  | Copper                             | Mean (mg/l)                                                                            | 0.0046   | 0.0038                    | 0.0038 | 0.0038 | 0.0038             | 0.0038 |
|                  |                                    | Median (mg/l)                                                                          | 0.0016   | 0.0014                    | 0.0014 | 0.0014 | 0.0014             | 0.0014 |

Table J-2 (continued)

|                                                 |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|-------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-17                                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 6,926    | 5,878                     | 5,810  | 5,804  | 5,109              | 5,071  |
| Menomonee River<br>Downstream of<br>Honey Creek | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 63       | 63                        | 63     | 63     | 64                 | 64     |
|                                                 |                                    | Geometric mean (cells per 100 ml)                                                      | 1,124    | 1,000                     | 989    | 989    | 867                | 867    |
|                                                 |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 196      | 205                       | 206    | 206    | 217                | 217    |
|                                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 3,622    | 3,051                     | 2,920  | 2,908  | 2,366              | 2,367  |
|                                                 | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 81       | 81                        | 81     | 81     | 82                 | 82     |
|                                                 |                                    | Geometric mean (cells per 100 ml)                                                      | 496      | 423                       | 416    | 417    | 358                | 360    |
|                                                 |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 130      | 137                       | 138    | 138    | 142                | 142    |
|                                                 | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 11.1     | 10.9                      | 10.9   | 10.9   | 10.9               | 10.9   |
|                                                 |                                    | Median (mg/l)                                                                          | 11.1     | 11.0                      | 11.0   | 11.0   | 11.0               | 11.0   |
|                                                 |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>b</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                                 | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.111    | 0.108                     | 0.107  | 0.107  | 0.103              | 0.104  |
|                                                 |                                    | Median (mg/l)                                                                          | 0.074    | 0.077                     | 0.077  | 0.077  | 0.075              | 0.075  |
|                                                 |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 66       | 65                        | 65     | 65     | 67                 | 66     |
|                                                 | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.14     | 0.98                      | 0.98   | 0.98   | 0.96               | 0.95   |
|                                                 |                                    | Median (mg/l)                                                                          | 1.08     | 0.94                      | 0.94   | 0.94   | 0.92               | 0.91   |
|                                                 | Total Suspended Solids             | Mean (mg/l)                                                                            | 16.3     | 13.3                      | 13.3   | 13.3   | 13.1               | 13.0   |
|                                                 |                                    | Median (mg/l)                                                                          | 6.0      | 4.9                       | 4.9    | 4.9    | 4.8                | 4.8    |
|                                                 | Copper                             | Mean (mg/l)                                                                            | 0.0057   | 0.0052                    | 0.0052 | 0.0052 | 0.0051             | 0.0051 |
|                                                 |                                    | Median (mg/l)                                                                          | 0.0024   | 0.0024                    | 0.0024 | 0.0024 | 0.0023             | 0.0023 |

Table J-2 (continued)

|                                                      |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                     | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| MN-18                                                | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 6,889    | 5,922                     | 5,858  | 5,849  | 5,128              | 5,089  |
| Menomonee River<br>near Upstream Limit<br>of Estuary | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 64       | 63                        | 63     | 63     | 64                 | 65     |
| J,                                                   |                                    | Geometric mean (cells per 100 ml)                                                      | 1,081    | 972                       | 961    | 961    | 842                | 841    |
|                                                      |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 200      | 207                       | 208    | 208    | 218                | 218    |
|                                                      | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 3,557    | 3,062                     | 2,939  | 2,924  | 2,322              | 2,323  |
|                                                      | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 81       | 81                        | 81     | 81     | 82                 | 82     |
|                                                      |                                    | Geometric mean (cells per 100 ml)                                                      | 468      | 407                       | 400    | 401    | 343                | 344    |
|                                                      |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 133      | 137                       | 138    | 138    | 141                | 141    |
|                                                      | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 11.0     | 10.9                      | 10.9   | 10.9   | 10.9               | 10.9   |
|                                                      |                                    | Median (mg/l)                                                                          | 11.0     | 10.9                      | 10.9   | 10.9   | 10.9               | 10.9   |
|                                                      |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>b</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                                      | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.133    | 0.130                     | 0.130  | 0.130  | 0.126              | 0.126  |
|                                                      |                                    | Median (mg/l)                                                                          | 0.104    | 0.106                     | 0.105  | 0.105  | 0.103              | 0.104  |
|                                                      |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 52       | 50                        | 51     | 51     | 52                 | 51     |
|                                                      | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.26     | 1.11                      | 1.11   | 1.11   | 1.09               | 1.08   |
|                                                      |                                    | Median (mg/l)                                                                          | 1.20     | 1.07                      | 1.07   | 1.07   | 1.05               | 1.04   |
|                                                      | Total Suspended Solids             | Mean (mg/l)                                                                            | 16.0     | 13.3                      | 13.2   | 13.3   | 13.0               | 13.0   |
|                                                      |                                    | Median (mg/l)                                                                          | 5.5      | 4.8                       | 4.8    | 4.8    | 4.7                | 4.7    |
|                                                      | Copper                             | Mean (mg/l)                                                                            | 0.0056   | 0.0051                    | 0.0051 | 0.0051 | 0.0050             | 0.0050 |
|                                                      |                                    | Median (mg/l)                                                                          | 0.0023   | 0.0023                    | 0.0023 | 0.0023 | 0.0022             | 0.0022 |

Source: Tetra Tech, Inc., and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>b</sup>Variance Standard in Chapter NR 104 of the Wisconsin Administrative Code.

Table J-3

WATER QUALITY SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: MILWAUKEE RIVER WATERSHED

|                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | or Statistic                                                            | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| -                | Fecal Coliform Bacteria (annual)   | Mean (cells per 100 ml)                                                 | 2,808    | 3,201                     | 3,201  | 3,201  | 2,971              | 2,883  |
|                  |                                    | Percent compliance with single sample standard (<400 cells per 100 ml)  | 1        | 1                         | 1      | 1      | 1                  | 2      |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 1,770    | 1,942                     | 1,942  | 1,942  | 1,867              | 1,697  |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 0                         | 0      | 0      | 0                  | 0      |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,003    | 2,362                     | 2,362  | 2,362  | 2,215              | 2,140  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 3        | 3                         | 3      | 3      | 3                  | 4      |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 1,302    | 1,444                     | 1,444  | 1,444  | 1,404              | 1,266  |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 0                         | 0      | 0      | 0                  | 0      |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.4     | 11.4                      | 11.4   | 11.4   | 11.4               | 11.4   |
|                  |                                    | Median (mg/l)                                                           | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5               | 11.5   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.060    | 0.058                     | 0.053  | 0.053  | 0.055              | 0.055  |
|                  |                                    | Median (mg/l)                                                           | 0.024    | 0.023                     | 0.022  | 0.022  | 0.022              | 0.023  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 82       | 82                        | 84     | 84     | 83                 | 83     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 2.59     | 2.57                      | 2.54   | 2.54   | 2.56               | 2.27   |
|                  |                                    | Median (mg/l)                                                           | 2.53     | 2.52                      | 2.51   | 2.51   | 2.52               | 2.24   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 17.70    | 17.33                     | 15.11  | 15.11  | 16.01              | 15.58  |
|                  |                                    | Median (mg/l)                                                           | 8.40     | 8.30                      | 7.95   | 7.95   | 8.12               | 7.91   |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0030   | 0.0030                    | 0.0030 | 0.0030 | 0.0030             | 0.0031 |
|                  |                                    | Median (mg/l)                                                           | 0.0020   | 0.0020                    | 0.0020 | 0.0020 | 0.0020             | 0.002  |

Table J-3 (continued)

|                                                  |                                     |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|--------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                 | Water Quality Indicator             | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-5                                             | Fecal Coliform Bacteria<br>(annual) | Mean (cells per 100 ml)                                                 | 1,761    | 1,875                     | 1,875  | 1,875  | 1,738              | 1,674  |
| Kewaskum,<br>USGS Sampling<br>Location (4086149) |                                     | Percent compliance with single sample standard (<400 cells per 100 ml)  | 11       | 10                        | 10     | 10     | 10                 | 15     |
| ,                                                |                                     | Geometric mean (cells per 100 ml)                                       | 1,116    | 1,182                     | 1,182  | 1,182  | 1,128              | 1,029  |
|                                                  |                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 3                         | 3      | 3      | 3                  | 3      |
|                                                  | Fecal Coliform Bacteria             | Mean (cells per 100 ml)                                                 | 1,088    | 1,192                     | 1,192  | 1,192  | 1,117              | 1,067  |
|                                                  | (May-September:<br>153 days total)  | Percent compliance with single sample standard (<400 cells per 100 ml)  | 24       | 21                        | 21     | 21     | 22                 | 29     |
|                                                  |                                     | Geometric mean (cells per 100 ml)                                       | 702      | 759                       | 759    | 759    | 734                | 658    |
|                                                  |                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 3                         | 3      | 3      | 3                  | 3      |
|                                                  | Dissolved Oxygen                    | Mean (mg/l)                                                             | 11.2     | 11.2                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                                                  |                                     | Median (mg/l)                                                           | 11.2     | 11.2                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                                                  |                                     | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                                  | Total Phosphorus                    | Mean (mg/l)                                                             | 0.068    | 0.068                     | 0.061  | 0.061  | 0.065              | 0.064  |
|                                                  |                                     | Median (mg/l)                                                           | 0.047    | 0.047                     | 0.044  | 0.044  | 0.045              | 0.046  |
|                                                  |                                     | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 84       | 84                        | 87     | 87     | 86                 | 86     |
|                                                  | Total Nitrogen                      | Mean (mg/l)                                                             | 2.33     | 2.31                      | 2.28   | 2.28   | 2.30               | 2.02   |
|                                                  |                                     | Median (mg/l)                                                           | 2.29     | 2.27                      | 2.25   | 2.25   | 2.27               | 2.00   |
|                                                  | Total Suspended Solids              | Mean (mg/l)                                                             | 14.10    | 13.96                     | 12.13  | 12.13  | 12.90              | 12.76  |
|                                                  |                                     | Median (mg/l)                                                           | 8.50     | 8.50                      | 7.76   | 7.76   | 8.05               | 8.03   |
|                                                  | Copper                              | Mean (mg/l)                                                             | 0.0032   | 0.0032                    | 0.0032 | 0.0032 | 0.0032             | 0.0033 |
|                                                  |                                     | Median (mg/l)                                                           | 0.0027   | 0.0028                    | 0.0028 | 0.0028 | 0.0028             | 0.0028 |

|                                                  |                                     |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|--------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                 | Water Quality Indicator             | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| _ ML-10                                          | Fecal Coliform Bacteria<br>(annual) | Mean (cells per 100 ml)                                                 | 948      | 1,025                     | 1,025  | 1,025  | 932                | 934    |
| East Branch<br>Milwaukee River,<br>USGS Sampling |                                     | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 47                        | 47     | 47     | 50                 | 52     |
| Location (4086200)                               |                                     | Geometric mean (cells per 100 ml)                                       | 472      | 488                       | 488    | 488    | 454                | 435    |
|                                                  |                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 45       | 43                        | 43     | 43     | 47                 | 55     |
|                                                  | Fecal Coliform Bacteria             | Mean (cells per 100 ml)                                                 | 667      | 769                       | 769    | 769    | 703                | 708    |
|                                                  | (May-September:<br>153 days total)  | Percent compliance with single sample standard (<400 cells per 100 ml)  | 80       | 79                        | 79     | 79     | 81                 | 82     |
|                                                  |                                     | Geometric mean (cells per 100 ml)                                       | 268      | 278                       | 278    | 278    | 264                | 246    |
|                                                  |                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 41       | 39                        | 39     | 39     | 43                 | 50     |
|                                                  | Dissolved Oxygen                    | Mean (mg/l)                                                             | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5               | 11.5   |
|                                                  |                                     | Median (mg/l)                                                           | 11.6     | 11.6                      | 11.6   | 11.6   | 11.6               | 11.6   |
|                                                  |                                     | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                                  | Total Phosphorus                    | Mean (mg/l)                                                             | 0.084    | 0.083                     | 0.076  | 0.076  | 0.080              | 0.080  |
|                                                  |                                     | Median (mg/l)                                                           | 0.079    | 0.078                     | 0.071  | 0.071  | 0.075              | 0.075  |
|                                                  |                                     | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 82       | 83                        | 88     | 88     | 86                 | 86     |
|                                                  | Total Nitrogen                      | Mean (mg/l)                                                             | 1.37     | 1.35                      | 1.30   | 1.30   | 1.32               | 1.17   |
|                                                  |                                     | Median (mg/l)                                                           | 1.36     | 1.35                      | 1.29   | 1.29   | 1.32               | 1.16   |
|                                                  | Total Suspended Solids              | Mean (mg/l)                                                             | 3.5      | 3.4                       | 3.0    | 3.0    | 3.2                | 3.2    |
|                                                  |                                     | Median (mg/l)                                                           | 2.2      | 2.1                       | 1.9    | 1.9    | 2.0                | 2.0    |
|                                                  | Copper                              | Mean (mg/l)                                                             | 0.0032   | 0.0032                    | 0.0032 | 0.0032 | 0.0032             | 0.0033 |
|                                                  |                                     | Median (mg/l)                                                           | 0.0030   | 0.0030                    | 0.0030 | 0.0030 | 0.0030             | 0.0031 |

Table J-3 (continued)

|                                                 |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|-------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-13                                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,822    | 915                       | 915    | 915    | 839                | 813    |
| Newburg, USGS<br>Sampling Location<br>(4086265) | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 40       | 43                        | 44     | 44     | 44                 | 46     |
| ,                                               |                                    | Geometric mean (cells per 100 ml)                                       | 659      | 452                       | 452    | 452    | 425                | 395    |
|                                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 68       | 95                        | 95     | 95     | 99                 | 108    |
|                                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 808      | 383                       | 383    | 383    | 351                | 341    |
|                                                 | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 76                        | 76     | 76     | 77                 | 78     |
|                                                 |                                    | Geometric mean (cells per 100 ml)                                       | 257      | 184                       | 184    | 184    | 176                | 159    |
|                                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 62       | 84                        | 84     | 84     | 87                 | 94     |
|                                                 | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5               | 11.5   |
|                                                 |                                    | Median (mg/l)                                                           | 11.6     | 11.6                      | 11.6   | 11.6   | 11.6               | 11.6   |
|                                                 |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                                 | Total Phosphorus                   | Mean (mg/l)                                                             | 0.118    | 0.129                     | 0.123  | 0.123  | 0.126              | 0.129  |
|                                                 |                                    | Median (mg/l)                                                           | 0.103    | 0.115                     | 0.111  | 0.111  | 0.113              | 0.116  |
|                                                 |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 51       | 45                        | 49     | 49     | 47                 | 45     |
|                                                 | Total Nitrogen                     | Mean (mg/l)                                                             | 1.70     | 1.60                      | 1.57   | 1.57   | 1.59               | 1.39   |
|                                                 |                                    | Median (mg/l)                                                           | 1.64     | 1.55                      | 1.52   | 1.52   | 1.54               | 1.34   |
|                                                 | Total Suspended Solids             | Mean (mg/l)                                                             | 9.3      | 9.1                       | 8.0    | 8.0    | 8.4                | 8.5    |
|                                                 |                                    | Median (mg/l)                                                           | 5.2      | 5.2                       | 4.7    | 4.7    | 4.8                | 4.8    |
|                                                 | Copper                             | Mean (mg/l)                                                             | 0.0056   | 0.0061                    | 0.0061 | 0.0061 | 0.0061             | 0.0063 |
|                                                 |                                    | Median (mg/l)                                                           | 0.0053   | 0.0058                    | 0.0058 | 0.0058 | 0.0058             | 0.0060 |

|                                     |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|-------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                    | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-23                               | Fecal Coliform Bacteria (annual)   | Mean (cells per 100 ml)                                                 | 2,707    | 2,848                     | 2,847  | 2,847  | 2,634              | 2,567  |
| North Branch of the Milwaukee River |                                    | Percent compliance with single sample standard (<400 cells per 100 ml)  | 7        | 7                         | 7      | 7      | 7                  | 10     |
|                                     |                                    | Geometric mean (cells per 100 ml)                                       | 1,447    | 1,476                     | 1,476  | 1,476  | 1,421              | 1,296  |
|                                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 3                         | 3      | 3      | 3                  | 4      |
|                                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,718    | 1,877                     | 1,877  | 1,877  | 1,743              | 1,695  |
|                                     | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 16       | 16                        | 16     | 16     | 16                 | 22     |
|                                     |                                    | Geometric mean (cells per 100 ml)                                       | 892      | 914                       | 914    | 914    | 886                | 795    |
|                                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 3                         | 3      | 3      | 3                  | 4      |
|                                     | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.6     | 11.6                      | 11.6   | 11.6   | 11.6               | 11.6   |
|                                     |                                    | Median (mg/l)                                                           | 11.7     | 11.7                      | 11.7   | 11.7   | 11.7               | 11.7   |
|                                     |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                     | Total Phosphorus                   | Mean (mg/l)                                                             | 0.206    | 0.212                     | 0.207  | 0.207  | 0.209              | 0.221  |
|                                     |                                    | Median (mg/l)                                                           | 0.185    | 0.190                     | 0.187  | 0.187  | 0.188              | 0.201  |
|                                     |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 40       | 39                        | 40     | 40     | 39                 | 37     |
|                                     | Total Nitrogen                     | Mean (mg/l)                                                             | 1.77     | 1.76                      | 1.73   | 1.73   | 1.75               | 1.54   |
|                                     |                                    | Median (mg/l)                                                           | 1.73     | 1.72                      | 1.71   | 1.71   | 1.72               | 1.51   |
|                                     | Total Suspended Solids             | Mean (mg/l)                                                             | 7.9      | 7.9                       | 7.1    | 7.1    | 7.4                | 7.4    |
|                                     |                                    | Median (mg/l)                                                           | 4.6      | 4.6                       | 4.5    | 4.5    | 4.5                | 4.5    |
|                                     | Copper                             | Mean (mg/l)                                                             | 0.0036   | 0.0035                    | 0.0035 | 0.0035 | 0.0035             | 0.0036 |
|                                     |                                    | Median (mg/l)                                                           | 0.0027   | 0.0026                    | 0.0026 | 0.0026 | 0.0026             | 0.0026 |

Table J-3 (continued)

|                                                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|--------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                 | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-24                                            | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,678    | 1,394                     | 1,394  | 1,394  | 1,302              | 1,262  |
| Fredonia,<br>USGS Sampling<br>Location (4086360) | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 32       | 33                        | 33     | 33     | 33                 | 36     |
| ,                                                |                                    | Geometric mean (cells per 100 ml)                                       | 777      | 682                       | 682    | 682    | 660                | 605    |
|                                                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 52       | 54                        | 54     | 54     | 55                 | 62     |
|                                                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 673      | 637                       | 637    | 637    | 590                | 565    |
| (May-Septemb<br>153 days total)                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 63       | 64                        | 64     | 64     | 65                 | 70     |
|                                                  |                                    | Geometric mean (cells per 100 ml)                                       | 311      | 289                       | 289    | 289    | 278                | 246    |
|                                                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 49       | 51                        | 51     | 51     | 52                 | 58     |
|                                                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5               | 11.5   |
|                                                  |                                    | Median (mg/l)                                                           | 11.6     | 11.6                      | 11.6   | 11.6   | 11.6               | 11.5   |
|                                                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                        | 99     | 99     | 99                 | 99     |
|                                                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.129    | 0.136                     | 0.130  | 0.130  | 0.132              | 0.138  |
|                                                  |                                    | Median (mg/l)                                                           | 0.112    | 0.121                     | 0.116  | 0.116  | 0.118              | 0.124  |
|                                                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 49       | 45                        | 48     | 48     | 47                 | 45     |
|                                                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.73     | 1.67                      | 1.64   | 1.64   | 1.66               | 1.45   |
|                                                  |                                    | Median (mg/l)                                                           | 1.67     | 1.62                      | 1.60   | 1.60   | 1.61               | 1.41   |
|                                                  | Total Suspended Solids             | Mean (mg/l)                                                             | 11.9     | 11.7                      | 10.4   | 10.4   | 10.9               | 11.0   |
|                                                  |                                    | Median (mg/l)                                                           | 7.5      | 7.4                       | 6.8    | 6.8    | 7.0                | 7.1    |
|                                                  | Copper                             | Mean (mg/l)                                                             | 0.0048   | 0.0051                    | 0.0051 | 0.0051 | 0.0051             | 0.0053 |
|                                                  |                                    | Median (mg/l)                                                           | 0.0045   | 0.0048                    | 0.0048 | 0.0048 | 0.0048             | 0.0050 |

|                                    |                         |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------|-------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                   | Water Quality Indicator | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-28                              | Fecal Coliform Bacteria | Mean (cells per 100 ml)                                                 | 1,093    | 460                       | 460    | 460    | 421                | 406    |
| Lower Cedar Creek                  | (annual)                | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 61                        | 61     | 61     | 63                 | 64     |
|                                    |                         | Geometric mean (cells per 100 ml)                                       | 268      | 144                       | 144    | 144    | 136                | 127    |
|                                    |                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 149      | 181                       | 181    | 181    | 183                | 187    |
|                                    | Fecal Coliform Bacteria | Mean (cells per 100 ml)                                                 | 381      | 381                       | 138    | 138    | 126                | 121    |
| (May-September:<br>153 days total) |                         | Percent compliance with single sample standard (<400 cells per 100 ml)  | 78       | 89                        | 89     | 89     | 90                 | 91     |
|                                    |                         | Geometric mean (cells per 100 ml)                                       | 63       | 37                        | 37     | 37     | 35                 | 32     |
|                                    |                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 118      | 129                       | 129    | 129    | 131                | 132    |
|                                    | Dissolved Oxygen        | Mean (mg/l)                                                             | 10.6     | 10.6                      | 10.6   | 10.6   | 10.6               | 10.5   |
|                                    |                         | Median (mg/l)                                                           | 10.7     | 10.6                      | 10.7   | 10.7   | 10.7               | 10.5   |
|                                    |                         | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 95                        | 96     | 96     | 96                 | 94     |
|                                    | Total Phosphorus        | Mean (mg/l)                                                             | 0.131    | 0.141                     | 0.133  | 0.133  | 0.137              | 0.140  |
|                                    |                         | Median (mg/l)                                                           | 0.119    | 0.131                     | 0.124  | 0.124  | 0.127              | 0.131  |
|                                    |                         | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 42       | 36                        | 39     | 39     | 38                 | 36     |
|                                    | Total Nitrogen          | Mean (mg/l)                                                             | 1.53     | 1.43                      | 1.39   | 1.39   | 1.42               | 1.25   |
|                                    |                         | Median (mg/l)                                                           | 1.45     | 1.36                      | 1.33   | 1.33   | 1.35               | 1.19   |
|                                    | Total Suspended Solids  | Mean (mg/l)                                                             | 19.4     | 19.0                      | 16.9   | 16.9   | 17.8               | 17.9   |
|                                    |                         | Median (mg/l)                                                           | 16.8     | 16.5                      | 14.8   | 14.8   | 15.5               | 15.6   |
|                                    | Copper                  | Mean (mg/l)                                                             | 0.0051   | 0.0055                    | 0.0055 | 0.0055 | 0.0055             | 0.0056 |
|                                    |                         | Median (mg/l)                                                           | 0.0051   | 0.0054                    | 0.0054 | 0.0054 | 0.0054             | 0.0055 |

Table J-3 (continued)

|                                                        |                         |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|--------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                       | Water Quality Indicator | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-29                                                  | Fecal Coliform Bacteria | Mean (cells per 100 ml)                                                 | 1,107    | 618                       | 618    | 618    | 573                | 549    |
| Milwaukee River<br>at the Milwaukee-<br>Ozaukee County | (annual)                | Percent compliance with single sample standard (<400 cells per 100 ml)  | 42       | 54                        | 54     | 54     | 55                 | 57     |
| Line                                                   |                         | Geometric mean (cells per 100 ml)                                       | 385      | 222                       | 222    | 222    | 212                | 195    |
|                                                        |                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 127      | 155                       | 155    | 155    | 157                | 161    |
|                                                        | Fecal Coliform Bacteria | Mean (cells per 100 ml)                                                 | 358      | 157                       | 157    | 157    | 145                | 136    |
| (May-Septembe<br>153 days total)                       |                         | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 90                        | 90     | 90     | 91                 | 91     |
|                                                        |                         | Geometric mean (cells per 100 ml)                                       | 112      | 63                        | 63     | 63     | 60                 | 54     |
|                                                        |                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 103      | 117                       | 117    | 117    | 118                | 120    |
|                                                        | Dissolved Oxygen        | Mean (mg/l)                                                             | 11.0     | 11.0                      | 11.0   | 11.0   | 11.0               | 10.9   |
|                                                        |                         | Median (mg/l)                                                           | 11.1     | 11.1                      | 11.1   | 11.1   | 11.1               | 11.0   |
|                                                        |                         | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                        | 98     | 98     | 98                 | 98     |
|                                                        | Total Phosphorus        | Mean (mg/l)                                                             | 0.132    | 0.142                     | 0.135  | 0.135  | 0.139              | 0.143  |
|                                                        |                         | Median (mg/l)                                                           | 0.119    | 0.131                     | 0.125  | 0.125  | 0.128              | 0.133  |
|                                                        |                         | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 41       | 35                        | 37     | 37     | 36                 | 34     |
|                                                        | Total Nitrogen          | Mean (mg/l)                                                             | 1.69     | 1.62                      | 1.58   | 1.58   | 1.61               | 1.42   |
|                                                        |                         | Median (mg/l)                                                           | 1.62     | 1.56                      | 1.53   | 1.53   | 1.55               | 1.37   |
|                                                        | Total Suspended Solids  | Mean (mg/l)                                                             | 17.8     | 17.5                      | 15.6   | 15.6   | 16.3               | 16.6   |
|                                                        |                         | Median (mg/l)                                                           | 13.9     | 13.7                      | 12.4   | 12.4   | 12.8               | 13.1   |
|                                                        | Copper                  | Mean (mg/l)                                                             | 0.0049   | 0.0053                    | 0.0053 | 0.0053 | 0.0053             | 0.0054 |
|                                                        |                         | Median (mg/l)                                                           | 0.0048   | 0.0052                    | 0.0052 | 0.0052 | 0.0052             | 0.0053 |

|                                            |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|--------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                           | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-30                                      | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,359    | 1,022                     | 1,021  | 1,022  | 917                | 903    |
| Milwaukee River Downstream of Beaver Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 42       | 47                        | 47     | 47     | 48                 | 49     |
|                                            |                                    | Geometric mean (cells per 100 ml)                                       | 442      | 321                       | 313    | 321    | 298                | 281    |
|                                            |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 120      | 145                       | 145    | 145    | 149                | 154    |
|                                            | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 543      | 460                       | 460    | 460    | 408                | 405    |
|                                            | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 77                        | 77     | 77     | 78                 | 79     |
|                                            |                                    | Geometric mean (cells per 100 ml)                                       | 143      | 106                       | 100    | 106    | 99                 | 92     |
|                                            |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 94       | 110                       | 110    | 110    | 113                | 116    |
|                                            | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.0     | 10.9                      | 10.9   | 10.9   | 10.9               | 10.9   |
|                                            |                                    | Median (mg/l)                                                           | 11.0     | 11.0                      | 11.0   | 11.0   | 11.0               | 10.9   |
|                                            |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 99                        | 99     | 99     | 99                 | 98     |
|                                            | Total Phosphorus                   | Mean (mg/l)                                                             | 0.134    | 0.143                     | 0.135  | 0.135  | 0.138              | 0.142  |
|                                            |                                    | Median (mg/l)                                                           | 0.122    | 0.132                     | 0.126  | 0.126  | 0.128              | 0.133  |
|                                            |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 39       | 34                        | 36     | 36     | 35                 | 33     |
|                                            | Total Nitrogen                     | Mean (mg/l)                                                             | 1.67     | 1.58                      | 1.54   | 1.54   | 1.57               | 1.39   |
|                                            |                                    | Median (mg/l)                                                           | 1.60     | 1.52                      | 1.50   | 1.50   | 1.51               | 1.34   |
|                                            | Total Suspended Solids             | Mean (mg/l)                                                             | 20.7     | 19.9                      | 17.7   | 17.7   | 18.5               | 18.8   |
|                                            |                                    | Median (mg/l)                                                           | 16.1     | 15.7                      | 14.1   | 14.1   | 14.6               | 14.8   |
|                                            | Copper                             | Mean (mg/l)                                                             | 0.0049   | 0.0052                    | 0.0052 | 0.0052 | 0.0052             | 0.0053 |
|                                            |                                    | Median (mg/l)                                                           | 0.0048   | 0.0051                    | 0.0051 | 0.0051 | 0.0051             | 0.0052 |

Table J-3 (continued)

|                                             |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|---------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                            | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-33                                       | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,559    | 1,328                     | 1,316  | 1,329  | 1,191              | 1,182  |
| Milwaukee River<br>at Lincoln/<br>Estabrook | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 43       | 46                        | 46     | 46     | 47                 | 48     |
| Parks                                       |                                    | Geometric mean (cells per 100 ml)                                       | 354      | 273                       | 264    | 272    | 249                | 236    |
|                                             |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 140      | 152                       | 153    | 152    | 154                | 157    |
|                                             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 596      | 598                       | 579    | 604    | 548                | 547    |
|                                             | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 76                        | 76     | 76     | 77                 | 77     |
|                                             |                                    | Geometric mean (cells per 100 ml)                                       | 84       | 64                        | 60     | 64     | 59                 | 54     |
|                                             |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 107      | 114                       | 115    | 114    | 116                | 117    |
|                                             | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.8     | 10.8                      | 10.8   | 10.8   | 10.8               | 10.8   |
|                                             |                                    | Median (mg/l)                                                           | 10.9     | 10.9                      | 10.9   | 10.9   | 10.9               | 10.8   |
|                                             |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                        | 98     | 98     | 98                 | 98     |
|                                             | Total Phosphorus                   | Mean (mg/l)                                                             | 0.139    | 0.145                     | 0.137  | 0.137  | 0.141              | 0.144  |
|                                             |                                    | Median (mg/l)                                                           | 0.128    | 0.135                     | 0.129  | 0.129  | 0.131              | 0.136  |
|                                             |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 35       | 32                        | 34     | 34     | 33                 | 31     |
|                                             | Total Nitrogen                     | Mean (mg/l)                                                             | 1.63     | 1.54                      | 1.51   | 1.51   | 1.53               | 1.36   |
|                                             |                                    | Median (mg/l)                                                           | 1.57     | 1.49                      | 1.46   | 1.46   | 1.48               | 1.32   |
|                                             | Total Suspended Solids             | Mean (mg/l)                                                             | 24.2     | 22.4                      | 19.9   | 19.9   | 20.8               | 21.1   |
|                                             |                                    | Median (mg/l)                                                           | 18.7     | 17.7                      | 15.9   | 15.9   | 16.4               | 16.7   |
|                                             | Copper                             | Mean (mg/l)                                                             | 0.0052   | 0.0053                    | 0.0053 | 0.0053 | 0.0053             | 0.0054 |
|                                             |                                    | Median (mg/l)                                                           | 0.0051   | 0.0053                    | 0.0053 | 0.0053 | 0.0053             | 0.0054 |

Table J-3 (continued)

|                                                      |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                     | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| ML-34                                                | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,380    | 1,155                     | 1,126  | 1,128  | 1,024              | 1,015  |
| Milwaukee River at<br>the Former North<br>Avenue Dam | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 79                        | 79     | 79     | 82                 | 82     |
|                                                      |                                    | Geometric mean (cells per 100 ml)                                       | 311      | 244                       | 201    | 243    | 222                | 214    |
|                                                      |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 236      | 255                       | 256    | 256    | 266                | 269    |
|                                                      | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 515      | 502                       | 454    | 455    | 439                | 438    |
| (May-Septen                                          | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 92       | 93                        | 93     | 93     | 94                 | 94     |
|                                                      |                                    | Geometric mean (cells per 100 ml)                                       | 73       | 58                        | 39     | 57     | 53                 | 50     |
|                                                      |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 145      | 149                       | 149    | 149    | 150                | 151    |
|                                                      | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.6     | 10.6                      | 10.6   | 10.6   | 10.6               | 10.5   |
|                                                      |                                    | Median (mg/l)                                                           | 10.6     | 10.6                      | 10.7   | 10.7   | 10.7               | 10.6   |
|                                                      |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                                      | Total Phosphorus                   | Mean (mg/l)                                                             | 0.169    | 0.174                     | 0.165  | 0.165  | 0.169              | 0.173  |
|                                                      |                                    | Median (mg/l)                                                           | 0.160    | 0.166                     | 0.159  | 0.159  | 0.161              | 0.167  |
|                                                      |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 24       | 22                        | 24     | 24     | 24                 | 21     |
|                                                      | Total Nitrogen                     | Mean (mg/l)                                                             | 1.60     | 1.52                      | 1.48   | 1.48   | 1.50               | 1.34   |
|                                                      |                                    | Median (mg/l)                                                           | 1.53     | 1.46                      | 1.43   | 1.43   | 1.45               | 1.30   |
|                                                      | Total Suspended Solids             | Mean (mg/l)                                                             | 24.8     | 22.6                      | 20.0   | 20.0   | 20.9               | 21.2   |
|                                                      |                                    | Median (mg/l)                                                           | 19.3     | 17.8                      | 16.0   | 16.0   | 16.6               | 16.9   |
|                                                      | Copper                             | Mean (mg/l)                                                             | 0.0051   | 0.0052                    | 0.0052 | 0.0052 | 0.0052             | 0.0052 |
|                                                      |                                    | Median (mg/l)                                                           | 0.0050   | 0.0051                    | 0.0051 | 0.0051 | 0.0051             | 0.0052 |

<sup>&</sup>lt;sup>a</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

Source: Tetra Tech, Inc., and SEWRPC.

Table J-4

WATER QUALITY SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: OAK CREEK WATERSHED

|                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-1             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,905    | 3,928                     | 3,928  | 3,928  | 3,491              | 3,487  |
| Upper Oak Creek  | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 64                        | 64     | 64     | 65                 | 65     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 541      | 504                       | 503    | 503    | 452                | 453    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 65       | 67                        | 67     | 67     | 81                 | 81     |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,012    | 1,666                     | 1,666  | 1,666  | 1,393              | 1,394  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 84       | 82                        | 82     | 82     | 83                 | 82     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 256      | 260                       | 259    | 259    | 231                | 232    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 47       | 47                        | 47     | 47     | 56                 | 56     |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 8.4      | 8.2                       | 8.2    | 8.2    | 8.2                | 8.2    |
|                  |                                    | Median (mg/l)                                                           | 8.7      | 8.6                       | 8.6    | 8.6    | 8.6                | 8.6    |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 77       | 72                        | 72     | 72     | 72                 | 72     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.075    | 0.066                     | 0.066  | 0.066  | 0.063              | 0.063  |
|                  |                                    | Median (mg/l)                                                           | 0.031    | 0.025                     | 0.025  | 0.025  | 0.025              | 0.025  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 83       | 82                        | 82     | 82     | 83                 | 83     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.52     | 0.89                      | 0.89   | 0.89   | 0.88               | 0.88   |
|                  |                                    | Median (mg/l)                                                           | 1.38     | 0.84                      | 0.84   | 0.84   | 0.84               | 0.83   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 13.7     | 7.2                       | 7.2    | 7.2    | 7.2                | 7.2    |
|                  |                                    | Median (mg/l)                                                           | 7.8      | 4.4                       | 4.4    | 4.4    | 4.4                | 4.4    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0038   | 0.0031                    | 0.0031 | 0.0031 | 0.0031             | 0.0031 |
|                  |                                    | Median (mg/l)                                                           | 0.0012   | 0.0007                    | 0.0007 | 0.0007 | 0.0007             | 0.0007 |

Table J-4 (continued)

|                              |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point             | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-2                         | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,987    | 4,136                     | 4,136  | 4,136  | 3,643              | 3,640  |
| North Branch<br>of Oak Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 57       | 56                        | 56     | 56     | 57                 | 57     |
|                              |                                    | Geometric mean (cells per 100 ml)                                       | 611      | 563                       | 562    | 562    | 505                | 505    |
|                              |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 60       | 64                        | 64     | 64     | 74                 | 74     |
|                              | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,561    | 2,054                     | 2,054  | 2,054  | 1,657              | 1,658  |
|                              | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 73                        | 73     | 73     | 74                 | 74     |
|                              |                                    | Geometric mean (cells per 100 ml)                                       | 289      | 277                       | 276    | 276    | 245                | 246    |
|                              |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 44       | 45                        | 45     | 45     | 52                 | 51     |
|                              | Dissolved Oxygen                   | Mean (mg/l)                                                             | 8.8      | 8.5                       | 8.5    | 8.5    | 8.5                | 8.5    |
|                              |                                    | Median (mg/l)                                                           | 8.6      | 8.3                       | 8.3    | 8.3    | 8.3                | 8.3    |
|                              |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 82       | 80                        | 80     | 80     | 80                 | 80     |
|                              | Total Phosphorus                   | Mean (mg/l)                                                             | 0.084    | 0.074                     | 0.074  | 0.074  | 0.071              | 0.071  |
|                              |                                    | Median (mg/l)                                                           | 0.032    | 0.030                     | 0.030  | 0.030  | 0.030              | 0.030  |
|                              |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 79                        | 79     | 79     | 80                 | 80     |
|                              | Total Nitrogen                     | Mean (mg/l)                                                             | 1.32     | 0.91                      | 0.91   | 0.91   | 0.89               | 0.89   |
|                              |                                    | Median (mg/l)                                                           | 1.18     | 0.81                      | 0.81   | 0.81   | 0.81               | 0.80   |
|                              | Total Suspended Solids             | Mean (mg/l)                                                             | 22.9     | 14.9                      | 14.9   | 14.9   | 14.9               | 14.9   |
|                              |                                    | Median (mg/l)                                                           | 9.0      | 6.2                       | 6.2    | 6.2    | 6.2                | 6.2    |
|                              | Copper                             | Mean (mg/l)                                                             | 0.0052   | 0.0040                    | 0.0040 | 0.0040 | 0.0040             | 0.0040 |
|                              |                                    | Median (mg/l)                                                           | 0.0014   | 0.0010                    | 0.0010 | 0.0010 | 0.0010             | 0.0010 |

Table J-4 (continued)

|                                      |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|--------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                     | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-3                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 10,233   | 8,236                     | 8,236  | 8,236  | 7,299              | 7,276  |
| Oak Creek Downstream of North Branch | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 55       | 55                        | 55     | 55     | 55                 | 55     |
| of Oak Creek                         |                                    | Geometric mean (cells per 100 ml)                                       | 1,191    | 1,060                     | 1,058  | 1,058  | 953                | 952    |
|                                      |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 20                        | 20     | 20     | 23                 | 23     |
|                                      | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,750    | 3,735                     | 3,735  | 3,735  | 3,089              | 3,064  |
|                                      | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 72       | 72                        | 72     | 72     | 73                 | 73     |
|                                      |                                    | Geometric mean (cells per 100 ml)                                       | 555      | 508                       | 507    | 507    | 454                | 452    |
|                                      |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 15       | 17                        | 17     | 17     | 19                 | 19     |
|                                      | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.0     | 9.7                       | 9.7    | 9.7    | 9.7                | 9.7    |
|                                      |                                    | Median (mg/l)                                                           | 10.5     | 10.3                      | 10.3   | 10.3   | 10.3               | 10.3   |
|                                      |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 83       | 80                        | 80     | 80     | 80                 | 80     |
|                                      | Total Phosphorus                   | Mean (mg/l)                                                             | 0.086    | 0.076                     | 0.076  | 0.076  | 0.073              | 0.073  |
|                                      |                                    | Median (mg/l)                                                           | 0.032    | 0.029                     | 0.029  | 0.029  | 0.029              | 0.029  |
|                                      |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 79       | 79                        | 79     | 79     | 80                 | 80     |
|                                      | Total Nitrogen                     | Mean (mg/l)                                                             | 1.37     | 0.89                      | 0.89   | 0.89   | 0.88               | 0.87   |
|                                      |                                    | Median (mg/l)                                                           | 1.24     | 0.81                      | 0.81   | 0.81   | 0.80               | 0.80   |
|                                      | Total Suspended Solids             | Mean (mg/l)                                                             | 20.9     | 12.9                      | 12.9   | 12.9   | 12.9               | 12.9   |
|                                      |                                    | Median (mg/l)                                                           | 8.5      | 5.7                       | 5.7    | 5.7    | 5.7                | 5.7    |
|                                      | Copper                             | Mean (mg/l)                                                             | 0.0049   | 0.0038                    | 0.0038 | 0.0038 | 0.0038             | 0.0038 |
|                                      |                                    | Median (mg/l)                                                           | 0.0013   | 0.0010                    | 0.0010 | 0.0010 | 0.0010             | 0.0010 |

Table J-4 (continued)

|                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-4             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 7,953    | 6,806                     | 6,806  | 6,806  | 6,055              | 6,044  |
| Middle Oak Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 51       | 52                        | 52     | 52     | 53                 | 53     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 1,041    | 946                       | 945    | 945    | 851                | 850    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 20       | 22                        | 22     | 22     | 26                 | 26     |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,103    | 2,731                     | 2,730  | 2,730  | 2,289              | 2,274  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 69       | 70                        | 70     | 70     | 72                 | 71     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 463      | 445                       | 444    | 444    | 397                | 396    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 18                        | 18     | 18     | 22                 | 22     |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 9.4      | 9.2                       | 9.2    | 9.2    | 9.2                | 9.2    |
|                  |                                    | Median (mg/l)                                                           | 9.6      | 9.4                       | 9.4    | 9.4    | 9.4                | 9.4    |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 85       | 82                        | 82     | 82     | 82                 | 82     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.081    | 0.073                     | 0.073  | 0.073  | 0.070              | 0.070  |
|                  |                                    | Median (mg/l)                                                           | 0.032    | 0.030                     | 0.030  | 0.030  | 0.029              | 0.029  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 79       | 80                        | 80     | 80     | 81                 | 81     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.34     | 0.87                      | 0.87   | 0.87   | 0.85               | 0.85   |
|                  |                                    | Median (mg/l)                                                           | 1.17     | 0.76                      | 0.76   | 0.76   | 0.76               | 0.76   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 14.9     | 9.4                       | 9.4    | 9.4    | 9.4                | 9.4    |
|                  |                                    | Median (mg/l)                                                           | 7.9      | 5.2                       | 5.2    | 5.2    | 5.2                | 5.2    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0049   | 0.0039                    | 0.0039 | 0.0039 | 0.0039             | 0.0039 |
|                  |                                    | Median (mg/l)                                                           | 0.0013   | 0.0010                    | 0.0010 | 0.0010 | 0.0010             | 0.0010 |

Table J-4 (continued)

|                                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|----------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                 | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-6                             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 6,917    | 6,358                     | 6,349  | 6,349  | 5,616              | 5,556  |
| Mitchell Field<br>Drainage Ditch | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 31       | 57                        | 57     | 57     | 58                 | 58     |
|                                  |                                    | Geometric mean (cells per 100 ml)                                       | 1,442    | 1,182                     | 1,145  | 1,145  | 1,039              | 1,038  |
|                                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 2                         | 2      | 2      | 3                  | 3      |
|                                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,906    | 2,788                     | 2,771  | 2,771  | 2,256              | 2,260  |
|                                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 27       | 75                        | 75     | 75     | 76                 | 76     |
|                                  |                                    | Geometric mean (cells per 100 ml)                                       | 806      | 641                       | 605    | 605    | 547                | 548    |
|                                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 0                         | 0      | 0      | 0                  | 0      |
|                                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 9.0      | 8.9                       | 8.9    | 8.9    | 8.9                | 8.9    |
|                                  |                                    | Median (mg/l)                                                           | 8.7      | 8.5                       | 8.5    | 8.5    | 8.5                | 8.5    |
|                                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 81       | 79                        | 79     | 79     | 79                 | 79     |
|                                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.076    | 0.073                     | 0.073  | 0.073  | 0.070              | 0.071  |
|                                  |                                    | Median (mg/l)                                                           | 0.046    | 0.048                     | 0.048  | 0.048  | 0.046              | 0.047  |
|                                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 84       | 80                        | 80     | 80     | 81                 | 81     |
|                                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.57     | 1.08                      | 1.08   | 1.08   | 1.06               | 1.05   |
|                                  |                                    | Median (mg/l)                                                           | 1.41     | 1.01                      | 1.01   | 1.01   | 0.99               | 0.98   |
|                                  | Total Suspended Solids             | Mean (mg/l)                                                             | 11.0     | 6.8                       | 6.8    | 6.8    | 6.8                | 6.8    |
|                                  |                                    | Median (mg/l)                                                           | 7.0      | 4.2                       | 4.2    | 4.2    | 4.2                | 4.1    |
|                                  | Copper                             | Mean (mg/l)                                                             | 0.0041   | 0.0032                    | 0.0032 | 0.0032 | 0.0032             | 0.0032 |
|                                  |                                    | Median (mg/l)                                                           | 0.0012   | 0.0008                    | 0.0008 | 0.0008 | 0.0008             | 0.0008 |

Table J-4 (continued)

|                                        |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|----------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                       | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-7                                   | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 7,729    | 6,753                     | 6,752  | 6,752  | 5,986              | 5,965  |
| Oak Creek Downstream of Mitchell Field | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 49       | 51                        | 51     | 51     | 53                 | 53     |
| Drainage Ditch                         |                                    | Geometric mean (cells per 100 ml)                                       | 1,190    | 1,035                     | 1,030  | 1,030  | 926                | 924    |
|                                        |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 13       | 18                        | 19     | 19     | 21                 | 21     |
|                                        | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,136    | 2,788                     | 2,787  | 2,787  | 2,290              | 2,279  |
|                                        | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 69                        | 69     | 69     | 71                 | 71     |
|                                        |                                    | Geometric mean (cells per 100 ml)                                       | 543      | 476                       | 472    | 472    | 420                | 419    |
|                                        |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 11       | 16                        | 16     | 16     | 18                 | 18     |
|                                        | Dissolved Oxygen                   | Mean (mg/l)                                                             | 9.3      | 9.1                       | 9.1    | 9.1    | 9.1                | 9.1    |
|                                        |                                    | Median (mg/l)                                                           | 9.2      | 9.3                       | 9.3    | 9.3    | 9.3                | 9.3    |
|                                        |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 81       | 79                        | 79     | 79     | 80                 | 80     |
|                                        | Total Phosphorus                   | Mean (mg/l)                                                             | 0.091    | 0.091                     | 0.091  | 0.091  | 0.087              | 0.087  |
|                                        |                                    | Median (mg/l)                                                           | 0.056    | 0.060                     | 0.060  | 0.060  | 0.058              | 0.058  |
|                                        |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 76       | 73                        | 73     | 73     | 75                 | 75     |
|                                        | Total Nitrogen                     | Mean (mg/l)                                                             | 1.38     | 1.00                      | 1.00   | 1.00   | 0.98               | 0.98   |
|                                        |                                    | Median (mg/l)                                                           | 1.25     | 0.93                      | 0.93   | 0.93   | 0.91               | 0.91   |
|                                        | Total Suspended Solids             | Mean (mg/l)                                                             | 14.9     | 9.5                       | 9.5    | 9.5    | 9.5                | 9.5    |
|                                        |                                    | Median (mg/l)                                                           | 7.3      | 4.6                       | 4.6    | 4.6    | 4.6                | 4.6    |
|                                        | Copper                             | Mean (mg/l)                                                             | 0.0051   | 0.0040                    | 0.0040 | 0.0040 | 0.0040             | 0.0040 |
|                                        |                                    | Median (mg/l)                                                           | 0.0013   | 0.0010                    | 0.0010 | 0.0010 | 0.0010             | 0.0010 |

Table J-4 (continued)

|                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-8             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 15,506   | 13,474                    | 13,473 | 13,473 | 11,978             | 11,949 |
| Lower Oak Creek  | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 17       | 23                        | 24     | 24     | 28                 | 28     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 2,700    | 2,360                     | 2,353  | 2,353  | 2,105              | 2,101  |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 11                        | 11     | 11     | 12                 | 12     |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 6,370    | 5,564                     | 5,563  | 5,563  | 4,650              | 4,631  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 31       | 41                        | 41     | 41     | 47                 | 46     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 1,079    | 909                       | 904    | 904    | 799                | 796    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 11                        | 11     | 11     | 11                 | 11     |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.2     | 10.1                      | 10.1   | 10.1   | 10.2               | 10.2   |
|                  |                                    | Median (mg/l)                                                           | 10.0     | 10.1                      | 10.1   | 10.1   | 10.2               | 10.2   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 93       | 92                        | 92     | 92     | 92                 | 92     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.091    | 0.091                     | 0.091  | 0.091  | 0.087              | 0.087  |
|                  |                                    | Median (mg/l)                                                           | 0.058    | 0.063                     | 0.063  | 0.063  | 0.060              | 0.060  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 76       | 73                        | 73     | 73     | 75                 | 75     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.30     | 0.97                      | 0.97   | 0.97   | 0.95               | 0.95   |
|                  |                                    | Median (mg/l)                                                           | 1.18     | 0.90                      | 0.90   | 0.90   | 0.89               | 0.89   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 15.9     | 10.2                      | 10.2   | 10.2   | 10.2               | 10.2   |
|                  |                                    | Median (mg/l)                                                           | 7.3      | 4.6                       | 4.6    | 4.6    | 4.6                | 4.6    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0052   | 0.0041                    | 0.0041 | 0.0041 | 0.0041             | 0.0041 |
|                  |                                    | Median (mg/l)                                                           | 0.0014   | 0.0010                    | 0.0010 | 0.0010 | 0.0010             | 0.0010 |

Table J-4 (continued)

|                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-9             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 7,401    | 6,376                     | 6,376  | 6,376  | 5,596              | 5,569  |
| Lower Oak Creek  | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 51       | 54                        | 54     | 54     | 55                 | 54     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 993      | 783                       | 781    | 781    | 694                | 692    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 26       | 40                        | 41     | 41     | 46                 | 46     |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,061    | 2,633                     | 2,633  | 2,633  | 2,027              | 2,020  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 71       | 73                        | 73     | 73     | 74                 | 74     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 388      | 283                       | 281    | 281    | 244                | 243    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 21       | 32                        | 32     | 32     | 35                 | 36     |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.5     | 10.5                      | 10.5   | 10.5   | 10.6               | 10.6   |
|                  |                                    | Median (mg/l)                                                           | 10.3     | 10.3                      | 10.3   | 10.3   | 10.4               | 10.4   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                        | 96     | 96     | 96                 | 96     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.092    | 0.087                     | 0.087  | 0.087  | 0.084              | 0.084  |
|                  |                                    | Median (mg/l)                                                           | 0.062    | 0.065                     | 0.065  | 0.065  | 0.063              | 0.063  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 75       | 74                        | 74     | 74     | 76                 | 76     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.26     | 0.96                      | 0.96   | 0.96   | 0.94               | 0.94   |
|                  |                                    | Median (mg/l)                                                           | 1.14     | 0.93                      | 0.93   | 0.93   | 0.91               | 0.91   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 16.0     | 10.3                      | 10.3   | 10.3   | 10.3               | 10.3   |
|                  |                                    | Median (mg/l)                                                           | 6.7      | 4.3                       | 4.3    | 4.3    | 4.3                | 4.2    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0052   | 0.0041                    | 0.0041 | 0.0041 | 0.0041             | 0.0041 |
|                  |                                    | Median (mg/l)                                                           | 0.0013   | 0.0010                    | 0.0010 | 0.0010 | 0.0010             | 0.0010 |

Table J-4 (continued)

|                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| OK-10            | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 6,643    | 5,738                     | 5,738  | 5,738  | 5,070              | 5,061  |
| Lower Oak Creek  | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 48                        | 49     | 49     | 49                 | 49     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 752      | 604                       | 603    | 603    | 538                | 537    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 70       | 86                        | 87     | 87     | 97                 | 97     |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,504    | 2,171                     | 2,171  | 2,171  | 1,730              | 1,726  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 71       | 71                        | 71     | 71     | 72                 | 71     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 179      | 132                       | 132    | 132    | 115                | 115    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 59       | 70                        | 70     | 70     | 79                 | 79     |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.2     | 11.2                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                  |                                    | Median (mg/l)                                                           | 11.2     | 11.2                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.078    | 0.072                     | 0.072  | 0.072  | 0.069              | 0.069  |
|                  |                                    | Median (mg/l)                                                           | 0.046    | 0.045                     | 0.045  | 0.045  | 0.043              | 0.043  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 79                        | 79     | 79     | 80                 | 80     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.07     | 0.81                      | 0.81   | 0.81   | 0.80               | 0.80   |
|                  |                                    | Median (mg/l)                                                           | 0.98     | 0.71                      | 0.71   | 0.71   | 0.70               | 0.70   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 19.6     | 12.5                      | 12.5   | 12.5   | 12.5               | 12.5   |
|                  |                                    | Median (mg/l)                                                           | 7.4      | 5.0                       | 5.0    | 5.0    | 5.0                | 5.0    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.006    | 0.0048                    | 0.0048 | 0.0048 | 0.0048             | 0.0048 |
|                  |                                    | Median (mg/l)                                                           | 0.0025   | 0.0022                    | 0.0022 | 0.0022 | 0.0022             | 0.0022 |

Source: Tetra Tech, Inc., and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

Table J-5

WATER QUALITY SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: ROOT RIVER WATERSHED

|                                         |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|-----------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                        | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| RT-1                                    | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 5,644    | 4,648                     | 4,647  | 4,647  | 4,184              | 4,184  |
| Root River<br>Upstream of Hale<br>Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 70       | 71                        | 71     | 71     | 71                 | 71     |
|                                         |                                    | Geometric mean (cells per 100 ml)                                       | 525      | 409                       | 405    | 405    | 369                | 369    |
|                                         |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 33       | 61                        | 62     | 62     | 74                 | 74     |
|                                         | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,385    | 2,781                     | 2,780  | 2,780  | 2,503              | 2,503  |
|                                         | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 80       | 81                        | 81     | 81     | 82                 | 82     |
|                                         |                                    | Geometric mean (cells per 100 ml)                                       | 393      | 303                       | 301    | 301    | 274                | 274    |
|                                         |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 13       | 27                        | 28     | 28     | 34                 | 34     |
|                                         | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.8     | 10.8                      | 10.8   | 10.8   | 10.8               | 10.8   |
|                                         |                                    | Median (mg/l)                                                           | 10.8     | 10.8                      | 10.8   | 10.8   | 10.8               | 10.8   |
|                                         |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                        | 96     | 96     | 96                 | 96     |
|                                         | Total Phosphorus                   | Mean (mg/l)                                                             | 0.062    | 0.053                     | 0.053  | 0.053  | 0.051              | 0.051  |
|                                         |                                    | Median (mg/l)                                                           | 0.025    | 0.021                     | 0.021  | 0.021  | 0.021              | 0.021  |
|                                         |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 87       | 88                        | 88     | 88     | 88                 | 88     |
|                                         | Total Nitrogen                     | Mean (mg/l)                                                             | 0.98     | 0.85                      | 0.85   | 0.85   | 0.84               | 0.84   |
|                                         |                                    | Median (mg/l)                                                           | 1.01     | 0.87                      | 0.87   | 0.87   | 0.86               | 0.86   |
|                                         | Total Suspended Solids             | Mean (mg/l)                                                             | 6.9      | 5.0                       | 5.0    | 5.0    | 5.0                | 5.0    |
|                                         |                                    | Median (mg/l)                                                           | 4.8      | 3.3                       | 3.3    | 3.3    | 3.3                | 3.3    |
|                                         | Copper                             | Mean (mg/l)                                                             | 0.0033   | 0.0026                    | 0.0026 | 0.0026 | 0.0026             | 0.0026 |
|                                         |                                    | Median (mg/l)                                                           | 0.0013   | 0.0009                    | 0.0009 | 0.0009 | 0.0009             | 0.0009 |

Table J-5 (continued)

|                  |                                    |                                                                         |          |                           |        | Altern | native <sup>a</sup> |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| RT-2             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 7,040    | 5,869                     | 5,868  | 5,868  | 4,879               | 4,877  |
| Root River       | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 66                        | 66     | 66     | 68                  | 68     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 630      | 501                       | 497    | 497    | 424                 | 424    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 27       | 46                        | 47     | 47     | 63                  | 63     |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,968    | 3,412                     | 3,411  | 3,411  | 2,108               | 2,108  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 77       | 76                        | 76     | 76     | 80                  | 80     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 464      | 371                       | 369    | 369    | 287                 | 287    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 10       | 18                        | 19     | 19     | 29                  | 29     |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 8.4      | 8.4                       | 8.4    | 8.4    | 8.4                 | 8.4    |
|                  |                                    | Median (mg/l)                                                           | 8.4      | 8.4                       | 8.4    | 8.4    | 8.4                 | 8.4    |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                        | 96     | 96     | 96                  | 96     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.079    | 0.067                     | 0.067  | 0.067  | 0.064               | 0.064  |
|                  |                                    | Median (mg/l)                                                           | 0.025    | 0.020                     | 0.020  | 0.020  | 0.020               | 0.020  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 82       | 83                        | 83     | 83     | 84                  | 84     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.13     | 0.97                      | 0.97   | 0.97   | 0.96                | 0.96   |
|                  |                                    | Median (mg/l)                                                           | 1.07     | 0.91                      | 0.91   | 0.91   | 0.91                | 0.91   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 6.3      | 4.6                       | 4.6    | 4.6    | 4.6                 | 4.6    |
|                  |                                    | Median (mg/l)                                                           | 4.9      | 3.3                       | 3.3    | 3.3    | 3.3                 | 3.3    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0047   | 0.0036                    | 0.0036 | 0.0036 | 0.0036              | 0.0036 |
|                  |                                    | Median (mg/l)                                                           | 0.0013   | 0.0009                    | 0.0009 | 0.0009 | 0.0009              | 0.0009 |

Table J-5 (continued)

|                                |                                    |                                                                         |          |                           |        | Alterr | native <sup>a</sup>                                                                                                                                                                                                 |        |
|--------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Assessment Point               | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                                                                                                                                                                                                                  | C2     |
| RT-3                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 7,328    | 6,066                     | 6,068  | 6,064  | 5,305     5,309       65     65       456     457       55     55       2,812     2,812       76     76       327     327       24     24       8.9     8.9       8.7     8.7       88     88       0.063     0.063 | 5,309  |
| Root River at<br>Wildcat Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 64       | 64                        | 64     | 64     | 65                                                                                                                                                                                                                  | 65     |
|                                |                                    | Geometric mean (cells per 100 ml)                                       | 645      | 518                       | 513    | 513    | 456                                                                                                                                                                                                                 | 457    |
|                                |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 27       | 43                        | 44     | 44     | 55                                                                                                                                                                                                                  | 55     |
|                                | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,228    | 3,537                     | 3,543  | 3,534  | 2,812                                                                                                                                                                                                               | 2,812  |
|                                | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 74                        | 74     | 74     | 76                                                                                                                                                                                                                  | 76     |
|                                |                                    | Geometric mean (cells per 100 ml)                                       | 477      | 383                       | 381    | 381    | 327                                                                                                                                                                                                                 | 327    |
|                                |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 10       | 17                        | 17     | 17     | 24                                                                                                                                                                                                                  | 24     |
|                                | Dissolved Oxygen                   | Mean (mg/l)                                                             | 8.9      | 8.9                       | 8.9    | 8.9    | 8.9                                                                                                                                                                                                                 | 8.9    |
|                                |                                    | Median (mg/l)                                                           | 8.7      | 8.7                       | 8.7    | 8.7    | 8.7                                                                                                                                                                                                                 | 8.7    |
|                                |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 87       | 88                        | 88     | 88     | 88                                                                                                                                                                                                                  | 88     |
|                                | Total Phosphorus                   | Mean (mg/l)                                                             | 0.078    | 0.066                     | 0.066  | 0.066  | 0.063                                                                                                                                                                                                               | 0.063  |
|                                |                                    | Median (mg/l)                                                           | 0.022    | 0.018                     | 0.018  | 0.018  | 0.018                                                                                                                                                                                                               | 0.018  |
|                                |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 81       | 82                        | 82     | 82     | 83                                                                                                                                                                                                                  | 83     |
|                                | Total Nitrogen                     | Mean (mg/l)                                                             | 1.08     | 0.92                      | 0.92   | 0.92   | 0.91                                                                                                                                                                                                                | 0.91   |
|                                |                                    | Median (mg/l)                                                           | 0.98     | 0.83                      | 0.83   | 0.83   | 0.83                                                                                                                                                                                                                | 0.83   |
|                                | Total Suspended Solids             | Mean (mg/l)                                                             | 9.2      | 6.7                       | 6.7    | 6.7    | 6.7                                                                                                                                                                                                                 | 6.7    |
|                                |                                    | Median (mg/l)                                                           | 4.8      | 3.3                       | 3.3    | 3.3    | 3.2                                                                                                                                                                                                                 | 3.2    |
|                                | Copper                             | Mean (mg/l)                                                             | 0.0049   | 0.0038                    | 0.0038 | 0.0038 | 0.0038                                                                                                                                                                                                              | 0.0038 |
|                                |                                    | Median (mg/l)                                                           | 0.0013   | 0.0009                    | 0.0009 | 0.0009 | 0.0009                                                                                                                                                                                                              | 0.0009 |

Table J-5 (continued)

|                  |                                    |                                                                         |          |                           |        | Alterr | native <sup>a</sup> |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| RT-4             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 7,101    | 5,914                     | 5,914  | 5,913  | 5,182               | 5,168  |
| Root River       | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 56       | 58                        | 58     | 58     | 59                  | 59     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 865      | 697                       | 691    | 691    | 616                 | 616    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 19       | 29                        | 30     | 30     | 37                  | 37     |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,018    | 3,370                     | 3,372  | 3,368  | 2,696               | 2,696  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 68                        | 68     | 68     | 69                  | 69     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 603      | 491                       | 489    | 488    | 421                 | 421    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 7        | 11                        | 11     | 11     | 16                  | 16     |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 9.6      | 9.5                       | 9.5    | 9.5    | 9.5                 | 9.5    |
|                  |                                    | Median (mg/l)                                                           | 9.4      | 9.3                       | 9.3    | 9.3    | 9.3                 | 9.3    |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 95       | 95                        | 95     | 95     | 95                  | 95     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.080    | 0.068                     | 0.068  | 0.068  | 0.065               | 0.065  |
|                  |                                    | Median (mg/l)                                                           | 0.022    | 0.019                     | 0.019  | 0.019  | 0.018               | 0.018  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 80                        | 80     | 80     | 81                  | 81     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.12     | 0.89                      | 0.89   | 0.89   | 0.88                | 0.88   |
|                  |                                    | Median (mg/l)                                                           | 1.00     | 0.77                      | 0.77   | 0.77   | 0.76                | 0.76   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 10.3     | 7.2                       | 7.2    | 7.2    | 7.2                 | 7.2    |
|                  |                                    | Median (mg/l)                                                           | 4.7      | 3.2                       | 3.2    | 3.2    | 3.2                 | 3.2    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0054   | 0.0043                    | 0.0043 | 0.0043 | 0.0043              | 0.0043 |
|                  |                                    | Median (mg/l)                                                           | 0.0014   | 0.0010                    | 0.0010 | 0.0010 | 0.0010              | 0.0010 |

Table J-5 (continued)

|                                         |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|-----------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                        | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| RT-10                                   | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 6,995    | 5,966                     | 5,965  | 5,964  | 5,294              | 5,289  |
| Root River<br>Upstream of Ryan<br>Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 51                        | 51     | 51     | 52                 | 52     |
|                                         |                                    | Geometric mean (cells per 100 ml)                                       | 1,189    | 985                       | 979    | 979    | 874                | 874    |
|                                         |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 9        | 18                        | 18     | 18     | 22                 | 22     |
|                                         | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,768    | 3,213                     | 3,214  | 3,212  | 2,711              | 2,711  |
|                                         | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 59       | 62                        | 62     | 62     | 64                 | 64     |
|                                         |                                    | Geometric mean (cells per 100 ml)                                       | 717      | 593                       | 590    | 589    | 514                | 514    |
|                                         |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 4        | 9                         | 10     | 10     | 13                 | 13     |
|                                         | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.3     | 11.3                      | 11.3   | 11.3   | 11.3               | 11.3   |
|                                         |                                    | Median (mg/l)                                                           | 11.6     | 11.6                      | 11.6   | 11.6   | 11.6               | 11.6   |
|                                         |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                        | 98     | 98     | 98                 | 98     |
|                                         | Total Phosphorus                   | Mean (mg/l)                                                             | 0.087    | 0.077                     | 0.077  | 0.077  | 0.073              | 0.073  |
|                                         |                                    | Median (mg/l)                                                           | 0.057    | 0.052                     | 0.052  | 0.052  | 0.050              | 0.050  |
|                                         |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 73       | 76                        | 76     | 76     | 77                 | 77     |
|                                         | Total Nitrogen                     | Mean (mg/l)                                                             | 1.15     | 0.90                      | 0.90   | 0.90   | 0.89               | 0.89   |
|                                         |                                    | Median (mg/l)                                                           | 1.13     | 0.88                      | 0.88   | 0.88   | 0.87               | 0.87   |
|                                         | Total Suspended Solids             | Mean (mg/l)                                                             | 12.9     | 8.6                       | 8.6    | 8.6    | 8.6                | 8.6    |
|                                         |                                    | Median (mg/l)                                                           | 4.8      | 3.2                       | 3.2    | 3.2    | 3.2                | 3.2    |
|                                         | Copper                             | Mean (mg/l)                                                             | 0.0020   | 0.0017                    | 0.0017 | 0.0017 | 0.0017             | 0.0017 |
|                                         |                                    | Median (mg/l)                                                           | 0.0006   | 0.0005                    | 0.0005 | 0.0005 | 0.0005             | 0.0005 |

Table J-5 (continued)

|                                 |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|---------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| RT-13                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,372    | 2,234                     | 2,266  | 2,266  | 1,944              | 1,958  |
| West Branch<br>Root River Canal | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 64       | 65                        | 65     | 65     | 67                 | 68     |
|                                 |                                    | Geometric mean (cells per 100 ml)                                       | 412      | 396                       | 390    | 390    | 319                | 318    |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 59       | 61                        | 64     | 64     | 93                 | 93     |
|                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,099    | 1,968                     | 1,981  | 1,981  | 1,714              | 1,697  |
|                                 | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 74                        | 74     | 74     | 74                 | 77     |
|                                 |                                    | Geometric mean (cells per 100 ml)                                       | 256      | 252                       | 248    | 248    | 203                | 204    |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 41       | 42                        | 44     | 44     | 61                 | 61     |
|                                 | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.8     | 11.8                      | 11.8   | 11.8   | 11.8               | 11.8   |
|                                 |                                    | Median (mg/l)                                                           | 12.3     | 12.2                      | 12.2   | 12.2   | 12.2               | 12.2   |
|                                 |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                        | 99     | 99     | 99                 | 99     |
|                                 | Total Phosphorus                   | Mean (mg/l)                                                             | 0.164    | 0.151                     | 0.151  | 0.151  | 0.147              | 0.141  |
|                                 |                                    | Median (mg/l)                                                           | 0.076    | 0.069                     | 0.070  | 0.070  | 0.068              | 0.068  |
|                                 |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 63       | 66                        | 65     | 65     | 66                 | 67     |
|                                 | Total Nitrogen                     | Mean (mg/l)                                                             | 2.75     | 2.61                      | 2.59   | 2.59   | 2.58               | 2.30   |
|                                 |                                    | Median (mg/l)                                                           | 2.00     | 1.95                      | 1.94   | 1.94   | 1.94               | 1.67   |
|                                 | Total Suspended Solids             | Mean (mg/l)                                                             | 28.1     | 25.3                      | 21.1   | 21.1   | 23.2               | 19.6   |
|                                 |                                    | Median (mg/l)                                                           | 4.0      | 4.0                       | 4.0    | 4.0    | 3.9                | 3.9    |
|                                 | Copper                             | Mean (mg/l)                                                             | 0.0006   | 0.0006                    | 0.0006 | 0.0006 | 0.0005             | 0.0005 |
|                                 |                                    | Median (mg/l)                                                           | 0.0002   | 0.0002                    | 0.0002 | 0.0002 | 0.0002             | 0.0002 |

Table J-5 (continued)

|                                    |                                                                        |                                                                          |          |                           |        | Altern | native <sup>a</sup> |        |
|------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point                   | Water Quality Indicator                                                | Statistic                                                                | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| RT-15                              | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                  | 3,272    | 3,025                     | 3,022  | 3,022  | 2,546               | 2,525  |
| East Branch<br>Root River Canal    | (annual)                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)   | 71       | 71                        | 71     | 71     | 72                  | 72     |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                        | 288      | 280                       | 276    | 276    | 208                 | 214    |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 121      | 127                       | 131    | 131    | 192                 | 186    |
|                                    | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                  | 2,853    | 2,572                     | 2,568  | 2,568  | 2,172               | 2,145  |
| (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml) | 80                                                                       | 80       | 80                        | 80     | 81     | 81                  |        |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                        | 213      | 207                       | 205    | 205    | 155                 | 160    |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 64       | 67                        | 69     | 69     | 102                 | 99     |
|                                    | Dissolved Oxygen                                                       | Mean (mg/l)                                                              | 11.3     | 11.3                      | 11.3   | 11.3   | 11.3                | 11.3   |
|                                    |                                                                        | Median (mg/l)                                                            | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5                | 11.5   |
|                                    |                                                                        | Percent compliance with dissolved oxygen standard (>3 mg/l) <sup>b</sup> | 100      | 100                       | 100    | 100    | 100                 | 100    |
|                                    | Total Phosphorus                                                       | Mean (mg/l)                                                              | 0.143    | 0.141                     | 0.140  | 0.140  | 0.135               | 0.129  |
|                                    |                                                                        | Median (mg/l)                                                            | 0.065    | 0.066                     | 0.067  | 0.067  | 0.064               | 0.063  |
|                                    |                                                                        | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 72       | 71                        | 71     | 71     | 72                  | 73     |
|                                    | Total Nitrogen                                                         | Mean (mg/l)                                                              | 2.64     | 2.58                      | 2.56   | 2.56   | 2.54                | 2.23   |
|                                    |                                                                        | Median (mg/l)                                                            | 2.05     | 2.02                      | 2.02   | 2.02   | 2.00                | 1.74   |
|                                    | Total Suspended Solids                                                 | Mean (mg/l)                                                              | 57.2     | 50.2                      | 41.5   | 41.5   | 45.6                | 38.1   |
|                                    |                                                                        | Median (mg/l)                                                            | 5.0      | 4.9                       | 4.9    | 4.9    | 4.8                 | 4.8    |
|                                    | Copper                                                                 | Mean (mg/l)                                                              | 0.0034   | 0.0034                    | 0.0034 | 0.0034 | 0.0032              | 0.0030 |
|                                    |                                                                        | Median (mg/l)                                                            | 0.0014   | 0.0014                    | 0.0014 | 0.0014 | 0.0013              | 0.0012 |

Table J-5 (continued)

|                                                     |                                    |                                                                         |          |                           |        | Alterr | native <sup>a</sup> |        |
|-----------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point                                    | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| RT-17                                               | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,656    | 4,048                     | 4,067  | 4,066  | 3,571               | 3,585  |
| Root River at<br>Upstream Crossing<br>of Milwaukee- | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 43       | 45                        | 46     | 46     | 48                  | 48     |
| Racine County Line                                  |                                    | Geometric mean (cells per 100 ml)                                       | 1,123    | 1,012                     | 1,001  | 1,001  | 872                 | 869    |
| and Downstream of<br>Root River Canal               |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 7        | 9                         | 9      | 9      | 11                  | 11     |
|                                                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,994    | 2,536                     | 2,542  | 2,541  | 2,164               | 2,164  |
|                                                     | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 55       | 57                        | 57     | 57     | 60                  | 60     |
|                                                     |                                    | Geometric mean (cells per 100 ml)                                       | 720      | 642                       | 635    | 635    | 549                 | 547    |
|                                                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 4        | 4                         | 5      | 5      | 6                   | 6      |
|                                                     | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5                | 11.5   |
|                                                     |                                    | Median (mg/l)                                                           | 11.7     | 11.7                      | 11.7   | 11.7   | 11.7                | 11.7   |
|                                                     |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                        | 99     | 99     | 99                  | 99     |
|                                                     | Total Phosphorus                   | Mean (mg/l)                                                             | 0.104    | 0.094                     | 0.095  | 0.095  | 0.091               | 0.089  |
|                                                     |                                    | Median (mg/l)                                                           | 0.071    | 0.067                     | 0.068  | 0.068  | 0.065               | 0.065  |
|                                                     |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 71       | 73                        | 73     | 73     | 75                  | 75     |
|                                                     | Total Nitrogen                     | Mean (mg/l)                                                             | 1.68     | 1.48                      | 1.47   | 1.47   | 1.46                | 1.33   |
|                                                     |                                    | Median (mg/l)                                                           | 1.39     | 1.22                      | 1.22   | 1.22   | 1.20                | 1.13   |
|                                                     | Total Suspended Solids             | Mean (mg/l)                                                             | 20.6     | 16.2                      | 14.1   | 14.1   | 15.2                | 13.5   |
|                                                     |                                    | Median (mg/l)                                                           | 4.6      | 3.8                       | 3.7    | 3.7    | 3.8                 | 3.7    |
|                                                     | Copper                             | Mean (mg/l)                                                             | 0.0006   | 0.0006                    | 0.0006 | 0.0006 | 0.0006              | 0.0006 |
|                                                     |                                    | Median (mg/l)                                                           | 0.0001   | 0.0001                    | 0.0001 | 0.0001 | 0.0001              | 0.0001 |

Table J-5 (continued)

|                                          |                                    |                                                                         |          |                           |        | Alterr | native <sup>a</sup> |        |
|------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point                         | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| RT-18                                    | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,253    | 3,654                     | 3,669  | 3,669  | 3,230               | 3,243  |
| Root River<br>Upstream of<br>Hoods Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 46       | 47                        | 48     | 48     | 49                  | 49     |
|                                          |                                    | Geometric mean (cells per 100 ml)                                       | 983      | 865                       | 855    | 855    | 744                 | 743    |
|                                          |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 11       | 16                        | 17     | 17     | 23                  | 23     |
|                                          | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,687    | 2,232                     | 2,235  | 2,235  | 1,928               | 1,930  |
|                                          | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 60       | 61                        | 61     | 61     | 62                  | 62     |
|                                          |                                    | Geometric mean (cells per 100 ml)                                       | 556      | 484                       | 479    | 479    | 413                 | 413    |
|                                          |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 9        | 12                        | 13     | 13     | 18                  | 18     |
|                                          | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.4     | 11.4                      | 11.4   | 11.4   | 11.4                | 11.4   |
|                                          |                                    | Median (mg/l)                                                           | 11.6     | 11.7                      | 11.7   | 11.7   | 11.6                | 11.7   |
|                                          |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 100                       | 100    | 100    | 100                 | 100    |
|                                          | Total Phosphorus                   | Mean (mg/l)                                                             | 0.102    | 0.094                     | 0.093  | 0.093  | 0.090               | 0.088  |
|                                          |                                    | Median (mg/l)                                                           | 0.068    | 0.065                     | 0.066  | 0.066  | 0.063               | 0.064  |
|                                          |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 73       | 75                        | 74     | 74     | 77                  | 76     |
|                                          | Total Nitrogen                     | Mean (mg/l)                                                             | 1.64     | 1.45                      | 1.42   | 1.42   | 1.42                | 1.29   |
|                                          |                                    | Median (mg/l)                                                           | 1.32     | 1.16                      | 1.16   | 1.16   | 1.15                | 1.07   |
|                                          | Total Suspended Solids             | Mean (mg/l)                                                             | 31       | 23.7                      | 18.7   | 18.7   | 22.0                | 19.2   |
|                                          |                                    | Median (mg/l)                                                           | 5.2      | 4.4                       | 4.2    | 4.3    | 4.3                 | 4.2    |
|                                          | Copper                             | Mean (mg/l)                                                             | 0.0013   | 0.0012                    | 0.0012 | 0.0012 | 0.0012              | 0.0012 |
|                                          |                                    | Median (mg/l)                                                           | 0.0004   | 0.0003                    | 0.0003 | 0.0003 | 0.0003              | 0.0003 |

Table J-5 (continued)

|                  |                                    |                                                                          |          |                           |        | Altern | native <sup>a</sup> |        |
|------------------|------------------------------------|--------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                                | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| RT-20            | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 4,039    | 3,218                     | 3,211  | 3,211  | 2,879               | 2,890  |
| Hoods Creek      | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)   | 69       | 68                        | 68     | 68     | 69                  | 69     |
|                  |                                    | Geometric mean (cells per 100 ml)                                        | 286      | 277                       | 275    | 275    | 209                 | 213    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 148      | 149                       | 151    | 151    | 194                 | 190    |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 3,354    | 2,601                     | 2,597  | 2,597  | 2,329               | 2,359  |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 81       | 79                        | 79     | 79     | 79                  | 79     |
|                  |                                    | Geometric mean (cells per 100 ml)                                        | 158      | 161                       | 160    | 160    | 113                 | 115    |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 84       | 83                        | 84     | 84     | 109                 | 106    |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                              | 11.0     | 11.0                      | 11.0   | 11.0   | 11.0                | 11.0   |
|                  |                                    | Median (mg/l)                                                            | 11.7     | 11.8                      | 11.8   | 11.8   | 11.8                | 11.8   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>3 mg/l) <sup>b</sup> | 98       | 98                        | 98     | 98     | 98                  | 98     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                              | 0.381    | 0.337                     | 0.334  | 0.334  | 0.334               | 0.355  |
|                  |                                    | Median (mg/l)                                                            | 0.131    | 0.113                     | 0.112  | 0.112  | 0.110               | 0.112  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 43       | 49                        | 49     | 49     | 50                  | 49     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                              | 3.20     | 2.84                      | 2.81   | 2.81   | 2.83                | 2.73   |
|                  |                                    | Median (mg/l)                                                            | 2.39     | 2.05                      | 2.03   | 2.03   | 2.04                | 1.89   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                              | 33.5     | 23.4                      | 16.8   | 16.8   | 21.8                | 18.8   |
|                  |                                    | Median (mg/l)                                                            | 4.9      | 4.5                       | 4.5    | 4.5    | 4.5                 | 4.4    |
|                  | Copper                             | Mean (mg/l)                                                              | 0.0048   | 0.0040                    | 0.0040 | 0.0040 | 0.0040              | 0.0040 |
|                  |                                    | Median (mg/l)                                                            | 0.0022   | 0.0020                    | 0.0020 | 0.0020 | 0.0019              | 0.0019 |

Table J-5 (continued)

|                                                       |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|-------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                                      | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| RT-21                                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,547    | 3,908                     | 3,921  | 3,921  | 3,465              | 3,477  |
| Root River at the<br>City of Racine,<br>USGS Sampling | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 49                        | 49     | 49     | 50                 | 50     |
| Location (4087240)                                    |                                    | Geometric mean (cells per 100 ml)                                       | 853      | 761                       | 754    | 754    | 657                | 658    |
|                                                       |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 23                        | 24     | 24     | 34                 | 34     |
|                                                       | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,041    | 2,552                     | 2,554  | 2,554  | 2,211              | 2,216  |
|                                                       | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 62       | 63                        | 63     | 63     | 64                 | 64     |
|                                                       |                                    | Geometric mean (cells per 100 ml)                                       | 479      | 422                       | 418    | 418    | 361                | 362    |
|                                                       |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 13       | 18                        | 18     | 18     | 26                 | 26     |
|                                                       | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11       | 11.1                      | 11.1   | 11.1   | 11.1               | 11.1   |
|                                                       |                                    | Median (mg/l)                                                           | 11.3     | 11.4                      | 11.4   | 11.4   | 11.3               | 11.4   |
|                                                       |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                        | 99     | 99     | 99                 | 99     |
|                                                       | Total Phosphorus                   | Mean (mg/l)                                                             | 0.109    | 0.099                     | 0.098  | 0.098  | 0.095              | 0.093  |
|                                                       |                                    | Median (mg/l)                                                           | 0.075    | 0.071                     | 0.072  | 0.072  | 0.068              | 0.069  |
|                                                       |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 67       | 71                        | 70     | 70     | 73                 | 72     |
|                                                       | Total Nitrogen                     | Mean (mg/l)                                                             | 1.58     | 1.38                      | 1.35   | 1.35   | 1.36               | 1.23   |
|                                                       |                                    | Median (mg/l)                                                           | 1.24     | 1.09                      | 1.09   | 1.09   | 1.08               | 1.01   |
|                                                       | Total Suspended Solids             | Mean (mg/l)                                                             | 35.9     | 26.5                      | 21.1   | 21.1   | 24.7               | 21.8   |
|                                                       |                                    | Median (mg/l)                                                           | 7.0      | 5.8                       | 5.3    | 5.3    | 5.6                | 5.3    |
|                                                       | Copper                             | Mean (mg/l)                                                             | 0.0008   | 0.0006                    | 0.0006 | 0.0006 | 0.0006             | 0.0006 |
|                                                       |                                    | Median (mg/l)                                                           | 0.0002   | 0.0001                    | 0.0001 | 0.0001 | 0.0001             | 0.0001 |

Table J-5 (continued)

|                                      |                                    |                                                                         |          |                           |        | Altern | native <sup>a</sup> |        |
|--------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point                     | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| RT-22                                | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,924    | 4,132                     | 4,144  | 4,143  | 3,679               | 3,690  |
| Mouth of Root River at Lake Michigan | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 47       | 48                        | 48     | 48     | 49                  | 49     |
|                                      |                                    | Geometric mean (cells per 100 ml)                                       | 869      | 763                       | 755    | 755    | 661                 | 661    |
|                                      |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 28       | 34                        | 35     | 35     | 45                  | 45     |
|                                      | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,327    | 2,710                     | 2,712  | 2,711  | 2,377               | 2,382  |
|                                      | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 62       | 62                        | 62     | 62     | 64                  | 64     |
|                                      |                                    | Geometric mean (cells per 100 ml)                                       | 440      | 383                       | 379    | 379    | 329                 | 330    |
|                                      |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 22       | 28                        | 28     | 28     | 36                  | 36     |
|                                      | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.1     | 11.1                      | 11.1   | 11.1   | 11.1                | 11.2   |
|                                      |                                    | Median (mg/l)                                                           | 11.3     | 11.3                      | 11.4   | 11.4   | 11.4                | 11.4   |
|                                      |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                        | 99     | 99     | 99                  | 99     |
|                                      | Total Phosphorus                   | Mean (mg/l)                                                             | 0.115    | 0.104                     | 0.103  | 0.103  | 0.099               | 0.098  |
|                                      |                                    | Median (mg/l)                                                           | 0.079    | 0.074                     | 0.075  | 0.075  | 0.072               | 0.072  |
|                                      |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 65       | 68                        | 67     | 67     | 70                  | 70     |
|                                      | Total Nitrogen                     | Mean (mg/l)                                                             | 1.56     | 1.36                      | 1.33   | 1.33   | 1.33                | 1.22   |
|                                      |                                    | Median (mg/l)                                                           | 1.23     | 1.08                      | 1.09   | 1.09   | 1.07                | 1.00   |
|                                      | Total Suspended Solids             | Mean (mg/l)                                                             | 38.5     | 28.8                      | 23.7   | 23.7   | 27.1                | 24.3   |
|                                      |                                    | Median (mg/l)                                                           | 4.4      | 8.0                       | 7.4    | 7.4    | 7.7                 | 7.4    |
|                                      | Copper                             | Mean (mg/l)                                                             | 0.0015   | 0.0011                    | 0.0011 | 0.0011 | 0.0011              | 0.0011 |
|                                      |                                    | Median (mg/l)                                                           | 0.0002   | 0.0002                    | 0.0002 | 0.0002 | 0.0002              | 0.0002 |

Source: Tetra Tech, Inc., and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

<sup>&</sup>lt;sup>b</sup>Under Chapter NR 104 of the Wisconsin Administrative Code, this assessment point is in a stream reach classified as capable of supporting limited forage fish.

Table J-6

WATER QUALITY SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: NEARSHORE LAKE MICHIGAN AREA

|                  |                                    |                                                                                        |          |                           |        | Alterr | native <sup>a</sup> |        |
|------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| LM-1             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 1,101    | 788                       | 674    | 646    | 691                 | 682    |
| Milwaukee River  | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 79       | 87                        | 91     | 91     | 91                  | 91     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 175      | 123                       | 89     | 106    | 109                 | 105    |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 254      | 291                       | 304    | 304    | 303                 | 306    |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 457      | 332                       | 254    | 196    | 277                 | 273    |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 95       | 97                        | 99     | 99     | 98                  | 98     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 26       | 17                        | 10     | 14     | 15                  | 14     |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 147      | 152                       | 152    | 152    | 152                 | 152    |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 10.0     | 9.9                       | 10.0   | 10.0   | 10.0                | 9.9    |
|                  |                                    | Median (mg/l)                                                                          | 10.8     | 10.8                      | 10.9   | 10.9   | 10.9                | 10.8   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>b</sup>               | 99       | 99                        | 99     | 99     | 99                  | 99     |
|                  | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.066    | 0.065                     | 0.064  | 0.064  | 0.064               | 0.062  |
|                  |                                    | Median (mg/l)                                                                          | 0.055    | 0.055                     | 0.054  | 0.054  | 0.054               | 0.053  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 78       | 79                        | 79     | 79     | 79                  | 81     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.69     | 1.62                      | 1.61   | 1.61   | 1.61                | 1.46   |
|                  |                                    | Median (mg/l)                                                                          | 1.48     | 1.43                      | 1.42   | 1.42   | 1.42                | 1.30   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                                            | 22.5     | 20.7                      | 19.3   | 19.3   | 19.3                | 19.6   |
|                  |                                    | Median (mg/l)                                                                          | 13.1     | 12.4                      | 11.8   | 11.8   | 11.8                | 11.9   |
|                  | Copper                             | Mean (mg/l)                                                                            | 0.0045   | 0.0046                    | 0.0046 | 0.0046 | 0.0046              | 0.0047 |
|                  |                                    | Median (mg/l)                                                                          | 0.0044   | 0.0045                    | 0.0045 | 0.0045 | 0.0045              | 0.0045 |

Table J-6 (continued)

|                  |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-2             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 3,466    | 3,187                     | 2,182  | 2,152  | 1,976              | 1,975  |
| Menomonee River  | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 58       | 59                        | 67     | 67     | 70                 | 70     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 595      | 538                       | 294    | 292    | 261                | 260    |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 208      | 212                       | 239    | 239    | 242                | 242    |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 1,250    | 1,119                     | 793    | 743    | 687                | 688    |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 84       | 85                        | 89     | 89     | 92                 | 92     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 135      | 118                       | 60     | 59     | 50                 | 50     |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 139      | 142                       | 150    | 150    | 151                | 151    |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 9.3      | 9.4                       | 9.5    | 9.5    | 9.5                | 9.5    |
|                  |                                    | Median (mg/l)                                                                          | 9.7      | 9.9                       | 10.0   | 10.0   | 10.0               | 9.9    |
|                  |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>D</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                  | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.070    | 0.070                     | 0.069  | 0.069  | 0.068              | 0.067  |
|                  |                                    | Median (mg/l)                                                                          | 0.065    | 0.066                     | 0.066  | 0.065  | 0.064              | 0.064  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 86       | 88                        | 88     | 89     | 90                 | 90     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.53     | 1.33                      | 1.31   | 1.30   | 1.29               | 1.24   |
|                  |                                    | Median (mg/l)                                                                          | 1.51     | 1.31                      | 1.29   | 1.28   | 1.27               | 1.23   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                                            | 20.1     | 18.1                      | 17.7   | 17.7   | 17.6               | 17.7   |
|                  |                                    | Median (mg/l)                                                                          | 11.6     | 11.3                      | 10.9   | 10.9   | 10.8               | 10.9   |
|                  | Copper                             | Mean (mg/l)                                                                            | 0.0187   | 0.0187                    | 0.0187 | 0.0187 | 0.0185             | 0.0187 |
|                  |                                    | Median (mg/l)                                                                          | 0.0141   | 0.0137                    | 0.0137 | 0.0137 | 0.0136             | 0.0136 |

|                  |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-3             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 931      | 813                       | 592    | 582    | 564                | 562    |
| Menomonee River  | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 86       | 88                        | 92     | 92     | 93                 | 93     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 141      | 120                       | 83     | 83     | 77                 | 76     |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 308      | 324                       | 347    | 346    | 351                | 351    |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 494      | 446                       | 317    | 301    | 299                | 298    |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 94       | 94                        | 96     | 96     | 97                 | 97     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 40       | 33                        | 21     | 21     | 19                 | 18     |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 150      | 151                       | 153    | 153    | 153                | 153    |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 9.1      | 9.3                       | 9.3    | 9.3    | 9.3                | 9.3    |
|                  |                                    | Median (mg/l)                                                                          | 9.7      | 9.9                       | 10.0   | 10.0   | 10.0               | 9.9    |
|                  |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>D</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                  | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.062    | 0.062                     | 0.061  | 0.061  | 0.060              | 0.059  |
|                  |                                    | Median (mg/l)                                                                          | 0.059    | 0.060                     | 0.059  | 0.059  | 0.058              | 0.057  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 93       | 94                        | 94     | 94     | 95                 | 95     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.53     | 1.40                      | 1.37   | 1.37   | 1.36               | 1.28   |
|                  |                                    | Median (mg/l)                                                                          | 1.44     | 1.31                      | 1.28   | 1.28   | 1.27               | 1.21   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                                            | 19.0     | 17.6                      | 16.9   | 16.9   | 16.8               | 17.0   |
|                  |                                    | Median (mg/l)                                                                          | 12.2     | 11.7                      | 11.3   | 11.2   | 11.2               | 11.3   |
|                  | Copper                             | Mean (mg/l)                                                                            | 0.0056   | 0.0054                    | 0.0054 | 0.0054 | 0.0054             | 0.0054 |
|                  |                                    | Median (mg/l)                                                                          | 0.0051   | 0.0049                    | 0.0049 | 0.0049 | 0.0048             | 0.0049 |

Table J-6 (continued)

|                  |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-4             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 850      | 693                       | 546    | 540    | 539                | 534    |
| Milwaukee River  | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 85       | 90                        | 94     | 94     | 95                 | 95     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 147      | 121                       | 92     | 93     | 89                 | 87     |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 298      | 316                       | 336    | 336    | 339                | 341    |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 399      | 341                       | 247    | 239    | 245                | 243    |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 95       | 96                        | 98     | 98     | 98                 | 98     |
|                  |                                    | Geometric mean (cells per 100 ml)                                                      | 37       | 29                        | 20     | 21     | 19                 | 18     |
|                  |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 150      | 152                       | 153    | 153    | 152                | 153    |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 9.5      | 9.6                       | 9.7    | 9.7    | 9.7                | 9.6    |
|                  |                                    | Median (mg/l)                                                                          | 10.1     | 10.3                      | 10.4   | 10.4   | 10.4               | 10.3   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>b</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                  | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.059    | 0.060                     | 0.058  | 0.058  | 0.058              | 0.057  |
|                  |                                    | Median (mg/l)                                                                          | 0.055    | 0.055                     | 0.053  | 0.053  | 0.053              | 0.052  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 92       | 91                        | 92     | 92     | 92                 | 93     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.58     | 1.49                      | 1.46   | 1.46   | 1.45               | 1.34   |
|                  |                                    | Median (mg/l)                                                                          | 1.42     | 1.34                      | 1.30   | 1.30   | 1.29               | 1.22   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                                            | 19.0     | 17.9                      | 17.0   | 17.0   | 16.9               | 17.1   |
|                  |                                    | Median (mg/l)                                                                          | 12.1     | 11.8                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                  | Copper                             | Mean (mg/l)                                                                            | 0.0054   | 0.0053                    | 0.0053 | 0.0053 | 0.0053             | 0.0053 |
|                  |                                    | Median (mg/l)                                                                          | 0.0051   | 0.0050                    | 0.0050 | 0.0050 | 0.0050             | 0.0051 |

|                    |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|--------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point   | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-5               | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 352      | 368                       | 221    | 243    | 340                | 339    |
| Kinnickinnic River | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 98       | 98                        | 99     | 99     | 99                 | 99     |
|                    |                                    | Geometric mean (cells per 100 ml)                                                      | 52       | 46                        | 40     | 40     | 37                 | 37     |
|                    |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 363      | 363                       | 364    | 364    | 363                | 363    |
|                    | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 255      | 320                       | 143    | 176    | 290                | 289    |
|                    | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 98       | 99                        | 99     | 99     | 99                 | 99     |
|                    |                                    | Geometric mean (cells per 100 ml)                                                      | 17       | 15                        | 12     | 12     | 11                 | 11     |
|                    |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 152      | 152                       | 153    | 153    | 152                | 152    |
|                    | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 8.1      | 8.2                       | 8.4    | 8.4    | 8.3                | 8.3    |
|                    |                                    | Median (mg/l)                                                                          | 8.6      | 8.7                       | 8.9    | 8.8    | 8.8                | 8.8    |
|                    |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>D</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                    | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.049    | 0.048                     | 0.045  | 0.046  | 0.046              | 0.046  |
|                    |                                    | Median (mg/l)                                                                          | 0.044    | 0.043                     | 0.041  | 0.041  | 0.041              | 0.040  |
|                    |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 97       | 97                        | 98     | 98     | 98                 | 98     |
|                    | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.39     | 1.32                      | 1.21   | 1.21   | 1.21               | 1.14   |
|                    |                                    | Median (mg/l)                                                                          | 1.30     | 1.24                      | 1.14   | 1.14   | 1.13               | 1.07   |
|                    | Total Suspended Solids             | Mean (mg/l)                                                                            | 12.2     | 11.3                      | 10.7   | 10.7   | 10.8               | 10.9   |
|                    |                                    | Median (mg/l)                                                                          | 7.8      | 7.5                       | 7.1    | 7.1    | 7.1                | 7.1    |
|                    | Copper                             | Mean (mg/l)                                                                            | 0.0069   | 0.0066                    | 0.0066 | 0.0066 | 0.0066             | 0.0067 |
|                    |                                    | Median (mg/l)                                                                          | 0.0070   | 0.0066                    | 0.0066 | 0.0066 | 0.0066             | 0.0067 |

Table J-6 (continued)

|                             |                                    |                                                                                        |          |                           |        | Altern | ative <sup>a</sup> |        |
|-----------------------------|------------------------------------|----------------------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point            | Water Quality Indicator            | Statistic                                                                              | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-6                        | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 445      | 379                       | 297    | 296    | 306                | 302    |
| Mouth of<br>Milwaukee River | (annual)                           | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 95       | 97                        | 98     | 98     | 98                 | 98     |
|                             |                                    | Geometric mean (cells per 100 ml)                                                      | 78       | 69                        | 57     | 57     | 55                 | 54     |
|                             |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 352      | 360                       | 364    | 364    | 363                | 363    |
|                             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                | 229      | 202                       | 143    | 144    | 158                | 156    |
|                             | (May-September:<br>153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>b</sup>  | 98       | 98                        | 99     | 99     | 99                 | 99     |
|                             |                                    | Geometric mean (cells per 100 ml)                                                      | 26       | 22                        | 18     | 18     | 17                 | 16     |
|                             |                                    | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>b</sup> | 152      | 152                       | 153    | 153    | 152                | 152    |
|                             | Dissolved Oxygen                   | Mean (mg/l)                                                                            | 9.5      | 9.5                       | 9.7    | 9.7    | 9.6                | 9.6    |
|                             |                                    | Median (mg/l)                                                                          | 10.0     | 10.1                      | 10.2   | 10.2   | 10.2               | 10.2   |
|                             |                                    | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>D</sup>               | 100      | 100                       | 100    | 100    | 100                | 100    |
|                             | Total Phosphorus                   | Mean (mg/l)                                                                            | 0.047    | 0.048                     | 0.045  | 0.045  | 0.045              | 0.044  |
|                             |                                    | Median (mg/l)                                                                          | 0.042    | 0.043                     | 0.040  | 0.040  | 0.040              | 0.039  |
|                             |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 97       | 97                        | 97     | 97     | 97                 | 98     |
|                             | Total Nitrogen                     | Mean (mg/l)                                                                            | 1.51     | 1.45                      | 1.23   | 1.23   | 1.23               | 1.15   |
|                             |                                    | Median (mg/l)                                                                          | 1.44     | 1.39                      | 1.14   | 1.14   | 1.13               | 1.07   |
|                             | Total Suspended Solids             | Mean (mg/l)                                                                            | 13.3     | 12.7                      | 12.0   | 12.0   | 12.0               | 12.1   |
|                             |                                    | Median (mg/l)                                                                          | 8.5      | 8.3                       | 8.0    | 8.0    | 8.0                | 7.9    |
|                             | Copper                             | Mean (mg/l)                                                                            | 0.0072   | 0.0070                    | 0.0070 | 0.0070 | 0.0070             | 0.0070 |
|                             |                                    | Median (mg/l)                                                                          | 0.0073   | 0.0070                    | 0.0070 | 0.0070 | 0.0070             | 0.0070 |

|                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup>  |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|---------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                  | C2     |
| LM-7             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 91       | 82                        | 63     | 64     | 70                  | 69     |
| Outer Harbor     | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 96       | 97                        | 98     | 98     | 98                  | 98     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 21       | 20                        | 17     | 17     | 17                  | 69     |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 360      | 362                       | 365    | 364    | 363                 | 364    |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 81       | 74                        | 54     | 56     | 63                  | 62     |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                        | 98     | 98     | 98                  | 98     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 13       | 12                        | 11     | 11     | 10                  | 10     |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152                       | 153    | 152    | 152                 | 152    |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.3     | 10.4                      | 10.5   | 10.5   | 10.5                | 10.5   |
|                  |                                    | Median (mg/l)                                                           | 10.7     | 10.7                      | 10.9   | 10.9   | 152<br>10.5<br>10.9 | 10.9   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                 | 100    |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.027    | 0.028                     | 0.025  | 0.025  | 0.025               | 0.025  |
|                  |                                    | Median (mg/l)                                                           | 0.024    | 0.025                     | 0.022  | 0.022  | 0.022               | 0.021  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 99                        | 99     | 99     | 99                  | 99     |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.15     | 1.13                      | 0.82   | 0.82   | 0.82                | 0.80   |
|                  |                                    | Median (mg/l)                                                           | 1.09     | 1.08                      | 0.76   | 0.76   | 0.76                | 0.74   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 6.4      | 6.2                       | 5.9    | 5.9    | 5.9                 | 6.0    |
|                  |                                    | Median (mg/l)                                                           | 4.0      | 4.1                       | 3.9    | 3.9    | 3.9                 | 3.9    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0094   | 0.0093                    | 0.0093 | 0.0093 | 0.0093              | 0.0093 |
|                  |                                    | Median (mg/l)                                                           | 0.0096   | 0.0095                    | 0.0095 | 0.0095 | 0.0095              | 0.0095 |

Table J-6 (continued)

|                  |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup>                                                                                                                                                                                                                                                    |        |
|------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Assessment Point | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                                                                                                                                                                                                                                                                    | C2     |
| LM-8             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 66       | 60                        | 44     | 46     | 52                                                                                                                                                                                                                                                                    | 52     |
| Outer Harbor     | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                        | 98     | 99     | 98                                                                                                                                                                                                                                                                    | 98     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 15       | 14                        | 13     | 13     | 52     52       98     98       12     12       363     363       50     50       98     98       9     9       152     152       10.6     10.6       11.0     11.0       100     100       0.022     0.02       0.018     0.01       100     100       0.78     0.76 | 12     |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 363      | 363                       | 365    | 363    | 363                                                                                                                                                                                                                                                                   | 363    |
|                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 65       | 59                        | 43     | 45     | 50                                                                                                                                                                                                                                                                    | 50     |
|                  | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 98       | 98                        | 99     | 99     | 98                                                                                                                                                                                                                                                                    | 98     |
|                  |                                    | Geometric mean (cells per 100 ml)                                       | 11       | 10                        | 9      | 9      | 9                                                                                                                                                                                                                                                                     | 9      |
|                  |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152                       | 153    | 152    | 152                                                                                                                                                                                                                                                                   | 152    |
|                  | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.5     | 10.5                      | 10.6   | 10.6   | 10.6                                                                                                                                                                                                                                                                  | 10.6   |
|                  |                                    | Median (mg/l)                                                           | 10.8     | 10.8                      | 11.0   | 11.0   | 11.0                                                                                                                                                                                                                                                                  | 11.0   |
|                  |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                                                                                                                                                                                                                                                                   | 100    |
|                  | Total Phosphorus                   | Mean (mg/l)                                                             | 0.024    | 0.024                     | 0.022  | 0.022  | 0.022                                                                                                                                                                                                                                                                 | 0.021  |
|                  |                                    | Median (mg/l)                                                           | 0.020    | 0.020                     | 0.018  | 0.018  | 0.018                                                                                                                                                                                                                                                                 | 0.018  |
|                  |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 99                        | 100    | 100    | 100                                                                                                                                                                                                                                                                   | 100    |
|                  | Total Nitrogen                     | Mean (mg/l)                                                             | 1.04     | 1.02                      | 0.78   | 0.78   | 0.78                                                                                                                                                                                                                                                                  | 0.76   |
|                  |                                    | Median (mg/l)                                                           | 0.98     | 0.97                      | 0.71   | 0.71   | 0.71                                                                                                                                                                                                                                                                  | 0.70   |
|                  | Total Suspended Solids             | Mean (mg/l)                                                             | 5.7      | 5.6                       | 5.3    | 5.3    | 5.3                                                                                                                                                                                                                                                                   | 5.4    |
|                  |                                    | Median (mg/l)                                                           | 3.5      | 3.6                       | 3.4    | 3.4    | 3.4                                                                                                                                                                                                                                                                   | 3.4    |
|                  | Copper                             | Mean (mg/l)                                                             | 0.0095   | 0.0094                    | 0.0094 | 0.0094 | 0.0094                                                                                                                                                                                                                                                                | 0.0094 |
|                  |                                    | Median (mg/l)                                                           | 0.0097   | 0.0096                    | 0.0096 | 0.0096 | 0.0096                                                                                                                                                                                                                                                                | 0.0096 |

|                  |                                                               |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point | Water Quality Indicator                                       | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-9             | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 47       | 42                        | 33     | 34     | 35                 | 35     |
| Outer Harbor     | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 98       | 99                        | 99     | 99     | 99                 | 99     |
|                  |                                                               | Geometric mean (cells per 100 ml)                                       | 11       | 10                        | 9      | 9      | 9                  | 9      |
|                  |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                       | 365    | 365    | 365                | 365    |
|                  | Fecal Coliform Bacteria<br>(May-September:<br>153 days total) | Mean (cells per 100 ml)                                                 | 26       | 24                        | 18     | 19     | 21                 | 21     |
|                  |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 99       | 99                        | 100    | 99     | 99                 | 99     |
|                  |                                                               | Geometric mean (cells per 100 ml)                                       | 6        | 6                         | 5      | 5      | 5                  | 5      |
|                  |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                  | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 10.7     | 10.7                      | 10.8   | 10.8   | 10.8               | 10.8   |
|                  |                                                               | Median (mg/l)                                                           | 10.9     | 11.0                      | 11.1   | 11.1   | 11.1               | 11.1   |
|                  |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                  | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.021    | 0.021                     | 0.019  | 0.019  | 0.019              | 0.018  |
|                  |                                                               | Median (mg/l)                                                           | 0.018    | 0.018                     | 0.016  | 0.016  | 0.016              | 0.016  |
|                  |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                  | Total Nitrogen                                                | Mean (mg/l)                                                             | 0.95     | 0.94                      | 0.70   | 0.70   | 0.70               | 0.68   |
|                  |                                                               | Median (mg/l)                                                           | 0.84     | 0.83                      | 0.64   | 0.64   | 0.64               | 0.63   |
|                  | Total Suspended Solids                                        | Mean (mg/l)                                                             | 4.6      | 4.5                       | 4.3    | 4.3    | 4.3                | 4.4    |
|                  |                                                               | Median (mg/l)                                                           | 3.2      | 3.2                       | 3.1    | 3.1    | 3.1                | 3.1    |
|                  | Copper                                                        | Mean (mg/l)                                                             | 0.0097   | 0.0096                    | 0.0096 | 0.0096 | 0.0096             | 0.0096 |
|                  |                                                               | Median (mg/l)                                                           | 0.0099   | 0.0098                    | 0.0098 | 0.0098 | 0.0098             | 0.0098 |

Table J-6 (continued)

|                                    |                                                                        |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                   | Water Quality Indicator                                                | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-10                              | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 66       | 59                        | 46     | 47     | 52                 | 52     |
| Outer Harbor                       | (annual)                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                        | 99     | 99     | 99                 | 99     |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                       | 17       | 16                        | 14     | 14     | 14                 | 14     |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 362      | 363                       | 363    | 363    | 363                | 363    |
|                                    | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 50       | 46                        | 34     | 35     | 39                 | 38     |
| (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml) | 98                                                                      | 98       | 99                        | 99     | 99     | 99                 |        |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                       | 11       | 10                        | 9      | 9      | 9                  | 9      |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152                       | 152    | 152    | 152                | 152    |
|                                    | Dissolved Oxygen                                                       | Mean (mg/l)                                                             | 10.4     | 10.4                      | 10.5   | 10.5   | 10.5               | 10.5   |
|                                    |                                                                        | Median (mg/l)                                                           | 10.7     | 10.8                      | 10.9   | 10.9   | 10.9               | 10.9   |
|                                    |                                                                        | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Phosphorus                                                       | Mean (mg/l)                                                             | 0.026    | 0.026                     | 0.023  | 0.023  | 0.023              | 0.023  |
|                                    |                                                                        | Median (mg/l)                                                           | 0.023    | 0.024                     | 0.020  | 0.020  | 0.020              | 0.020  |
|                                    |                                                                        | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Nitrogen                                                         | Mean (mg/l)                                                             | 1.14     | 1.13                      | 0.81   | 0.81   | 0.81               | 0.79   |
|                                    |                                                                        | Median (mg/l)                                                           | 1.08     | 1.07                      | 0.75   | 0.75   | 0.75               | 0.74   |
|                                    | Total Suspended Solids                                                 | Mean (mg/l)                                                             | 5.6      | 5.5                       | 5.2    | 5.2    | 5.2                | 5.2    |
|                                    |                                                                        | Median (mg/l)                                                           | 3.7      | 3.7                       | 3.6    | 3.6    | 3.6                | 3.6    |
|                                    | Copper                                                                 | Mean (mg/l)                                                             | 0.0096   | 0.0096                    | 0.0096 | 0.0096 | 0.0096             | 0.0096 |
|                                    |                                                                        | Median (mg/l)                                                           | 0.0097   | 0.0096                    | 0.0096 | 0.0096 | 0.0096             | 0.0096 |

|                                    |                         |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------|-------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                   | Water Quality Indicator | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-11                              | Fecal Coliform Bacteria | Mean (cells per 100 ml)                                                 | 11       | 10                        | 9      | 9      | 9                  | 9      |
| Nearshore Lake<br>Michigan Area    | (annual)                | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                         | Geometric mean (cells per 100 ml)                                       | 5        | 5                         | 4      | 4      | 4                  | 4      |
|                                    |                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                       | 365    | 365    | 365                | 365    |
|                                    | Fecal Coliform Bacteria | Mean (cells per 100 ml)                                                 | 6        | 5                         | 5      | 5      | 5                  | 5      |
| (May-September:<br>153 days total) |                         | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                         | Geometric mean (cells per 100 ml)                                       | 3        | 3                         | 3      | 3      | 3                  | 3      |
|                                    |                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                                    | Dissolved Oxygen        | Mean (mg/l)                                                             | 11.2     | 11.2                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                                    |                         | Median (mg/l)                                                           | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5               | 11.5   |
|                                    |                         | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Phosphorus        | Mean (mg/l)                                                             | 0.010    | 0.010                     | 0.009  | 0.009  | 0.009              | 0.009  |
|                                    |                         | Median (mg/l)                                                           | 0.008    | 0.008                     | 0.007  | 0.007  | 0.007              | 0.007  |
|                                    |                         | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Nitrogen          | Mean (mg/l)                                                             | 0.62     | 0.62                      | 0.55   | 0.55   | 0.55               | 0.54   |
|                                    |                         | Median (mg/l)                                                           | 0.55     | 0.55                      | 0.52   | 0.52   | 0.52               | 0.52   |
|                                    | Total Suspended Solids  | Mean (mg/l)                                                             | 2.6      | 2.6                       | 2.6    | 2.6    | 2.6                | 2.6    |
|                                    |                         | Median (mg/l)                                                           | 2.3      | 2.3                       | 2.3    | 2.3    | 2.3                | 2.3    |
|                                    | Copper                  | Mean (mg/l)                                                             | 0.0099   | 0.0099                    | 0.0099 | 0.0099 | 0.0099             | 0.0099 |
|                                    |                         | Median (mg/l)                                                           | 0.0100   | 0.0100                    | 0.0100 | 0.0100 | 0.0100             | 0.0100 |

Table J-6 (continued)

|                                    |                                                                        |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                   | Water Quality Indicator                                                | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-12                              | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 12       | 11                        | 10     | 10     | 10                 | 10     |
| Nearshore Lake<br>Michigan Area    | (annual)                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                       | 5        | 5                         | 5      | 5      | 5                  | 5      |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                       | 365    | 365    | 365                | 365    |
|                                    | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 6        | 6                         | 5      | 5      | 5                  | 5      |
| (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml) | 100                                                                     | 100      | 100                       | 100    | 100    | 100                |        |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                       | 4        | 3                         | 3      | 3      | 3                  | 3      |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                                    | Dissolved Oxygen                                                       | Mean (mg/l)                                                             | 11.2     | 11.2                      | 11.2   | 11.2   | 11.2               | 11.2   |
|                                    |                                                                        | Median (mg/l)                                                           | 11.5     | 11.5                      | 11.5   | 11.5   | 11.5               | 11.5   |
|                                    |                                                                        | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Phosphorus                                                       | Mean (mg/l)                                                             | 0.010    | 0.010                     | 0.009  | 0.009  | 0.009              | 0.009  |
|                                    |                                                                        | Median (mg/l)                                                           | 0.008    | 0.008                     | 0.008  | 0.008  | 0.008              | 0.008  |
|                                    |                                                                        | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Nitrogen                                                         | Mean (mg/l)                                                             | 0.63     | 0.63                      | 0.55   | 0.55   | 0.55               | 0.55   |
|                                    |                                                                        | Median (mg/l)                                                           | 0.56     | 0.56                      | 0.53   | 0.53   | 0.53               | 0.53   |
|                                    | Total Suspended Solids                                                 | Mean (mg/l)                                                             | 2.7      | 2.7                       | 2.6    | 2.6    | 2.6                | 2.6    |
|                                    |                                                                        | Median (mg/l)                                                           | 2.4      | 2.4                       | 2.4    | 2.4    | 2.4                | 2.4    |
|                                    | Copper                                                                 | Mean (mg/l)                                                             | 0.0099   | 0.0099                    | 0.0099 | 0.0099 | 0.0099             | 0.0099 |
|                                    |                                                                        | Median (mg/l)                                                           | 0.0100   | 0.0100                    | 0.0100 | 0.0100 | 0.0100             | 0.0100 |

|                                 |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|---------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-13                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 69       | 59                        | 55     | 54     | 53                 | 53     |
| Nearshore Lake<br>Michigan Area | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                        | 99     | 99     | 99                 | 99     |
|                                 |                                    | Geometric mean (cells per 100 ml)                                       | 16       | 15                        | 14     | 14     | 13                 | 13     |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 363      | 364                       | 365    | 365    | 364                | 364    |
|                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 58       | 49                        | 46     | 44     | 44                 | 44     |
|                                 | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                        | 99     | 99     | 99                 | 99     |
|                                 |                                    | Geometric mean (cells per 100 ml)                                       | 10       | 9                         | 9      | 9      | 8                  | 8      |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                                 | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.9     | 10.9                      | 11.0   | 11.0   | 11.0               | 11.0   |
|                                 |                                    | Median (mg/l)                                                           | 11.1     | 11.2                      | 11.3   | 11.3   | 11.3               | 11.3   |
|                                 |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                 | Total Phosphorus                   | Mean (mg/l)                                                             | 0.020    | 0.020                     | 0.018  | 0.018  | 0.018              | 0.018  |
|                                 |                                    | Median (mg/l)                                                           | 0.016    | 0.016                     | 0.015  | 0.015  | 0.015              | 0.015  |
|                                 |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                 | Total Nitrogen                     | Mean (mg/l)                                                             | 0.86     | 0.85                      | 0.68   | 0.68   | 0.68               | 0.67   |
|                                 |                                    | Median (mg/l)                                                           | 0.78     | 0.77                      | 0.63   | 0.63   | 0.63               | 0.62   |
|                                 | Total Suspended Solids             | Mean (mg/l)                                                             | 4.2      | 4.0                       | 3.9    | 3.9    | 3.9                | 3.9    |
|                                 |                                    | Median (mg/l)                                                           | 2.8      | 2.8                       | 2.8    | 2.8    | 2.8                | 2.8    |
|                                 | Copper                             | Mean (mg/l)                                                             | 0.0098   | 0.0100                    | 0.0100 | 0.0100 | 0.0099             | 0.0099 |
|                                 |                                    | Median (mg/l)                                                           | 0.0099   | 0.0099                    | 0.0099 | 0.0099 | 0.0099             | 0.0099 |

Table J-6 (continued)

|                                    |                                                                        |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                   | Water Quality Indicator                                                | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-14                              | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 3        | 3                         | 3      | 3      | 3                  | 3      |
| Nearshore Lake<br>Michigan Area    | (annual)                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                       | 2        | 2                         | 2      | 2      | 2                  | 2      |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                       | 365    | 365    | 365                | 365    |
|                                    | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 2        | 2                         | 2      | 2      | 2                  | 2      |
| (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml) | 100                                                                     | 100      | 100                       | 100    | 100    | 100                |        |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                       | 2        | 2                         | 2      | 2      | 2                  | 2      |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                                    | Dissolved Oxygen                                                       | Mean (mg/l)                                                             | 11.4     | 11.4                      | 11.4   | 11.4   | 11.4               | 11.4   |
|                                    |                                                                        | Median (mg/l)                                                           | 11.6     | 11.7                      | 11.7   | 11.7   | 11.7               | 11.7   |
|                                    |                                                                        | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Phosphorus                                                       | Mean (mg/l)                                                             | 0.007    | 0.007                     | 0.007  | 0.007  | 0.007              | 0.007  |
|                                    |                                                                        | Median (mg/l)                                                           | 0.005    | 0.005                     | 0.005  | 0.005  | 0.005              | 0.005  |
|                                    |                                                                        | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Nitrogen                                                         | Mean (mg/l)                                                             | 0.54     | 0.54                      | 0.53   | 0.53   | 0.53               | 0.52   |
|                                    |                                                                        | Median (mg/l)                                                           | 0.53     | 0.53                      | 0.52   | 0.52   | 0.52               | 0.51   |
|                                    | Total Suspended Solids                                                 | Mean (mg/l)                                                             | 2.4      | 2.4                       | 2.4    | 2.4    | 2.4                | 2.4    |
|                                    |                                                                        | Median (mg/l)                                                           | 2.3      | 2.3                       | 2.3    | 2.3    | 2.3                | 2.3    |
|                                    | Copper                                                                 | Mean (mg/l)                                                             | 0.0099   | 0.0099                    | 0.0099 | 0.0099 | 0.0099             | 0.0099 |
|                                    |                                                                        | Median (mg/l)                                                           | 0.0100   | 0.0100                    | 0.0100 | 0.0100 | 0.0100             | 0.0100 |

|                                    |                                                                        |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                   | Water Quality Indicator                                                | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-15                              | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 5        | 5                         | 4      | 4      | 4                  | 4      |
| Nearshore Lake<br>Michigan Area    | (annual)                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                       | 3        | 3                         | 3      | 3      | 3                  | 3      |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                       | 365    | 365    | 365                | 365    |
|                                    | Fecal Coliform Bacteria                                                | Mean (cells per 100 ml)                                                 | 8        | 7                         | 5      | 6      | 6                  | 6      |
| (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml) | 100                                                                     | 100      | 100                       | 100    | 100    | 100                |        |
|                                    |                                                                        | Geometric mean (cells per 100 ml)                                       | 3        | 3                         | 3      | 3      | 3                  | 3      |
|                                    |                                                                        | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                                    | Dissolved Oxygen                                                       | Mean (mg/l)                                                             | 11.3     | 11.3                      | 11.3   | 11.3   | 11.3               | 11.3   |
|                                    |                                                                        | Median (mg/l)                                                           | 11.6     | 11.6                      | 11.6   | 11.6   | 11.6               | 11.6   |
|                                    |                                                                        | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Phosphorus                                                       | Mean (mg/l)                                                             | 0.009    | 0.009                     | 0.008  | 0.008  | 0.008              | 0.008  |
|                                    |                                                                        | Median (mg/l)                                                           | 0.006    | 0.007                     | 0.006  | 0.006  | 0.006              | 0.006  |
|                                    |                                                                        | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Nitrogen                                                         | Mean (mg/l)                                                             | 0.58     | 0.57                      | 0.55   | 0.55   | 0.55               | 0.55   |
|                                    |                                                                        | Median (mg/l)                                                           | 0.55     | 0.55                      | 0.53   | 0.53   | 0.53               | 0.53   |
|                                    | Total Suspended Solids                                                 | Mean (mg/l)                                                             | 2.7      | 2.6                       | 2.6    | 2.6    | 2.6                | 2.6    |
|                                    |                                                                        | Median (mg/l)                                                           | 2.3      | 2.3                       | 2.3    | 2.3    | 2.3                | 2.3    |
|                                    | Copper                                                                 | Mean (mg/l)                                                             | 0.0099   | 0.0099                    | 0.0099 | 0.0099 | 0.0099             | 0.0099 |
|                                    |                                                                        | Median (mg/l)                                                           | 0.0100   | 0.0100                    | 0.0100 | 0.0100 | 0.0100             | 0.0100 |

Table J-6 (continued)

|                                    |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                   | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-16                              | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 9        | 9                         | 8      | 8      | 8                  | 8      |
| Nearshore Lake<br>Michigan Area    | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                                    | Geometric mean (cells per 100 ml)                                       | 5        | 5                         | 4      | 4      | 4                  | 4      |
|                                    |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                       | 365    | 365    | 365                | 365    |
|                                    | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 5        | 4                         | 4      | 4      | 4                  | 4      |
| (May-September:<br>153 days total) | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                                    | Geometric mean (cells per 100 ml)                                       | 3        | 3                         | 3      | 3      | 3                  | 3      |
|                                    |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                                    | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.3     | 11.3                      | 11.3   | 11.3   | 11.3               | 11.3   |
|                                    |                                    | Median (mg/l)                                                           | 11.6     | 11.6                      | 11.6   | 11.6   | 11.6               | 11.6   |
|                                    |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Phosphorus                   | Mean (mg/l)                                                             | 0.012    | 0.012                     | 0.012  | 0.012  | 0.012              | 0.012  |
|                                    |                                    | Median (mg/l)                                                           | 0.010    | 0.010                     | 0.010  | 0.010  | 0.010              | 0.010  |
|                                    |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Nitrogen                     | Mean (mg/l)                                                             | 0.65     | 0.65                      | 0.60   | 0.60   | 0.60               | 0.60   |
|                                    |                                    | Median (mg/l)                                                           | 0.62     | 0.62                      | 0.57   | 0.57   | 0.57               | 0.57   |
|                                    | Total Suspended Solids             | Mean (mg/l)                                                             | 2.6      | 2.5                       | 2.5    | 2.5    | 2.5                | 2.5    |
|                                    |                                    | Median (mg/l)                                                           | 2.3      | 2.3                       | 2.3    | 2.3    | 2.3                | 2.3    |
|                                    | Copper                             | Mean (mg/l)                                                             | 0.0099   | 0.0100                    | 0.0100 | 0.0100 | 0.0100             | 0.0100 |
|                                    |                                    | Median (mg/l)                                                           | 0.0100   | 0.0100                    | 0.0100 | 0.0100 | 0.0100             | 0.0100 |

|                                 |                                    |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|---------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                | Water Quality Indicator            | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-17                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 21       | 20                        | 20     | 20     | 19                 | 19     |
| Nearshore Lake<br>Michigan Area | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                 |                                    | Geometric mean (cells per 100 ml)                                       | 8        | 7                         | 7      | 7      | 7                  | 7      |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 364      | 365                       | 365    | 365    | 365                | 365    |
|                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 9        | 9                         | 9      | 9      | 8                  | 8      |
|                                 | (May-September:<br>153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                 |                                    | Geometric mean (cells per 100 ml)                                       | 5        | 5                         | 5      | 5      | 5                  | 5      |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                                 | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.2     | 11.2                      | 11.3   | 11.3   | 11.3               | 11.3   |
|                                 |                                    | Median (mg/l)                                                           | 11.4     | 11.4                      | 11.5   | 11.5   | 11.5               | 11.5   |
|                                 |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                 | Total Phosphorus                   | Mean (mg/l)                                                             | 0.020    | 0.019                     | 0.023  | 0.023  | 0.023              | 0.023  |
|                                 |                                    | Median (mg/l)                                                           | 0.016    | 0.016                     | 0.019  | 0.019  | 0.019              | 0.019  |
|                                 |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                 | Total Nitrogen                     | Mean (mg/l)                                                             | 0.97     | 0.96                      | 0.94   | 0.94   | 0.94               | 0.94   |
|                                 |                                    | Median (mg/l)                                                           | 0.88     | 0.88                      | 0.85   | 0.85   | 0.85               | 0.85   |
|                                 | Total Suspended Solids             | Mean (mg/l)                                                             | 2.5      | 2.5                       | 2.4    | 2.4    | 2.4                | 2.4    |
|                                 |                                    | Median (mg/l)                                                           | 2.3      | 2.3                       | 2.2    | 2.2    | 2.2                | 2.2    |
|                                 | Copper                             | Mean (mg/l)                                                             | 0.0102   | 0.0101                    | 0.0101 | 0.0101 | 0.0101             | 0.0102 |
|                                 |                                    | Median (mg/l)                                                           | 0.0101   | 0.0100                    | 0.0100 | 0.0100 | 0.0100             | 0.0100 |

Table J-6 (continued)

|                                    |                         |                                                                         |          |                           |        | Altern | ative <sup>a</sup> |        |
|------------------------------------|-------------------------|-------------------------------------------------------------------------|----------|---------------------------|--------|--------|--------------------|--------|
| Assessment Point                   | Water Quality Indicator | Statistic                                                               | Existing | Original 2020<br>Baseline | B1     | B2     | C1                 | C2     |
| LM-18                              | Fecal Coliform Bacteria | Mean (cells per 100 ml)                                                 | 3        | 3                         | 3      | 3      | 3                  | 3      |
| Nearshore Lake<br>Michigan Area    | (annual)                | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                         | Geometric mean (cells per 100 ml)                                       | 2        | 2                         | 2      | 2      | 2                  | 2      |
|                                    |                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                       | 365    | 365    | 365                | 365    |
|                                    | Fecal Coliform Bacteria | Mean (cells per 100 ml)                                                 | 2        | 2                         | 2      | 2      | 2                  | 2      |
| (May-September:<br>153 days total) |                         | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    |                         | Geometric mean (cells per 100 ml)                                       | 2        | 2                         | 2      | 2      | 2                  | 2      |
|                                    |                         | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                       | 153    | 153    | 153                | 153    |
|                                    | Dissolved Oxygen        | Mean (mg/l)                                                             | 11.4     | 11.4                      | 11.4   | 11.4   | 11.4               | 11.4   |
|                                    |                         | Median (mg/l)                                                           | 11.6     | 11.6                      | 11.6   | 11.6   | 11.6               | 11.6   |
|                                    |                         | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Phosphorus        | Mean (mg/l)                                                             | 0.008    | 0.008                     | 0.008  | 0.008  | 0.008              | 0.008  |
|                                    |                         | Median (mg/l)                                                           | 0.006    | 0.006                     | 0.006  | 0.006  | 0.006              | 0.006  |
|                                    |                         | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                       | 100    | 100    | 100                | 100    |
|                                    | Total Nitrogen          | Mean (mg/l)                                                             | 0.57     | 0.57                      | 0.56   | 0.56   | 0.56               | 0.55   |
|                                    |                         | Median (mg/l)                                                           | 0.56     | 0.56                      | 0.55   | 0.55   | 0.55               | 0.55   |
|                                    | Total Suspended Solids  | Mean (mg/l)                                                             | 2.2      | 2.2                       | 2.2    | 2.2    | 2.2                | 2.2    |
|                                    |                         | Median (mg/l)                                                           | 2.2      | 2.2                       | 2.2    | 2.2    | 2.2                | 2.2    |
|                                    | Copper                  | Mean (mg/l)                                                             | 0.0099   | 0.0099                    | 0.0099 | 0.0099 | 0.0099             | 0.0099 |
|                                    |                         | Median (mg/l)                                                           | 0.0100   | 0.0100                    | 0.0100 | 0.0100 | 0.0100             | 0.0100 |

<sup>&</sup>lt;sup>a</sup>Alternatives B1 and B2 assume full implementation of measures aimed at addressing agricultural runoff as set forth in Wisconsin Administrative Code Chapter NR 151. Alternatives C1 and C2 only assume a level of control that would be expected based on current levels of cost-share funding for such measures. As a result, nonpoint source loads under Alternatives C1 and C2 may, in some cases, be higher than under Alternatives B1 and B2.

Source: HydroQual, Inc., and SEWRPC.

(This page intentionally left blank)

## Appendix K (revised)

## WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS

Table K-1

WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: KINNICKINNIC RIVER WATERSHED

| Water Quality Parameter         | Water Quality Indicator                                   | Statistic <sup>a</sup> | A<br>Original 2020<br>Baseline | B1  | B2  | C1  | C2  |
|---------------------------------|-----------------------------------------------------------|------------------------|--------------------------------|-----|-----|-----|-----|
| Fecal Coliform Bacteria         | Percent compliance with applicable single                 | Mean                   | 68                             | 68  | 68  | 70  | 70  |
| (annual)                        | sample standard                                           | Median                 | 75                             | 75  | 75  | 76  | 76  |
|                                 |                                                           | Minimum                | 52                             | 52  | 52  | 56  | 56  |
|                                 |                                                           | Maximum                | 80                             | 80  | 80  | 80  | 80  |
|                                 | Days of compliance with applicable geometric              | Mean                   | 191                            | 192 | 191 | 206 | 206 |
|                                 | mean standard (365 maximum)                               | Median                 | 250                            | 256 | 254 | 262 | 262 |
|                                 |                                                           | Minimum                | 49                             | 49  | 49  | 69  | 69  |
|                                 |                                                           | Maximum                | 317                            | 317 | 317 | 322 | 322 |
| Fecal Coliform Bacteria         | Percent compliance with applicable single sample standard | Mean                   | 80                             | 80  | 80  | 84  | 84  |
| (May-September: 153 days total) |                                                           | Median                 | 86                             | 86  | 86  | 88  | 88  |
| adyo total)                     |                                                           | Minimum                | 68                             | 68  | 68  | 76  | 76  |
|                                 |                                                           | Maximum                | 89                             | 89  | 89  | 90  | 90  |
|                                 | Days of compliance with applicable geometric              | Mean                   | 104                            | 105 | 105 | 113 | 113 |
|                                 | mean standard (153 maximum)                               | Median                 | 140                            | 145 | 144 | 146 | 146 |
|                                 |                                                           | Minimum                | 34                             | 34  | 34  | 48  | 48  |
|                                 |                                                           | Maximum                | 153                            | 153 | 153 | 153 | 153 |
| Dissolved Oxygen                | Percent compliance with applicable dissolved              | Mean                   | 100                            | 100 | 100 | 100 | 100 |
|                                 | oxygen standard                                           | Median                 | 100                            | 100 | 100 | 100 | 100 |
|                                 |                                                           | Minimum                | 100                            | 100 | 100 | 100 | 100 |
|                                 |                                                           | Maximum                | 100                            | 100 | 100 | 100 | 100 |
| Total Phosphorus                | Percent compliance with recommended                       | Mean                   | 26                             | 26  | 26  | 27  | 27  |
|                                 | phosphorus standard                                       | Median                 | 24                             | 24  | 24  | 28  | 28  |
|                                 |                                                           | Minimum                | 14                             | 14  | 14  | 14  | 14  |
|                                 |                                                           | Maximum                | 33                             | 33  | 33  | 34  | 34  |

Source: Tetra Tech, Inc., and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Based on estimates of compliance at five individual assessment points as presented in Appendix J (revised).

Table K-2 WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: MENOMONEE RIVER WATERSHED

|                                 |                                              |                        |                                |     | Alternative |     |     |
|---------------------------------|----------------------------------------------|------------------------|--------------------------------|-----|-------------|-----|-----|
| Water Quality Parameter         | Water Quality Indicator                      | Statistic <sup>a</sup> | A<br>Original 2020<br>Baseline | B1  | B2          | C1  | C2  |
| Fecal Coliform Bacteria         | Percent compliance with applicable single    | Mean                   | 63                             | 63  | 63          | 64  | 64  |
| (annual)                        | sample standard                              | Median                 | 63                             | 63  | 63          | 64  | 65  |
|                                 |                                              | Minimum                | 49                             | 49  | 49          | 50  | 50  |
|                                 |                                              | Maximum                | 73                             | 73  | 73          | 74  | 74  |
|                                 | Days of compliance with applicable geometric | Mean                   | 174                            | 177 | 177         | 189 | 189 |
|                                 | mean standard (365 maximum)                  | Median                 | 205                            | 206 | 206         | 217 | 217 |
|                                 |                                              | Minimum                | 38                             | 39  | 39          | 49  | 49  |
|                                 |                                              | Maximum                | 270                            | 270 | 270         | 277 | 278 |
| Fecal Coliform Bacteria         | Percent compliance with applicable single    | Mean                   | 79                             | 79  | 79          | 80  | 80  |
| (May-September: 153 days total) | sample standard                              | Median                 | 81                             | 81  | 81          | 82  | 82  |
| dayo total)                     |                                              | Minimum                | 68                             | 68  | 68          | 69  | 69  |
|                                 |                                              | Maximum                | 86                             | 86  | 86          | 88  | 88  |
|                                 | Days of compliance with applicable geometric | Mean                   | 108                            | 110 | 110         | 116 | 116 |
|                                 | mean standard (153 maximum)                  | Median                 | 137                            | 138 | 138         | 141 | 141 |
|                                 |                                              | Minimum                | 26                             | 27  | 27          | 34  | 34  |
|                                 |                                              | Maximum                | 152                            | 152 | 152         | 153 | 153 |
| Dissolved Oxygen                | Percent compliance with applicable dissolved | Mean                   | 99                             | 99  | 99          | 99  | 99  |
|                                 | oxygen standard                              | Median                 | 99                             | 99  | 99          | 99  | 99  |
|                                 |                                              | Minimum                | 98                             | 98  | 98          | 96  | 98  |
|                                 |                                              | Maximum                | 100                            | 100 | 100         | 100 | 100 |
| Total Phosphorus                | Percent compliance with recommended          | Mean                   | 64                             | 64  | 64          | 66  | 65  |
|                                 | phosphorus standard                          | Median                 | 67                             | 67  | 67          | 68  | 68  |
|                                 |                                              | Minimum                | 45                             | 46  | 46          | 46  | 46  |
|                                 |                                              | Maximum                | 80                             | 80  | 80          | 81  | 81  |

Source: Tetra Tech, Inc., and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Based upon estimates of compliance at nine individual assessment points as presented in Appendix J (revised).

Table K-3

WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: MILWAUKEE RIVER WATERSHED

|                                 |                                                           |                        |                                | Alternative |     |     |     |  |
|---------------------------------|-----------------------------------------------------------|------------------------|--------------------------------|-------------|-----|-----|-----|--|
| Water Quality Parameter         | Water Quality Indicator                                   | Statistic <sup>a</sup> | A<br>Original 2020<br>Baseline | B1          | B2  | C1  | C2  |  |
| Fecal Coliform Bacteria         | Percent compliance with applicable single                 | Mean                   | 39                             | 39          | 39  | 40  | 42  |  |
| (annual)                        | sample standard                                           | Median                 | 46                             | 46          | 46  | 47  | 48  |  |
|                                 |                                                           | Minimum                | 1                              | 1           | 1   | 1   | 2   |  |
|                                 |                                                           | Maximum                | 79                             | 79          | 79  | 82  | 82  |  |
|                                 | Days of compliance with applicable geometric              | Mean                   | 99                             | 99          | 99  | 101 | 105 |  |
|                                 | mean standard (365 maximum)                               | Median                 | 95                             | 95          | 95  | 99  | 108 |  |
|                                 |                                                           | Minimum                | 0                              | 0           | 0   | 0   | 0   |  |
|                                 |                                                           | Maximum                | 255                            | 256         | 256 | 266 | 269 |  |
| Fecal Coliform Bacteria         | Percent compliance with applicable single sample standard | Mean                   | 62                             | 62          | 62  | 63  | 65  |  |
| (May-September: 153 days total) |                                                           | Median                 | 76                             | 76          | 76  | 77  | 78  |  |
| udyo totai)                     |                                                           | Minimum                | 3                              | 3           | 3   | 3   | 4   |  |
|                                 |                                                           | Maximum                | 93                             | 93          | 93  | 94  | 94  |  |
|                                 | Days of compliance with applicable geometric              | Mean                   | 73                             | 73          | 73  | 74  | 77  |  |
|                                 | mean standard (153 maximum)                               | Median                 | 84                             | 84          | 84  | 87  | 94  |  |
|                                 |                                                           | Minimum                | 0                              | 0           | 0   | 0   | 0   |  |
|                                 |                                                           | Maximum                | 149                            | 149         | 149 | 150 | 151 |  |
| Dissolved Oxygen                | Percent compliance with applicable dissolved              | Mean                   | 99                             | 99          | 99  | 99  | 99  |  |
|                                 | oxygen standard                                           | Median                 | 100                            | 100         | 100 | 100 | 100 |  |
|                                 |                                                           | Minimum                | 95                             | 96          | 96  | 96  | 94  |  |
|                                 |                                                           | Maximum                | 100                            | 100         | 100 | 100 | 100 |  |
| Total Phosphorus                | Percent compliance with recommended                       | Mean                   | 49                             | 51          | 51  | 50  | 49  |  |
|                                 | phosphorus standard                                       | Median                 | 39                             | 40          | 40  | 39  | 37  |  |
|                                 |                                                           | Minimum                | 22                             | 24          | 24  | 24  | 21  |  |
|                                 |                                                           | Maximum                | 84                             | 88          | 88  | 86  | 86  |  |

<sup>&</sup>lt;sup>a</sup>Based on estimates of compliance at 11 individual assessment points as presented in Appendix J (revised).

Source: Tetra Tech, Inc., and SEWRPC.

Table K-4 WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: OAK CREEK WATERSHED

|                                                 |                                              |                        |                                |     | Alternative |     |     |
|-------------------------------------------------|----------------------------------------------|------------------------|--------------------------------|-----|-------------|-----|-----|
| Water Quality Parameter                         | Water Quality Indicator                      | Statistic <sup>a</sup> | A<br>Original 2020<br>Baseline | B1  | B2          | C1  | C2  |
| Fecal Coliform Bacteria                         | Percent compliance with applicable single    | Mean                   | 51                             | 51  | 51          | 53  | 52  |
| (annual)                                        | annual) sample standard                      |                        | 54                             | 54  | 54          | 55  | 54  |
|                                                 |                                              | Minimum                | 23                             | 24  | 24          | 28  | 28  |
|                                                 |                                              | Maximum                | 64                             | 64  | 64          | 65  | 65  |
|                                                 | Days of compliance with applicable geometric | Mean                   | 37                             | 37  | 37          | 43  | 43  |
|                                                 | mean standard (365 maximum)                  | Median                 | 22                             | 22  | 22          | 26  | 26  |
|                                                 |                                              | Minimum                | 2                              | 2   | 2           | 3   | 3   |
|                                                 |                                              | Maximum                | 86                             | 87  | 87          | 97  | 97  |
| Fecal Coliform Bacteria                         | Percent compliance with applicable single    | Mean                   | 70                             | 70  | 70          | 71  | 71  |
| (May-September: 153 sample standard days total) | Median                                       | 72                     | 72                             | 72  | 73          | 73  |     |
| adyo totaly                                     |                                              | Minimum                | 41                             | 41  | 41          | 47  | 46  |
|                                                 |                                              | Maximum                | 82                             | 82  | 82          | 83  | 82  |
|                                                 | Days of compliance with applicable geometric | Mean                   | 28                             | 28  | 28          | 32  | 32  |
|                                                 | mean standard (153 maximum)                  | Median                 | 18                             | 18  | 18          | 22  | 22  |
|                                                 |                                              | Minimum                | 0                              | 0   | 0           | 0   | 0   |
|                                                 |                                              | Maximum                | 70                             | 70  | 70          | 79  | 79  |
| Dissolved Oxygen                                | Percent compliance with applicable dissolved | Mean                   | 84                             | 84  | 84          | 85  | 85  |
|                                                 | oxygen standard                              | Median                 | 80                             | 80  | 80          | 80  | 80  |
|                                                 |                                              | Minimum                | 72                             | 72  | 72          | 72  | 72  |
|                                                 |                                              | Maximum                | 100                            | 100 | 100         | 100 | 100 |
| Total Phosphorus                                | Percent compliance with recommended          | Mean                   | 78                             | 78  | 78          | 79  | 79  |
| phosphorus standard                             | Median                                       | 79                     | 79                             | 79  | 80          | 80  |     |
|                                                 |                                              | Minimum                | 73                             | 73  | 73          | 75  | 75  |
|                                                 |                                              | Maximum                | 82                             | 82  | 82          | 83  | 83  |

<sup>&</sup>lt;sup>a</sup>Based on estimates of compliance at nine individual assessment points as presented in Appendix J (revised).

Source: Tetra Tech, Inc. and SEWRPC.

Table K-5

WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: ROOT RIVER WATERSHED

|                                                 |                                              | Alternative |                                |     |     |     |     |  |
|-------------------------------------------------|----------------------------------------------|-------------|--------------------------------|-----|-----|-----|-----|--|
| Water Quality Parameter                         | Water Quality Indicator                      | Statistica  | A<br>Original 2020<br>Baseline | B1  | B2  | C1  | C2  |  |
| Fecal Coliform Bacteria                         | Percent compliance with applicable single    | Mean        | 59                             | 59  | 59  | 60  | 60  |  |
| (annual)                                        | sample standard                              | Median      | 61                             | 61  | 61  | 62  | 62  |  |
|                                                 |                                              | Minimum     | 45                             | 46  | 46  | 48  | 48  |  |
|                                                 |                                              | Maximum     | 71                             | 71  | 71  | 72  | 72  |  |
|                                                 | Days of compliance with applicable geometric | Mean        | 51                             | 53  | 53  | 70  | 69  |  |
|                                                 | mean standard (365 maximum)                  | Median      | 39                             | 40  | 40  | 50  | 50  |  |
|                                                 |                                              | Minimum     | 9                              | 9   | 9   | 11  | 11  |  |
|                                                 |                                              | Maximum     | 149                            | 151 | 151 | 194 | 190 |  |
| Fecal Coliform Bacteria                         | Percent compliance with applicable single    | Mean        | 70                             | 70  | 70  | 71  | 72  |  |
| (May-September: 153 sample standard days total) | sample standard                              | Median      | 71                             | 71  | 71  | 72  | 73  |  |
| dayo total)                                     |                                              | Minimum     | 57                             | 57  | 57  | 60  | 60  |  |
|                                                 |                                              | Maximum     | 81                             | 81  | 81  | 82  | 82  |  |
|                                                 | Days of compliance with applicable geometric | Mean        | 28                             | 29  | 29  | 40  | 40  |  |
|                                                 | mean standard (153 maximum)                  | Median      | 18                             | 19  | 19  | 28  | 28  |  |
|                                                 |                                              | Minimum     | 4                              | 5   | 5   | 6   | 6   |  |
|                                                 |                                              | Maximum     | 83                             | 84  | 84  | 109 | 106 |  |
| Dissolved Oxygen                                | Percent compliance with applicable dissolved | Mean        | 97                             | 97  | 97  | 97  | 97  |  |
|                                                 | oxygen standard                              | Median      | 99                             | 99  | 99  | 99  | 99  |  |
|                                                 |                                              | Minimum     | 88                             | 88  | 88  | 88  | 88  |  |
|                                                 |                                              | Maximum     | 100                            | 100 | 100 | 100 | 100 |  |
| Total Phosphorus                                | Percent compliance with recommended          | Mean        | 74                             | 73  | 73  | 75  | 75  |  |
|                                                 | phosphorus standard                          | Median      | 72                             | 74  | 74  | 76  | 76  |  |
|                                                 |                                              | Minimum     | 49                             | 49  | 49  | 50  | 49  |  |
|                                                 |                                              | Maximum     | 88                             | 88  | 88  | 88  | 88  |  |

Source: Tetra Tech, Inc. and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Based on estimates of compliance at 12 different assessment points as presented in Appendix J (revised).

Table K-6 WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: NEARSHORE LAKE MICHIGAN AREA

|                                 |                                              |                        |                                |     | Alternative |     |     |
|---------------------------------|----------------------------------------------|------------------------|--------------------------------|-----|-------------|-----|-----|
| Water Quality Parameter         | Water Quality Indicator                      | Statistic <sup>a</sup> | A<br>Original 2020<br>Baseline | B1  | B2          | C1  | C2  |
| Fecal Coliform Bacteria         | Percent compliance with applicable single    | Mean                   | 95                             | 96  | 96          | 97  | 97  |
| (annual)                        | innual) sample standard                      |                        | 98                             | 99  | 99          | 99  | 99  |
|                                 |                                              | Minimum                | 59                             | 67  | 67          | 70  | 70  |
|                                 |                                              | Maximum                | 100                            | 100 | 100         | 100 | 100 |
|                                 | Days of compliance with applicable geometric | Mean                   | 347                            | 352 | 352         | 352 | 352 |
|                                 | mean standard (365 maximum)                  | Median                 | 364                            | 365 | 365         | 364 | 364 |
|                                 |                                              | Minimum                | 212                            | 239 | 239         | 242 | 242 |
|                                 |                                              | Maximum                | 365                            | 365 | 365         | 365 | 365 |
| Fecal Coliform Bacteria         | Percent compliance with applicable single    | Mean                   | 98                             | 99  | 99          | 99  | 99  |
| (May-September: 153 days total) |                                              | Median                 | 99                             | 99  | 99          | 99  | 99  |
| dayo totaly                     |                                              | Minimum                | 85                             | 89  | 89          | 92  | 92  |
|                                 |                                              | Maximum                | 100                            | 100 | 100         | 100 | 100 |
|                                 | Days of compliance with applicable geometric | Mean                   | 152                            | 153 | 153         | 153 | 153 |
|                                 | mean standard (153 maximum)                  | Median                 | 153                            | 153 | 153         | 153 | 153 |
|                                 |                                              | Minimum                | 142                            | 150 | 150         | 151 | 151 |
|                                 |                                              | Maximum                | 153                            | 153 | 153         | 153 | 153 |
| Dissolved Oxygen                | Percent compliance with applicable dissolved | Mean                   | 100                            | 100 | 100         | 100 | 100 |
|                                 | oxygen standard                              | Median                 | 100                            | 100 | 100         | 100 | 100 |
|                                 |                                              | Minimum                | 99                             | 99  | 99          | 99  | 99  |
|                                 |                                              | Maximum                | 100                            | 100 | 100         | 100 | 100 |
| Total Phosphorus                | Percent compliance with recommended          | Mean                   | 97                             | 97  | 97          | 97  | 97  |
| phosphorus standard             | Median                                       | 100                    | 100                            | 100 | 100         | 100 |     |
|                                 |                                              | Minimum                | 79                             | 79  | 79          | 79  | 81  |
|                                 |                                              | Maximum                | 100                            | 100 | 100         | 100 | 100 |

<sup>&</sup>lt;sup>a</sup>Based on estimates of compliance at 18 individual assessment points as presented in Appendix J (revised).

Source: Brown and Caldwell, Inc.; HydroQual, Inc.; and SEWRPC.

Table K-7

WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS
FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS: OVERALL

|                                                 |                                              |                        | Alternative                    |     |     |      |     |  |
|-------------------------------------------------|----------------------------------------------|------------------------|--------------------------------|-----|-----|------|-----|--|
| Water Quality Parameter                         | Water Quality Indicator                      | Statistic <sup>a</sup> | A<br>Original 2020<br>Baseline | B1  | B2  | C1   | C2  |  |
| Fecal Coliform Bacteria                         | Percent compliance with applicable single    | Mean                   | 66                             | 66  | 66  | 67   | 67  |  |
| (annual) sample standard                        |                                              | Median                 | 64                             | 64  | 64  | 65   | 65  |  |
|                                                 |                                              | Minimum                | 1                              | 1   | 1   | 1    | 2   |  |
|                                                 |                                              | Maximum                | 100                            | 100 | 100 | 100  | 100 |  |
|                                                 | Days of compliance with applicable geometric | Mean                   | 169                            | 171 | 171 | 178  | 179 |  |
|                                                 | mean standard (365 maximum)                  | Median                 | 147                            | 148 | 148 | 156  | 159 |  |
|                                                 |                                              | Minimum                | 0                              | 0   | 0   | 0    | 0   |  |
|                                                 |                                              | Maximum                | 365                            | 365 | 365 | 365  | 365 |  |
| Fecal Coliform Bacteria                         | Percent compliance with applicable single    | Mean                   | 78                             | 79  | 79  | 80   | 80  |  |
| (May-September: 153 sample standard days total) | Median                                       | 80                     | 80                             | 80  | 81  | 82   |     |  |
| dayo totai)                                     |                                              | Minimum                | 3                              | 3   | 3   | 3    | 4   |  |
|                                                 |                                              | Maximum                | 100                            | 100 | 100 | 100  | 100 |  |
|                                                 | Days of compliance with applicable geometric | Mean                   | 88                             | 89  | 88  | 93   | 93  |  |
|                                                 | mean standard (153 maximum)                  | Median                 | 97                             | 97  | 97  | 111  | 111 |  |
|                                                 |                                              | Minimum                | 0                              | 0   | 0   | 0    | 0   |  |
|                                                 |                                              | Maximum                | 153                            | 153 | 153 | 153  | 153 |  |
| Dissolved Oxygen                                | Percent compliance with applicable dissolved | Mean                   | 97                             | 97  | 97  | 97   | 97  |  |
|                                                 | oxygen standard                              | Median                 | 100                            | 100 | 100 | 100  | 100 |  |
|                                                 |                                              | Minimum                | 72                             | 72  | 72  | 72   | 72  |  |
|                                                 |                                              | Maximum                | 100                            | 100 | 100 | 100  | 100 |  |
| Total Phosphorus                                | Percent compliance with recommended          | Mean                   | 71                             | 727 | 72  | 72   | 72  |  |
| phosphorus s                                    | phosphorus standard                          | Median                 | 78                             | 78  | 78  | 8378 | 78  |  |
|                                                 |                                              | Minimum                | 14                             | 14  | 14  | 2414 | 14  |  |
|                                                 |                                              | Maximum                | 100                            | 100 | 100 | 100  | 100 |  |

Source: Brown and Caldwell; HydroQual, Inc.; Tetra Tech, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Based upon estimates of compliance at 64 individual assessment points as presented in Appendix J (revised).

### Appendix L

## COST ANALYSIS FOR CITY OF SOUTH MILWAUKEE WASTEWATER TREATMENT PLANT ALTERNATIVES

Table L-1

COST COMPARISON FOR SOUTH MILWAUKEE WASTEWATER TREATMENT ALTERNATIVES
20-YEAR COST ANALYSIS

| Alternative<br>Number | Description                                                                                                                                                                        | Capital Cost<br>(\$) | Annual<br>Operation<br>and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>Total Cost (\$) | Equivalent<br>Annual Cost<br>(\$) | Difference in Equivalent Annual Cost Relative to Alternative No. 1 (percent) |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------|-------------------------------------|-----------------------------------|------------------------------------------------------------------------------|
| 1                     | Upgrade the existing South Milwaukee WWTP                                                                                                                                          | 4,298,000            | 1,600,000                                              | 22,341,000                          | 1,948,000                         |                                                                              |
| 2                     | Connect the South Milwaukee WWTP to the MMSD South Shore WWTP using PCT with ballasted flocculation at South Shore and not utilizing existing storage at the South Milwaukee plant | 39,289,000           | 459,000                                                | 41,415,000                          | 3,611,000                         | 85                                                                           |
| 3                     | Connect the South Milwaukee WWTP to the MMSD South Shore WWTP using PCT with chemical flocculation at South Shore and not utilizing existing storage at the South Milwaukee plant  | 29,289,000           | 395,000                                                | 31,332,000                          | 2,732,000                         | 40                                                                           |
| 4                     | Connect the South Milwaukee WWTP to the MMSD South Shore WWTP using PCT with ballasted flocculation at South Shore and utilizing existing storage at the South Milwaukee plant     | 25,866,000           | 314,000                                                | 27,231,000                          | 2,374,000                         | 22                                                                           |
| 5                     | Connect the South Milwaukee WWTP to the MMSD South Shore WWTP using PCT with chemical flocculation at South Shore and utilizing existing storage at the South Milwaukee plant      | 19,866,000           | 278,000                                                | 21,249,000                          | 1,853,000                         | -5                                                                           |

NOTES: Capital and O&M costs obtained from HNTB Corporation.

10-year replacement costs and 20-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

Present worth and equivalent annual cost estimates based on 20-year economic life and 6 percent interest rate.

<sup>&</sup>lt;sup>a</sup>This alternative is dependent on a determination that the MMSD South Shore plant has adequate existing peak wet-weather capacity to treat wastewater flows from the South Milwaukee sewerage system.

Table L-2

COST ANALYSIS FOR ALTERNATIVE NO. 1: UPGRADE SOUTH MILWAUKEE WASTEWATER TREATMENT PLANT
50-YEAR COST ANALYSIS

|                                                            |                                               |           | (       | Capital Cost ( | 5)      |         |                                  | Annual                                    | _                            | _                                   |                                   |
|------------------------------------------------------------|-----------------------------------------------|-----------|---------|----------------|---------|---------|----------------------------------|-------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Component                                                  | Assumed<br>Component Life<br>(years)          | Year 1    | Year 10 | Year 20        | Year 30 | Year 40 | Year 50<br>Salvage<br>Value (\$) | Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
| Screening System Modifications                             | 10 (screen)<br>20 (mechanicals)<br>50 (other) | 428,000   | 223,000 | 335,000        | 223,000 | 335,000 | 56,000                           | 0                                         | 0                            | 725,000                             | 46,000                            |
| Influent Flow Measuring and Sampling                       | N/A                                           | 5,000     | 0       | 0              | 0       | 0       | 0                                | 0                                         | 0                            | 5,000                               | 300                               |
| Raw Sewage Pumping Station Addition                        | 20 (mechanicals)<br>50 (other)                | 781,000   | 0       | 426,000        | 0       | 426,000 | 213,000                          | 0                                         | 0                            | 944,000                             | 59,900                            |
| Aeration Basins - Space Planning                           | N/A                                           | 0         |         | 0              |         | 0       | 0                                | 0                                         | 0                            | 0                                   | 0                                 |
| Aeration System - New Blower Building                      | 20 (mechanicals)<br>50 (other)                | 589,000   | 0       | 82,500         | 0       | 82,500  | 41,250                           | 0                                         | 0                            | 621,000                             | 39,400                            |
| Final Clarifiers - Two New Clarifiers,<br>RAS Pump Station | 20 (mechanicals)<br>50 (other)                | 1,750,000 | 0       | 385,600        | 0       | 385,600 | 192,800                          | 0                                         | 0                            | 1,897,000                           | 120,400                           |
| Disinfection Facilities - Replace UV Equipment             | 20                                            | 590,000   | 0       | 590,000        | 0       | 590,000 | 295,000                          | 0                                         | 0                            | 815,000                             | 51,700                            |
| Anaerobic Digestion - Space Planning                       | N/A                                           | 0         | 0       | 0              | 0       | 0       | 0                                | 0                                         | 0                            | 0                                   | 0                                 |
| Digester Gas System - Install Gas<br>Safety Flair          | N/A                                           | 155,000   | 0       | 0              | 0       | 0       | 0                                | 0                                         | 0                            | 155,000                             | 9,800                             |
| Sludge Thickening and Storage - Space<br>Planning          | N/A                                           | 0         | 0       | 0              | 0       | 0       | 0                                | 0                                         | 0                            | 0                                   | 0                                 |
| New Lab and Administration - Space<br>Planning             | N/A                                           | 0         | 0       | 0              | 0       | 0       | 0                                | 0                                         | 0                            | 0                                   | 0                                 |
| WWTP O&M Costs                                             | N/A                                           | 0         | 0       | 0              | 0       | 0       | 0                                | 1,600,000                                 | 25,219,000                   | 25,219,000                          | 1,600,000                         |
| Total Cost                                                 |                                               | 4,298,000 |         |                |         |         |                                  | 1,600,000                                 | 25,219,000                   | 30,381,000                          | 1,927,500                         |

NOTES: Capital costs obtained from May 2006 City of South Milwaukee Wastewater Treatment Facility Site Study by Applied Technologies.

10-, 20- and 40-year replacement costs and 50-year salvage values estimated by SEWRPC.

Capital costs from Applied Technologies report have been adjusted to reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

Applied Technologies report had used a 25 percent allowance for contingencies and a 15 percent allowance for engineering and administration.

Annual O&M cost from Andy Bacalarski (South Milwaukee) in personal communication with Jim Ibach (MMSD), per HNTB 11/30/06 cost estimate table for South Milwaukee.

Present worth and equivalent annual cost estimates based on 50-year economic life and 6 percent interest rate.

Source: Applied Technologies, HNTB, and SEWRPC.

Table L-3

# COST ESTIMATE FOR SOUTH MILWAUKEE CONNECTION TO MMSD SYSTEM ALTERNATIVE NO. 2: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH BALLASTED FLOCCULATION AT SOUTH SHORE AND NOT UTILIZING EXISTING STORAGE AT THE SOUTH MILWAUKEE PLANT 50-YEAR COST ANALYSIS

|                                                          |                                                  |            | Capital Cost (\$) |            |                                  | Annual                                    |                              |                                     |                                   |
|----------------------------------------------------------|--------------------------------------------------|------------|-------------------|------------|----------------------------------|-------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Component                                                | Assumed<br>Component Life<br>(years)             | Year 1     | Year 20           | Year 40    | Year 50<br>Salvage<br>Value (\$) | Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
| 30 MGD Additional Treatment Capacity at South Shore WWTP | 20 (mechanicals)<br>50 (other)                   | 25,000,000 | 17,557,000        | 17,557,000 | 8,778,500                        | 334,000                                   | 5,265,000                    | 36,969,000                          | 2,345,000                         |
| 30 MGD Lift Station                                      | 20 (mechanicals)<br>(60% of total)<br>50 (other) | 8,256,000  | 4,954,000         | 4,954,000  | 2,477,000                        | 125,000 <sup>a</sup>                      | 1,970,000                    | 12,118,000                          | 769,000                           |
| New Force Main                                           | 50                                               | 6,033,000  | 0                 | 0          | 0                                | 0                                         | 0                            | 6,033,000                           | 383,000                           |
| Total Cost                                               |                                                  | 39,289,000 |                   |            |                                  | 459,000                                   | 7,235,000                    | 55,120,000                          | 3,497,000                         |

NOTES: Capital and O&M costs obtained from HNTB Corporation.

20- and 40-year replacement costs and 50-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

Present worth and equivalent annual cost estimates based on 50-year economic life and 6 percent interest rate.

<sup>&</sup>lt;sup>a</sup>Includes force main operation and maintenance cost.

COST ESTIMATE FOR SOUTH MILWAUKEE CONNECTION TO MMSD SYSTEM

## ALTERNATIVE NO. 3: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH CHEMICAL FLOCCULATION AT SOUTH SHORE AND NOT UTILIZING EXISTING STORAGE AT THE SOUTH MILWAUKEE PLANT 50-YEAR COST ANALYSIS

Table L-4

|                                                          |                                                  |            | Capital Cost (\$) |            |                                  | Annual                                    |                              |                                     |                                   |
|----------------------------------------------------------|--------------------------------------------------|------------|-------------------|------------|----------------------------------|-------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Component                                                | Assumed<br>Component Life<br>(years)             | Year 1     | Year 20           | Year 40    | Year 50<br>Salvage<br>Value (\$) | Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
| 30 MGD Additional Treatment Capacity at South Shore WWTP | 20 (mechanicals)<br>50 (other)                   | 15,000,000 | 11,036,000        | 11,036,000 | 5,518,000                        | 270,000                                   | 4,256,000                    | 23,470,000                          | 1,489,000                         |
| 30 MGD Lift Station                                      | 20 (mechanicals)<br>(60% of total)<br>50 (other) | 8,256,000  | 4,954,000         | 4,954,000  | 2,477,000                        | 125,000 <sup>a</sup>                      | 1,970,000                    | 12,118,000                          | 769,000                           |
| New Force Main                                           | 50                                               | 6,033,000  | 0                 | 0          | 0                                | 0                                         | 0                            | 6,033,000                           | 383,000                           |
| Total Cost                                               |                                                  | 29,289,000 |                   |            |                                  | 395,000                                   | 6,226,000                    | 41,621,000                          | 2,641,000                         |

NOTES: Capital and O&M costs obtained from HNTB Corporation.

20- and 40-year replacement costs and 50-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

Present worth and equivalent annual cost estimates based on 50-year economic life and 6 percent interest rate.

<sup>&</sup>lt;sup>a</sup>Includes force main operation and maintenance cost.

Table L-5

# COST ESTIMATE FOR SOUTH MILWAUKEE CONNECTION TO MMSD SYSTEM ALTERNATIVE NO. 4: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH BALLASTED FLOCCULATION AT SOUTH SHORE AND UTILIZING EXISTING STORAGE AT THE SOUTH MILWAUKEE PLANT 50-YEAR PROJECT LIFE

|                                                          |                                                  |            | Capital Cost (\$) |           |                                  | Annual                                    | _                            | _                                   |                                   |
|----------------------------------------------------------|--------------------------------------------------|------------|-------------------|-----------|----------------------------------|-------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Component                                                | Assumed<br>Component Life<br>(years)             | Year 1     | Year 20           | Year 40   | Year 50<br>Salvage<br>Value (\$) | Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
| 17 MGD Additional Treatment Capacity at South Shore WWTP | 20 (mechanicals)<br>50 (other)                   | 14,000,000 | 9,950,000         | 9,950,000 | 4,975,000                        | 189,000                                   | 2,979,000                    | 20,778,000                          | 1,318,000                         |
| 17 MGD Lift Station                                      | 20 (mechanicals)<br>(60% of total)<br>50 (other) | 6,598,000  | 3,959,000         | 3,959,000 | 1,979,500                        | 125,000 <sup>a</sup>                      | 1,970,000                    | 10,080,000                          | 640,000                           |
| New Force Main                                           | 50                                               | 5,268,000  | 0                 | 0         | 0                                | 0                                         | 0                            | 5,268,000                           | 334,000                           |
| Total Cost                                               |                                                  | 25,866,000 |                   |           |                                  | 314,000                                   | 4,949,000                    | 36,126,000                          | 2,292,000                         |

NOTES: Capital and O&M costs obtained from HNTB Corporation.

20- and 40-year replacement costs and 50-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

O&M cost of \$125,000 is for both the lift station and force main.

Present worth and equivalent annual cost estimates based on 50-year economic life and 6 percent interest rate.

<sup>a</sup>Includes force main operation and maintenance cost.

COST ESTIMATE FOR SOUTH MILWAUKEE CONNECTION TO MMSD SYSTEM ALTERNATIVE NO. 5: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH

Table L-6

ALTERNATIVE NO. 5: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH CHEMICAL FLOCCULATION AT SOUTH SHORE AND UTILIZING EXISTING STORAGE AT THE SOUTH MILWAUKEE PLANT 50-YEAR PROJECT LIFE

|                                                          |                                                  |            | Capital Cost (\$) |           |                                  | Annual                                    |                              |                                     |                                   |
|----------------------------------------------------------|--------------------------------------------------|------------|-------------------|-----------|----------------------------------|-------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Component                                                | Assumed<br>Component Life<br>(years)             | Year 1     | Year 20           | Year 40   | Year 50<br>Salvage<br>Value (\$) | Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
| 17 MGD Additional Treatment Capacity at South Shore WWTP | 20 (mechanicals)<br>50 (other)                   | 8,000,000  | 6,254,000         | 6,254,000 | 3,127,000                        | 153,000                                   | 2,412,000                    | 12,800,000                          | 812,000                           |
| 17 MGD Lift Station                                      | 20 (mechanicals)<br>(60% of total)<br>50 (other) | 6,598,000  | 3,959,000         | 3,959,000 | 1,979,500                        | 125,000 <sup>a</sup>                      | 1,970,000                    | 10,080,000                          | 640,000                           |
| New Force Main                                           | 50                                               | 5,268,000  | 0                 | 0         | 0                                | 0                                         | 0                            | 5,268,000                           | 334,000                           |
| Total Cost                                               |                                                  | 19,866,000 |                   |           |                                  | 278,000                                   | 4,382,000                    | 28,148,000                          | 1,786,000                         |

NOTES: Capital and O&M costs obtained from HNTB Corporation.

20- and 40-year replacement costs and 50-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

O&M cost of \$125,000 is for both the lift station and force main.

Present worth and equivalent annual cost estimates based on 50-year economic life and 6 percent interest rate.

<sup>a</sup>Includes force main operation and maintenance cost.

Table L-7

COST ANALYSIS FOR ALTERNATIVE NO. 1: UPGRADE SOUTH MILWAUKEE WASTEWATER TREATMENT PLANT 20-YEAR COST ANALYSIS

|                                                            |                                         | Capital   | Cost (\$) |                                  | Annual                              |                              |                                     |                                   |
|------------------------------------------------------------|-----------------------------------------|-----------|-----------|----------------------------------|-------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Component                                                  | Assumed<br>Component Life<br>(years)    | Year 1    | Year 10   | Year 20<br>Salvage<br>Value (\$) | Operation and Maintenance Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
| Screening System Modifications                             | 10 (screen) 20 (mechanicals) 50 (other) | 428,000   | 223,000   | 55,800                           | 0                                   | 0                            | 535,000                             | 46,700                            |
| Influent Flow Measuring and Sampling                       | N/A                                     | 5,000     | 0         | 0                                | 0                                   | 0                            | 5,000                               | 400                               |
| Raw Sewage Pumping Station Addition                        | 20 (mechanicals)<br>50 (other)          | 781,000   | 0         | 213,000                          | 0                                   | 0                            | 715,000                             | 62,300                            |
| Aeration Basins - Space Planning                           | N/A                                     | 0         |           | 0                                | 0                                   | 0                            | 0                                   | 0                                 |
| Aeration System - New Blower Building                      | 20 (mechanicals)<br>50 (other)          | 589,000   | 0         | 303,900                          | 0                                   | 0                            | 494,000                             | 43,100                            |
| Final Clarifiers - Two New Clarifiers, RAS<br>Pump Station | 20 (mechanicals)<br>50 (other)          | 1,750,000 | 0         | 818,640                          | 0                                   | 0                            | 1,495,000                           | 130,300                           |
| Disinfection Facilities - Replace UV Equipment             | 20                                      | 590,000   | 0         | 0                                | 0                                   | 0                            | 590,000                             | 51,400                            |
| Anaerobic Digestion - Space Planning                       | N/A                                     | 0         | 0         | 0                                | 0                                   | 0                            | 0                                   | 0                                 |
| Digester Gas System - Install Gas Safety Flair             | N/A                                     | 155,000   | 0         | 0                                | 0                                   | 0                            | 155,000                             | 13,500                            |
| Sludge Thickening and Storage - Space Planning             | N/A                                     | 0         | 0         | 0                                | 0                                   | 0                            | 0                                   | 0                                 |
| New Lab and Administration - Space Planning                | N/A                                     | 0         | 0         | 0                                | 0                                   | 0                            | 0                                   | 0                                 |
| WWTP O&M Costs                                             | N/A                                     | 0         | 0         | 0                                | 1,600,000                           | 18,352,000                   | 18,352,000                          | 1,600,000                         |
| Total Cost                                                 |                                         | 4,298,000 |           |                                  | 1,600,000                           | 18,352,000                   | 22,341,000                          | 1,947,700                         |

NOTES: Capital costs obtained from May 2006 City of South Milwaukee Wastewater Treatment Facility Site Study by Applied Technologies.

10- and 20-year replacement costs and salvage values estimated by SEWRPC.

Capital costs from Applied Technologies report have been adjusted to reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering & administration costs, consistent with MMSD 2020 Facilities Plan.

Applied Technologies report had used a 25 percent allowance for contingencies and a 15 percent allowance for engineering and administration.

Annual O&M cost from Andy Bacalarski (South Milwaukee) in personal communication with Jim Ibach (MMSD), per HNTB 11/30/06 cost estimate table for South Milwaukee.

Present worth and equivalent annual cost estimates based on 20-year economic life and 6 percent interest rate.

Source: Applied Technologies, HNTB, and SEWRPC.

COST ESTIMATE FOR SOUTH MILWAUKEE CONNECTION TO MMSD SYSTEM
ALTERNATIVE NO. 2: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH
BALLASTED FLOCCULATION AT SOUTH SHORE AND NOT UTILIZING EXISTING STORAGE AT THE SOUTH MILWAUKEE PLANT
20-YEAR COST ANALYSIS

Table L-8

| Component                                                | Assumed<br>Component<br>Life (years)             | Capital<br>Cost (\$)<br>Year 1 | Year 20<br>Salvage<br>Value (\$) | Annual<br>Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
|----------------------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| 30 MGD Additional Treatment Capacity at South Shore WWTP | 20 (mechanicals)<br>50 (other)                   | 25,000,000                     | 4,465,800                        | 334,000                                             | 3,831,000                    | 27,439,000                          | 2,392,000                         |
| 30 MGD Lift Station                                      | 20 (mechanicals)<br>(60% of total)<br>50 (other) | 8,256,000                      | 1,981,200                        | 125,000 <sup>a</sup>                                | 1,434,000                    | 9,072,000                           | 791,000                           |
| New Force Main                                           | 50                                               | 6,033,000                      | 3,619,800                        | 0                                                   | 0                            | 4,904,000                           | 428,000                           |
| Total Cost                                               |                                                  | 39,289,000                     |                                  | 459,000                                             | 5,265,000                    | 41,415,000                          | 3,611,000                         |

NOTES: Capital and O&M costs obtained from HNTB Corporation.

20-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

Present worth and equivalent annual cost estimates based on 20-year economic life and 6 percent interest rate.

<sup>a</sup>Includes force main operation and maintenance cost.

Table L-9

# COST ESTIMATE FOR SOUTH MILWAUKEE CONNECTION TO MMSD SYSTEM ALTERNATIVE NO. 3: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH CHEMICAL FLOCCULATION AT SOUTH SHORE AND NOT UTILIZING EXISTING STORAGE AT THE SOUTH MILWAUKEE PLANT 20-YEAR COST ANALYSIS

| Component                                                | Assumed<br>Component<br>Life (years)             | Capital<br>Cost (\$)<br>Year 1 | Year 20<br>Salvage<br>Value (\$) | Annual<br>Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
|----------------------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| 30 MGD Additional Treatment Capacity at South Shore WWTP | 20 (mechanicals)<br>50 (other)                   | 15,000,000                     | 2,378,400                        | 270,000                                             | 3,097,000                    | 17,355,000                          | 1,513,000                         |
| 30 MGD Lift Station                                      | 20 (mechanicals)<br>(60% of total)<br>50 (other) | 8,256,000                      | 1,981,200                        | 125,000 <sup>a</sup>                                | 1,434,000                    | 9,072,000                           | 791,000                           |
| New Force Main                                           | 50                                               | 6,033,000                      | 3,619,800                        | 0                                                   | 0                            | 4,905,000                           | 428,000                           |
| Total Cost                                               |                                                  | 29,289,000                     |                                  | 395,000                                             | 4,531,000                    | 31,332,000                          | 2,732,000                         |

NOTES: Capital and O&M costs obtained from HNTB Corporation. 20-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

Present worth and equivalent annual cost estimates based on 20-year economic life and 6 percent interest rate.

<sup>a</sup>Includes force main operation and maintenance cost.

Table L-10

# COST ESTIMATE FOR SOUTH MILWAUKEE CONNECTION TO MMSD SYSTEM ALTERNATIVE NO. 4: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH BALLASTED FLOCCULATION AT SOUTH SHORE AND UTILIZING EXISTING STORAGE AT THE SOUTH MILWAUKEE PLANT 20-YEAR COST ANALYSIS

| Component                                                | Assumed<br>Component<br>Life (years)             | Capital<br>Cost (\$)<br>Year 1 | Year 20<br>Salvage<br>Value (\$) | Annual<br>Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
|----------------------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| 17 MGD Additional Treatment Capacity at South Shore WWTP | 20 (mechanicals)<br>50 (other)                   | 14,000,000                     | 2,430,000                        | 189,000                                             | 2,168,000                    | 15,410,000                          | 1,344,000                         |
| 17 MGD Lift Station                                      | 20 (mechanicals)<br>(60% of total)<br>50 (other) | 6,598,000                      | 1,583,400                        | 125,000 <sup>a</sup>                                | 1,434,000                    | 7,538,000                           | 657,000                           |
| New Force Main                                           | 50                                               | 5,268,000                      | 3,160,800                        | 0                                                   | 0                            | 4,283,000                           | 373,000                           |
| Total Cost                                               |                                                  | 25,866,000                     |                                  | 314,000                                             | 3,602,000                    | 27,231,000                          | 2,374,000                         |

NOTES: Capital and O&M costs obtained from HNTB Corporation.

20-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

Present worth and equivalent annual cost estimates based on 20-year economic life and 6 percent interest rate.

<sup>&</sup>lt;sup>a</sup>Includes force main operation and maintenance cost.

Table L-11

# COST ESTIMATE FOR SOUTH MILWAUKEE CONNECTION TO MMSD SYSTEM ALTERNATIVE NO. 5: CONNECT THE SOUTH MILWAUKEE WWTP TO THE MMSD SOUTH SHORE WWTP USING PCT WITH CHEMICAL FLOCCULATION AT SOUTH SHORE AND UTILIZING EXISTING STORAGE AT THE SOUTH MILWAUKEE PLANT 20-YEAR COST ANALYSIS

| Component                                                | Assumed<br>Component<br>Life (years)             | Capital<br>Cost (\$)<br>Year 1 | Year 20<br>Salvage<br>Value (\$) | Annual<br>Operation and<br>Maintenance<br>Cost (\$) | Present<br>Worth<br>O&M (\$) | Present<br>Worth Total<br>Cost (\$) | Equivalent<br>Annual<br>Cost (\$) |
|----------------------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| 17 MGD Additional Treatment Capacity at South Shore WWTP | 20 (mechanicals)<br>50 (other)                   | 8,000,000                      | 1,047,600                        | 153,000                                             | 1,755,000                    | 9,428,000                           | 822,000                           |
| 17 MGD Lift Station                                      | 20 (mechanicals)<br>(60% of total)<br>50 (other) | 6,598,000                      | 1,583,400                        | 125,000 <sup>a</sup>                                | 1,434,000                    | 7,538,000                           | 657,000                           |
| New Force Main                                           | 50                                               | 5,268,000                      | 3,160,800                        | 0                                                   | 0                            | 4,283,000                           | 374,000                           |
| Total Cost                                               |                                                  | 19,866,000                     |                                  | 278,000                                             | 3,189,000                    | 21,249,000                          | 1,853,000                         |

NOTES: Capital and O&M costs obtained from HNTB Corporation.

20-year salvage values estimated by SEWRPC.

Capital costs reflect a 25 percent allowance for contingencies and a 35 percent allowance for engineering and administration costs, consistent with MMSD 2020 Facilities Plan.

Present worth and equivalent annual cost estimates based on 20-year economic life and 6 percent interest rate.

<sup>&</sup>lt;sup>a</sup>Includes force main operation and maintenance cost.

(This page intentionally left blank)

### Appendix M

## AVERAGE ANNUAL POLLUTANT LOADS FOR RECOMMENDED PLAN AND EXTREME MEASURES CONDITION

Table M-1

AVERAGE ANNUAL POLLUTANT LOADS FOR RECOMMENDED PLAN AND EXTREME MEASURES CONDITION: KINNICKINNIC RIVER WATERSHED

|                           |                     |                                                                                                   |                             | Point S           | Sources           |                       | N                       | lonpoint Source <sup>a</sup> | ,b                      |                         |
|---------------------------|---------------------|---------------------------------------------------------------------------------------------------|-----------------------------|-------------------|-------------------|-----------------------|-------------------------|------------------------------|-------------------------|-------------------------|
| Water Quality Indicator   | Subwatershed        | Condition                                                                                         | Industrial<br>Point Sources | SSOs              | CSOs              | Subtotal              | Urban                   | Rural <sup>C</sup>           | Subtotal                | Total                   |
| Total Phosphorus (pounds) | Kinnickinnic River  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 220<br>220<br>220           | 880<br>900<br>130 | 490<br>320<br>290 | 1,590<br>1,440<br>640 | 2,790<br>2,430<br>2,430 | 20<br>20<br>20               | 2,810<br>2,450<br>2,450 | 4,400<br>3,890<br>3,090 |
|                           |                     | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                             | 220<br><10                  | 130<br>130        | 290<br>290        | 640<br>420            | 2,310<br>1,850          | 20<br>20                     | 2,330<br>1,870          | 2,970<br>2,290          |
|                           | Wilson Park Creek   | Existing Revised 2020 Baseline Revised 2020 Baseline                                              | 320<br>320<br>320           | 10<br>10<br><10   | 0<br>0<br>0       | 330<br>330<br>320     | 3,390<br>3,020<br>3,020 | 50<br>30<br>30               | 3,440<br>3,050<br>3,050 | 3,770<br>3,380<br>3,370 |
|                           |                     | with Five-Year LOP<br>Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 320<br>0                    | <10<br><10        | 0<br>0            | 320<br>0              | 2,860<br>2,240          | 30<br>30                     | 2,890<br>2,270          | 3,210<br>2,270          |
|                           | Holmes Avenue Creek | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 440<br>440<br>440           | 0<br>0<br>0       | 0<br>0<br>0       | 440<br>440<br>440     | 1,000<br>870<br>870     | <10<br><10<br><10            | 1,000<br>870<br>870     | 1,440<br>1,310<br>1,310 |
|                           |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 440<br>290                  | 0                 | 0<br>0            | 440<br>290            | 840<br>710              | <10<br><10                   | 840<br>710              | 1,280<br>1,000          |
|                           | Villa Mann Creek    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0       | 0<br>0<br>0           | 730<br>640<br>640       | <10<br><10<br><10            | 730<br>640<br>640       | 730<br>640<br>640       |
|                           |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0                           | 0                 | 0                 | 0                     | 610<br>490              | <10<br><10                   | 610<br>490              | 610<br>490              |
|                           | Cherokee Park Creek | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0       | 0<br>0<br>0           | 440<br>390<br>390       | <10<br><10<br><10            | 440<br>390<br>390       | 440<br>390<br>390       |
|                           |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0                           | 0                 | 0<br>0            | 0<br>0                | 370<br>290              | <10<br><10                   | 370<br>290              | 370<br>290              |
|                           | Lyons Park Creek    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | <10<br><10<br><10 | 0<br>0<br>0       | <10<br><10<br><10     | 620<br>550<br>550       | <10<br><10<br><10            | 620<br>550<br>550       | 620<br>550<br>550       |
|                           |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0                           | <10<br><10        | 0<br>0            | <10<br><10            | 520<br>420              | <10<br><10                   | 520<br>420              | 520<br>420              |

Table M-1 (continued)

|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                         | Point S     | Sources     |                | N                             | Ionpoint Source <sup>6</sup> | a,b                                 |                                     |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|-------------|-------------|----------------|-------------------------------|------------------------------|-------------------------------------|-------------------------------------|
| Water Quality Indicator                  | Subwatershed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Condition                                                               | Industrial<br>Point Sources             | SSOs        | CSOs        | Subtotal       | Urban                         | Rural <sup>C</sup>           | Subtotal                            | Total                               |
| Total Phosphorus (pounds)<br>(continued) | Indicator   Subwatershed   Condition   Point Sources   SSOs   CSOs   Subtotal   Urban   Rural   Nural   Nura | 890<br>780<br>780<br>750<br>630                                         | 1,350<br>1,240<br>1,240<br>1,210<br>630 |             |             |                |                               |                              |                                     |                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | 0                                       | <10         |             | 210            | 030                           | <10                          | 030                                 | 030                                 |
|                                          | Watershed Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Revised 2020 Baseline<br>Revised 2020 Baseline<br>with Five-Year LOP    | 1,440<br>1,440                          | 910<br>130  | 320<br>290  | 2,670<br>1,860 | 8,680<br>8,680                | 50<br>50                     | 9,930<br>8,730<br>8,730             | 12,750<br>11,400<br>10,590          |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extreme Measures                                                        |                                         |             |             |                |                               |                              | 8,310<br>6,680                      | 10,170<br>7,390                     |
|                                          | Kinnickinnic River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Revised 2020 Baseline<br>Revised 2020 Baseline                          | 2,230                                   | 51,800      | 28,200      | 82,230         | 1,086,960                     | 2,920                        | 1,403,480<br>1,089,880<br>1,089,880 | 1,498,800<br>1,172,110<br>1,124,710 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extreme Measures                                                        | ,                                       | ,           | - /         |                |                               | ,                            | 1,085,700<br>1,085,700              | 1,120,530<br>1,120,530              |
|                                          | Wilson Park Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Revised 2020 Baseline<br>Revised 2020 Baseline<br>with Five-Year LOP    | 6,300<br>6,300                          | 350<br>180  | 0           | 6,650<br>6,480 | 1,339,190<br>1,339,190        | 3,460<br>3,460               | 1,706,110<br>1,342,650<br>1,342,650 | 1,713,260<br>1,349,300<br>1,349,130 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extreme Measures                                                        |                                         |             |             |                |                               |                              | 1,356,240<br>1,356,240              | 1,362,720<br>1,362,720              |
|                                          | Holmes Avenue Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Revised 2020 Baseline<br>Revised 2020 Baseline                          | 800                                     | 0           | 0           | 800            | 495,420                       | 410                          | 643,540<br>495,830<br>495,830       | 644,340<br>496,630<br>496,630       |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extreme Measures                                                        |                                         |             |             |                |                               |                              | 496,950<br>496,950                  | 497,750<br>497,750                  |
|                                          | Villa Mann Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Revised 2020 Baseline<br>Revised 2020 Baseline                          | 0                                       | 0           | 0           | 0              | 291,250                       | 120                          | 380,440<br>291,370<br>291,370       | 380,440<br>291,370<br>291,370       |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extreme Measures                                                        | I                                       |             | -           |                |                               |                              | 291,640<br>291,640                  | 291,640<br>291,640                  |
|                                          | Cherokee Park Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP | 0<br>0<br>0                             | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0    | 216,410<br>170,250<br>170,250 | 600<br>490<br>490            | 217,010<br>170,740<br>170,740       | 217,010<br>170,740<br>170,740       |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>   | 0                                       | 0           | 0           | 0              | 171,160<br>171,160            | 490<br>490                   | 171,650<br>171,650                  | 171,650<br>171,650                  |

|                                              |                      |                                                                                           |                             | Point S                    | Sources                    |                                | ٨                                        | Ionpoint Source <sup>a</sup> | ,b                                       |                                          |
|----------------------------------------------|----------------------|-------------------------------------------------------------------------------------------|-----------------------------|----------------------------|----------------------------|--------------------------------|------------------------------------------|------------------------------|------------------------------------------|------------------------------------------|
| Water Quality Indicator                      | Subwatershed         | Condition                                                                                 | Industrial<br>Point Sources | SSOs                       | CSOs                       | Subtotal                       | Urban                                    | Rural <sup>C</sup>           | Subtotal                                 | Total                                    |
| Total Suspended Solids (pounds) (continued)  | Lyons Park Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0<br>0<br>0                 | 30<br>30<br>30<br>30       | 0<br>0<br>0                | 30<br>30<br>30<br>30           | 283,620<br>225,780<br>225,780<br>224,790 | 250<br>210<br>210<br>210     | 283,870<br>225,990<br>225,990<br>225,000 | 283,900<br>226,020<br>226,020<br>225,030 |
|                                              |                      | Extreme Measures<br>Conditiond                                                            | 0                           | 30                         | 0                          | 30                             | 224,790                                  | 210                          | 225,000                                  | 225,030                                  |
|                                              | S. 43rd Street Ditch | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline<br>with Five-Year LOP          | 3,080<br>3,080<br>3,080     | 110<br>110<br>110          | 0<br>0<br>0                | 3,190<br>3,190<br>3,190        | 557,400<br>418,760<br>418,760            | 430<br>250<br>250            | 557,830<br>419,010<br>419,010            | 561,020<br>422,200<br>422,200            |
|                                              |                      | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 3,080<br>3,080              | 110<br>110                 | 0                          | 3,190<br>3,190                 | 422,420<br>422,420                       | 250<br>250                   | 422,670<br>422,670                       | 425,860<br>425,860                       |
|                                              | Watershed Total      | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline<br>with Five-Year LOP          | 12,410<br>12,410<br>12,410  | 51,270<br>52,290<br>7,550  | 42,810<br>28,200<br>25,370 | 106,490<br>92,900<br>45,330    | 5,162,520<br>4,027,610<br>4,027,610      | 29,760<br>7,860<br>7,860     | 5,192,280<br>4,035,470<br>4,035,470      | 5,298,770<br>4,128,370<br>4,080,800      |
|                                              |                      | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 12,410<br>12,410            | 7,550<br>7,550             | 25,370<br>25,370           | 45,330<br>45,330               | 4,041,990<br>4,041,990                   | 7,860<br>7,860               | 4,049,850<br>4,049,850                   | 4,095,180<br>4,095,180                   |
| Fecal Coliform Bacteria (trillions of cells) | Kinnickinnic River   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 959.33<br>988.40<br>138.01 | 554.79<br>365.50<br>328.84 | 1,514.12<br>1,353.90<br>466.85 | 1,031.94<br>856.53<br>856.53             | 0.06<br>0.06<br>0.06         | 1,032.00<br>856.59<br>856.59             | 2,546.12<br>2,210.49<br>1,323.44         |
|                                              |                      | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0.00<br>0.00                | 138.01<br>138.01           | 328.84<br>328.84           | 466.85<br>466.85               | 567.22<br>287.84                         | 0.06<br>0.06                 | 567.28<br>287.90                         | 1,034.13<br>754.75                       |
|                                              | Wilson Park Creek    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 16.14<br>6.60<br>3.51      | 0.00<br>0.00<br>0.00       | 16.14<br>6.60<br>3.51          | 996.39<br>852.08<br>852.08               | 0.20<br>0.09<br>0.09         | 996.59<br>852.17<br>852.17               | 1,012.73<br>858.77<br>855.68             |
|                                              |                      | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0.00<br>0.00                | 3.51<br>3.51               | 0.00<br>0.00               | 3.51<br>3.51                   | 550.22<br>279.21                         | 0.09<br>0.09                 | 550.31<br>279.30                         | 553.82<br>282.81                         |
|                                              | Holmes Avenue Creek  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00           | 361.85<br>297.53<br>297.53               | 0.01<br>0.01<br>0.01         | 361.86<br>297.54<br>297.54               | 361.86<br>297.54<br>297.54               |
|                                              |                      | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0.00<br>0.00                | 0.00<br>0.00               | 0.00<br>0.00               | 0.00<br>0.00                   | 198.53<br>100.75                         | 0.01<br>0.01                 | 198.54<br>100.76                         | 198.54<br>100.76                         |
|                                              | Villa Mann Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00           | 247.97<br>204.49<br>204.49               | 0.01<br>0.00<br>0.00         | 247.98<br>204.49<br>204.49               | 247.98<br>204.49<br>204.49               |
|                                              |                      | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0.00<br>0.00                | 0.00<br>0.00               | 0.00<br>0.00               | 0.00<br>0.00                   | 135.92<br>68.97                          | 0.00<br>0.00                 | 135.92<br>68.97                          | 135.92<br>68.97                          |

Table M-1 (continued)

|                                                             |                      |                                                                                           |                             | Point S                      | Sources                    |                                | N                                   | Ionpoint Source <sup>a</sup> | ,b                                  |                                      |
|-------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------|-----------------------------|------------------------------|----------------------------|--------------------------------|-------------------------------------|------------------------------|-------------------------------------|--------------------------------------|
| Water Quality Indicator                                     | Subwatershed         | Condition                                                                                 | Industrial<br>Point Sources | SSOs                         | CSOs                       | Subtotal                       | Urban                               | Rural <sup>C</sup>           | Subtotal                            | Total                                |
| Fecal Coliform Bacteria<br>(trillions of cells) (continued) | Cherokee Park Creek  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00           | 145.02<br>121.72<br>121.72<br>81.03 | 0.01<br>0.01<br>0.01         | 145.03<br>121.73<br>121.73<br>81.04 | 145.03<br>121.73<br>121.73<br>81.04  |
|                                                             |                      | Extreme Measures<br>Condition <sup>d</sup>                                                | 0.00                        | 0.00                         | 0.00                       | 0.00                           | 41.12                               | 0.01                         | 41.13                               | 41.13                                |
|                                                             | Lyons Park Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0.00<br>0.00<br>0.00        | 0.52<br>0.52<br>0.52<br>0.52 | 0.00<br>0.00<br>0.00       | 0.52<br>0.52<br>0.52<br>0.52   | 247.09<br>208.53<br>208.53          | 0.01<br>0.00<br>0.00         | 247.10<br>208.53<br>208.53          | 247.62<br>209.05<br>209.05<br>138.40 |
|                                                             |                      | Extreme Measures Conditiond                                                               | 0.00                        | 0.52                         | 0.00                       | 0.52                           | 69.97                               | 0.00                         | 69.97                               | 70.49                                |
|                                                             | S. 43rd Street Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 2.07<br>2.07<br>2.07         | 0.00<br>0.00<br>0.00       | 2.07<br>2.07<br>2.07           | 327.94<br>270.38<br>270.38          | 0.01<br>0.01<br>0.01         | 327.95<br>270.39<br>270.39          | 330.02<br>272.46<br>272.46           |
|                                                             |                      | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0.00<br>0.00                | 2.07<br>2.07                 | 0.00<br>0.00               | 2.07<br>2.07                   | 180.06<br>91.38                     | 0.01<br>0.01                 | 180.07<br>91.39                     | 182.14<br>93.46                      |
|                                                             | Watershed Total      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 978.06<br>997.59<br>144.11   | 554.79<br>365.50<br>328.84 | 1,532.85<br>1,363.09<br>472.95 | 3,358.20<br>2,811.26<br>2,811.26    | 0.31<br>0.18<br>0.18         | 3,358.51<br>2,811.44<br>2,811.44    | 4,891.36<br>4,174.53<br>3,284.39     |
|                                                             |                      | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0.00<br>0.00                | 144.11<br>144.11             | 328.84<br>328.84           | 472.95<br>472.95               | 1,850.86<br>939.24                  | 0.18<br>0.18                 | 1,851.04<br>939.42                  | 2,323.99<br>1,412.37                 |
| Total Nitrogen (pounds)                                     | Kinnickinnic River   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 3,800<br>3,800<br>3,800     | 1,840<br>1,890<br>260        | 2,290<br>1,510<br>1,360    | 7,930<br>7,200<br>5,420        | 17,730<br>15,830<br>15,830          | 220<br>220<br>220            | 17,950<br>16,050<br>16,050          | 25,880<br>23,250<br>21,470           |
|                                                             |                      | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 3,800<br>3,800              | 260<br>260                   | 1,360<br>1,360             | 5,420<br>5,420                 | 15,850<br>15,850                    | 220<br>220                   | 16,070<br>16,070                    | 21,490<br>21,490                     |
|                                                             | Wilson Park Creek    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 980<br>980<br>980           | 30<br>10<br>10               | 0<br>0<br>0                | 1,010<br>990<br>990            | 21,270<br>19,500<br>19,500          | 980<br>290<br>290            | 22,250<br>19,790<br>19,790          | 23,260<br>20,780<br>20,780           |
|                                                             |                      | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 980<br>980                  | 10<br>10                     | 0<br>0                     | 990<br>990                     | 19,490<br>19,490                    | 290<br>290                   | 19,780<br>19,780                    | 20,770<br>20,770                     |
|                                                             | Holmes Avenue Creek  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 1,460<br>1,460<br>1,460     | 0<br>0<br>0                  | 0<br>0<br>0                | 1,460<br>1,460<br>1,460        | 6,090<br>5,440<br>5,440             | 50<br>40<br>40               | 6,140<br>5,480<br>5,480             | 7,600<br>6,940<br>6,940              |
|                                                             |                      | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 1,460<br>1,460              | 0                            | 0                          | 1,460<br>1,460                 | 5,440<br>5,440                      | 40<br>40                     | 5,480<br>5,480                      | 6,940<br>6,940                       |

|                                     |                      |                                                                                                                                                                 |                                           | Point S                                     | Sources                                   |                                             | N                                                   | Ionpoint Source <sup>a</sup>              | ,b                                                  |                                                     |
|-------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Water Quality Indicator             | Subwatershed         | Condition                                                                                                                                                       | Industrial<br>Point Sources               | SSOs                                        | CSOs                                      | Subtotal                                    | Urban                                               | Rural <sup>C</sup>                        | Subtotal                                            | Total                                               |
| Total Nitrogen (pounds) (continued) | Villa Mann Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                           | 0<br>0<br>0                               | 0<br>0<br>0                                 | 0<br>0<br>0                               | 0<br>0<br>0                                 | 4,480<br>4,000<br>4,000<br>4,000<br>4,000           | 20<br>10<br>10<br>10                      | 4,500<br>4,010<br>4,010<br>4,010<br>4,010           | 4,500<br>4,010<br>4,010<br>4,010<br>4,010           |
|                                     | Cherokee Park Creek  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                           | 0<br>0<br>0                               | 0<br>0<br>0                                 | 0<br>0<br>0                               | 0<br>0<br>0                                 | 2,750<br>2,490<br>2,490<br>2,490<br>2,490           | 50<br>40<br>40<br>40<br>40                | 2,800<br>2,530<br>2,530<br>2,530<br>2,530<br>2,530  | 2,800<br>2,530<br>2,530<br>2,530<br>2,530           |
|                                     | Lyons Park Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                           | 0<br>0<br>0                               | <10<br><10<br><10<br><10                    | 0<br>0<br>0                               | <10<br><10<br><10<br><10<br><10             | 3,980<br>3,600<br>3,600<br>3,610<br>3,610           | 20<br>20<br>20<br>20<br>20<br>20          | 4,000<br>3,620<br>3,620<br>3,630<br>3,630           | 4,000<br>3,620<br>3,620<br>3,630<br>3,630           |
|                                     | S. 43rd Street Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                           | 490<br>490<br>490<br>490<br>490           | <10<br><10<br><10<br><10                    | 0<br>0<br>0<br>0                          | 490<br>490<br>490<br>490<br>490             | 5,570<br>4,980<br>4,980<br>4,990<br>4,990           | 30<br>20<br>20<br>20<br>20<br>20          | 5,600<br>5,000<br>5,000<br>5,010<br>5,010           | 6,090<br>5,490<br>5,490<br>5,500<br>5,500           |
|                                     | Watershed Total      | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline<br>with Five-Year LOP<br>Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 6,730<br>6,730<br>6,730<br>6,730<br>6,730 | 1,870<br>1,900<br>270<br>270<br>270         | 2,290<br>1,510<br>1,360<br>1,360<br>1,360 | 10,890<br>10,140<br>8,360<br>8,360<br>8,360 | 61,870<br>55,840<br>55,840<br>55,870<br>55,870      | 1,370<br>640<br>640<br>640<br>640         | 63,240<br>56,480<br>56,480<br>56,510<br>56,510      | 74,130<br>66,620<br>64,840<br>64,870<br>64,870      |
| Biochemical Oxygen Demand (pounds)  | Kinnickinnic River   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                           | 3,680<br>3,680<br>3,680<br>3,680<br>3,680 | 12,370<br>12,750<br>1,780<br>1,780<br>1,780 | 6,880<br>4,530<br>4,080<br>4,080<br>4,080 | 22,930<br>20,960<br>9,540<br>9,540<br>9,540 | 80,050<br>66,440<br>66,440<br>66,210<br>66,210      | 740<br>750<br>750<br>750<br>750<br>750    | 80,790<br>67,190<br>67,190<br>66,960<br>66,960      | 103,720<br>88,150<br>76,730<br>76,500<br>76,500     |
|                                     | Wilson Park Creek    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                           | 5,630<br>5,630<br>5,630<br>5,630<br>5,630 | 210<br>90<br>50<br>50<br>50                 | 0<br>0<br>0<br>0                          | 5,840<br>5,720<br>5,680<br>5,680<br>5,680   | 165,660<br>154,960<br>154,960<br>154,300<br>154,300 | 1,900<br>1,240<br>1,240<br>1,240<br>1,240 | 167,560<br>156,200<br>156,200<br>155,540<br>155,540 | 173,400<br>161,920<br>161,880<br>161,220<br>161,220 |

Table M-1 (continued)

|                                                |                      |                                                                                                                                                                      |                                                    | Point S                                     | ources                                    |                                                | N                                                   | Ionpoint Source <sup>a</sup>                       | ,b                                                  |                                                     |
|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Water Quality Indicator                        | Subwatershed         | Condition                                                                                                                                                            | Industrial<br>Point Sources                        | SSOs                                        | CSOs                                      | Subtotal                                       | Urban                                               | Rural <sup>C</sup>                                 | Subtotal                                            | Total                                               |
| Biochemical Oxygen Demand (pounds) (continued) | Holmes Avenue Creek  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures                                                           | 1,120<br>1,120<br>1,120<br>1,120<br>1,120          | 0<br>0<br>0                                 | 0<br>0<br>0                               | 1,120<br>1,120<br>1,120<br>1,120<br>1,120      | 44,320<br>39,100<br>39,100<br>39,010<br>39,010      | 160<br>120<br>120<br>120<br>120                    | 44,480<br>39,220<br>39,220<br>39,130<br>39,130      | 45,600<br>40,340<br>40,340<br>40,250<br>40,250      |
|                                                | Villa Mann Creek     | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures                        | 0<br>0<br>0<br>0                                   | 0<br>0<br>0                                 | 0<br>0<br>0                               | 0<br>0<br>0                                    | 20,320<br>17,000<br>17,000<br>16,910<br>16,910      | 80<br>40<br>40<br>40<br>40                         | 20,400<br>17,040<br>17,040<br>16,950<br>16,950      | 20,400<br>17,040<br>17,040<br>16,950<br>16,950      |
|                                                | Cherokee Park Creek  | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup> | 0 0 0 0                                            | 0 0 0 0                                     | 0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                               | 11,980<br>10,310<br>10,310<br>10,240<br>10,240      | 140<br>110<br>110<br>110<br>110                    | 12,120<br>10,420<br>10,420<br>10,420<br>10,350      | 12,120<br>10,420<br>10,420<br>10,350<br>10,350      |
|                                                | Lyons Park Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 0<br>0<br>0                                        | 10<br>10<br>10<br>10                        | 0<br>0<br>0                               | 10<br>10<br>10<br>10                           | 16,880<br>14,360<br>14,360<br>14,290<br>14,290      | 60<br>50<br>50<br>50                               | 16,940<br>14,410<br>14,410<br>14,340<br>14,340      | 16,950<br>14,420<br>14,420<br>14,350<br>14,350      |
|                                                | S. 43rd Street Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 5,420<br>5,420<br>5,420<br>5,420<br>5,420<br>5,420 | 30<br>30<br>30<br>30<br>30                  | 0<br>0<br>0                               | 5,450<br>5,450<br>5,450<br>5,450<br>5,450      | 30,730<br>25,440<br>25,440<br>25,350<br>25,350      | 130<br>70<br>70<br>70<br>70                        | 30,860<br>25,510<br>25,510<br>25,420<br>25,420      | 36,310<br>30,960<br>30,960<br>30,870<br>30,870      |
|                                                | Watershed Total      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Condition <sup>d</sup>                                    | 15,850<br>15,850<br>15,850<br>15,850<br>15,850     | 12,620<br>12,880<br>1,870<br>1,870<br>1,870 | 6,880<br>4,530<br>4,080<br>4,080<br>4,080 | 35,350<br>33,260<br>21,800<br>21,800<br>21,800 | 369,940<br>327,610<br>327,610<br>326,310<br>326,310 | 3,210<br>2,380<br>2,380<br>2,380<br>2,380<br>2,380 | 373,150<br>329,990<br>329,990<br>328,690<br>328,690 | 408,500<br>363,250<br>351,790<br>350,490<br>350,490 |
| Copper (pounds)                                | Kinnickinnic River   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Condition <sup>d</sup>                                    | 7<br>7<br>7<br>7<br>7                              | 8<br>8<br>1<br>1                            | 15<br>10<br>9<br>9                        | 30<br>25<br>17<br>17<br>17                     | 146<br>118<br>118<br>118<br>118                     | <1<br><1<br><1<br><1<br><1                         | 146<br>118<br>118<br>118<br>118                     | 176<br>143<br>135<br>135<br>135                     |

|                             |                      |                                                                                                                       |                             | Point S                    | Sources            |                            | N                                      | Ionpoint Source <sup>a</sup> | ,b                                     |                                 |
|-----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|--------------------|----------------------------|----------------------------------------|------------------------------|----------------------------------------|---------------------------------|
| Water Quality Indicator     | Subwatershed         | Condition                                                                                                             | Industrial<br>Point Sources | SSOs                       | CSOs               | Subtotal                   | Urban                                  | Rural <sup>C</sup>           | Subtotal                               | Total                           |
| Copper (pounds) (continued) | Wilson Park Creek    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0                 | <1<br><1<br><1<br><1       | 0<br>0<br>0        | <1<br><1<br><1<br><1<br><1 | 174<br>147<br>147<br>147<br>147        | 1<br><1<br><1<br><1          | 175<br>147<br>147<br>147<br>147        | 175<br>147<br>147<br>147<br>147 |
|                             | Holmes Avenue Creek  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0                 | 0<br>0<br>0                | 0<br>0<br>0        | 0<br>0<br>0                | 59<br>48<br>48<br>48                   | <1<br><1<br><1<br><1         | 59<br>48<br>48<br>48                   | 59<br>48<br>48<br>48<br>48      |
|                             | Villa Mann Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0<br>0            | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0   | 0<br>0<br>0<br>0           | 37<br>30<br>30<br>30<br>30             | <1<br><1<br><1<br><1<br><1   | 37<br>30<br>30<br>30<br>30             | 37<br>30<br>30<br>30<br>30      |
|                             | Cherokee Park Creek  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0                 | 0<br>0<br>0                | 0<br>0<br>0        | 0<br>0<br>0                | 22<br>18<br>18<br>18                   | <1<br><1<br><1<br><1         | 22<br>18<br>18<br>18                   | 22<br>18<br>18<br>18            |
|                             | Lyons Park Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0                 | <1<br><1<br><1<br><1<br><1 | 0<br>0<br>0        | <1<br><1<br><1<br><1<br><1 | 30<br>25<br>25<br>25<br>25<br>25       | <1<br><1<br><1<br><1         | 30<br>25<br>25<br>25<br>25<br>25       | 30<br>25<br>25<br>25<br>25      |
|                             | S. 43rd Street Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0                 | <1<br><1<br><1<br><1       | 0<br>0<br>0        | <1<br><1<br><1<br><1<br><1 | 57<br>46<br>46<br>46<br>46             | <1<br><1<br><1<br><1         | 57<br>46<br>46<br>46<br>46             | 57<br>46<br>46<br>46<br>46      |
|                             | Watershed Total      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 7<br>7<br>7<br>7<br>7       | 8<br>8<br>1<br>1           | 15<br>10<br>9<br>9 | 30<br>25<br>17<br>17<br>17 | 525<br>432<br>432<br>432<br>432<br>432 | 1<br><1<br><1<br><1<br><1    | 526<br>432<br>432<br>432<br>432<br>432 | 556<br>457<br>449<br>449<br>449 |

#### **Table M-1 Footnotes**

<sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

bIn certain limited cases, relatively minor anomalies in nonpoint source pollutant loads may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a relatively slight increase load under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in pollutant load occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters established under the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively small anomalies in the comparative results.

<sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominately urban setting.

<sup>d</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

Table M-2

AVERAGE ANNUAL POLLUTANT LOADS FOR RECOMMENDED PLAN AND EXTREME MEASURES CONDITION: MENOMONEE RIVER WATERSHED

|                           |                        |                                                                                                                                                                      |                                            | Point So                        | ources                                    |                                            | N                                         | onpoint Source <sup>8</sup>            | a,b                                       |                                               |
|---------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------------|
| Water Quality Indicator   | Subwatershed           | Condition                                                                                                                                                            | Industrial<br>Point Sources                | SSOs                            | CSOs                                      | Subtotal                                   | Urban                                     | Rural <sup>C</sup>                     | Subtotal                                  | Total                                         |
| Total Phosphorus (pounds) | Butler Ditch           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                                                              | 0<br>0<br>0                                | 10<br>10<br>10                  | 0<br>0<br>0                               | 10<br>10<br>10                             | 1,490<br>1,270<br>1,270                   | 50<br>40<br>40                         | 1,540<br>1,310<br>1,310                   | 1,550<br>1,320<br>1,320                       |
|                           |                        | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                                                                          | 0<br>0                                     | 10<br>10                        | 0<br>0                                    | 10<br>10                                   | 1,240<br>1,010                            | 40<br>40                               | 1,280<br>1,050                            | 1,290<br>1,060                                |
|                           | Honey Creek            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 200<br>200<br>200<br>200<br>200<br>80      | 10<br>10<br>10<br>10            | 0<br>0<br>0                               | 210<br>210<br>210<br>210<br>90             | 3,900<br>3,430<br>3,430<br>3,270<br>2,700 | 20<br>10<br>10<br>10                   | 3,920<br>3,440<br>3,440<br>3,280<br>2,710 | 4,130<br>3,650<br>3,650<br>3,490<br>2,800     |
|                           | Lily Creek             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures                                                           | 0<br>0<br>0                                | 0<br>0<br>0                     | 0<br>0<br>0                               | 0<br>0<br>0                                | 1,200<br>1,110<br>1,110<br>1,040<br>890   | 90<br>40<br>40<br>40<br>40             | 1,290<br>1,150<br>1,150<br>1,080<br>930   | 1,290<br>1,150<br>1,150<br>1,080<br>930       |
|                           | Little Menomonee Creek | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures                        | 0<br>0<br>0                                | 0<br>0<br>0                     | 0<br>0<br>0                               | 0<br>0<br>0                                | 80<br>70<br>70<br>70<br>70                | 350<br>310<br>310<br>270<br>230        | 430<br>380<br>380<br>340<br>300           | 430<br>380<br>380<br>340<br>300               |
|                           | Little Menomonee River | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup> | 360<br>360<br>360<br>360<br>70             | <10<br><10<br><10<br><10<br><10 | 0<br>0<br>0                               | 360<br>360<br>360<br>360<br>70             | 3,300<br>3,020<br>3,020<br>2,850<br>2,550 | 840<br>720<br>720<br>720<br>660<br>550 | 4,140<br>3,740<br>3,740<br>3,510<br>3,100 | 4,500<br>4,100<br>4,100<br>3,870<br>3,170     |
|                           | Lower Menomonee River  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 15,650<br>3,910<br>3,910<br>3,910<br>2,920 | 550<br>320<br>90<br>90<br>90    | 1,880<br>1,380<br>1,130<br>1,130<br>1,130 | 18,080<br>5,610<br>5,130<br>5,130<br>4,140 | 7,180<br>6,280<br>6,280<br>5,980<br>5,030 | 70<br>70<br>70<br>70<br>70             | 7,250<br>6,350<br>6,350<br>6,050<br>5,100 | 25,330<br>11,960<br>11,480<br>11,180<br>9,240 |

|                                       |                                 |                                                                                           |                             | Point So          | ources                  |                          | N                          | onpoint Source <sup>8</sup> | a,b                        |                            |
|---------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|-------------------|-------------------------|--------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|
| Water Quality Indicator               | Subwatershed                    | Condition                                                                                 | Industrial<br>Point Sources | SSOs              | CSOs                    | Subtotal                 | Urban                      | Rural <sup>C</sup>          | Subtotal                   | Total                      |
| Total Phosphorus (pounds) (continued) | North Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0              | 50<br>40<br>40<br>50       | 220<br>230<br>230<br>180    | 270<br>270<br>270<br>230   | 270<br>270<br>270<br>230   |
|                                       |                                 | Extreme Measures<br>Condition <sup>d</sup>                                                | 0                           | 0                 | 0                       | 0                        | 40                         | 170                         | 210                        | 210                        |
|                                       | Nor-X-Way Channel               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 160<br>160<br>160           | 0                 | 0<br>0<br>0             | 160<br>160<br>160        | 630<br>690<br>690          | 340<br>370<br>370           | 970<br>1,060<br>1,060      | 1,130<br>1,220<br>1,220    |
|                                       |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 160<br>0                    | 0                 | 0                       | 160<br>0                 | 660<br>630                 | 340<br>260                  | 1,000<br>890               | 1,160<br>890               |
|                                       | Underwood Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 30<br>30<br>30              | 10<br>10<br>10    | 0<br>0<br>0             | 40<br>40<br>40           | 6,350<br>5,470<br>5,470    | 270<br>220<br>220           | 6,620<br>5,690<br>5,690    | 6,660<br>5,730<br>5,730    |
|                                       |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 30<br>0                     | 10<br>10          | 0                       | 40<br>10                 | 5,340<br>4,400             | 220<br>220                  | 5,560<br>4,620             | 5,600<br>4,630             |
|                                       | Upper Menomonee River           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 1,150<br>1,150<br>1,150     | <10<br><10<br><10 | 0<br>0<br>0             | 1,150<br>1,150<br>1,150  | 4,170<br>4,370<br>4,370    | 1,150<br>1,150<br>1,150     | 5,320<br>5,520<br>5,520    | 6,470<br>6,670<br>6,670    |
|                                       |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 1,150<br>0                  | <10<br><10        | 0                       | 1,150<br><10             | 4,070<br>3,690             | 1,040<br>870                | 5,110<br>4,560             | 6,260<br>4,560             |
|                                       | West Branch<br>Menomonee River  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0              | 370<br>410<br>410<br>430   | 240<br>290<br>290<br>230    | 610<br>700<br>700<br>660   | 610<br>700<br>700<br>700   |
|                                       |                                 | Extreme Measures Conditiond                                                               | 0                           | 0                 | 0                       | 0                        | 400                        | 180                         | 580                        | 580                        |
|                                       | Willow Creek                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                 | 0                 | 0<br>0<br>0             | 0<br>0<br>0              | 320<br>350<br>350          | 430<br>490<br>490           | 750<br>840<br>840          | 750<br>840<br>840          |
|                                       |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0                           | 0                 | 0                       | 0<br>0                   | 350<br>340                 | 420<br>340                  | 770<br>680                 | 770<br>680                 |
|                                       | Watershed Total                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 17,550<br>5,810<br>5,810    | 580<br>350<br>120 | 1,880<br>1,380<br>1,130 | 20,010<br>7,540<br>7,060 | 29,040<br>26,510<br>26,510 | 4,070<br>3,940<br>3,940     | 33,110<br>30,450<br>30,450 | 53,120<br>37,990<br>37,510 |
|                                       |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 5,810<br>3,070              | 120<br>120        | 1,130<br>1,130          | 7,060<br>4,320           | 25,350<br>21,750           | 3,520<br>2,980              | 28,870<br>24,730           | 35,930<br>29,050           |

|                                 |                                 |                                                                                                                              |                                                | Point So                                    | ources                                              |                                                     | N                                                             | onpoint Source <sup>8</sup>                        | a,b                                                           |                                                               |
|---------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Water Quality Indicator         | Subwatershed                    | Condition                                                                                                                    | Industrial<br>Point Sources                    | SSOs                                        | CSOs                                                | Subtotal                                            | Urban                                                         | Rural <sup>C</sup>                                 | Subtotal                                                      | Total                                                         |
| Total Suspended Solids (pounds) | Butler Ditch                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures                   | 0<br>0<br>0                                    | 320<br>290<br>290<br>290<br>290             | 0<br>0<br>0                                         | 320<br>290<br>290<br>290<br>290                     | 689,190<br>493,940<br>493,940<br>505,550<br>505,550           | 8,000<br>2,620<br>2,620<br>3,760<br>3,760          | 697,190<br>496,560<br>496,560<br>509,310<br>509,310           | 697,510<br>496,850<br>496,850<br>509,600<br>509,600           |
|                                 | Honey Creek                     | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> | 800<br>800<br>800                              | 470<br>440<br>440                           | 0 0 0                                               | 1,270<br>1,240<br>1,240<br>1,240                    | 1,874,860<br>1,449,100<br>1,449,100<br>1,447,090              | 2,400<br>1,840<br>1,840                            | 1,877,260<br>1,450,940<br>1,450,940<br>1,448,890              | 1,878,530<br>1,452,180<br>1,452,180<br>1,450,130              |
|                                 | Lily Creek                      | Extreme Measures Condition <sup>d</sup> Existing Revised 2020 Baseline                                                       | 0<br>0                                         | 0<br>0                                      | 0 0                                                 | 1,240<br>0<br>0                                     | 1,447,090<br>666,000<br>490.830                               | 1,800<br>53,720<br>3.010                           | 1,448,890<br>719,720<br>493,840                               | 719,720<br>493.840                                            |
|                                 |                                 | Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                 | 0 0                                            | 0 0                                         | 0 0                                                 | 0 0                                                 | 490,830<br>490,830<br>494,570<br>494,570                      | 3,010<br>3,010<br>3,010<br>3,010                   | 493,840<br>493,840<br>497,580<br>497,580                      | 493,840<br>493,840<br>497,580<br>497,580                      |
|                                 | Little Menomonee Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures                   | 0<br>0<br>0<br>0                               | 0<br>0<br>0                                 | 0<br>0<br>0                                         | 0<br>0<br>0                                         | 58,630<br>44,710<br>44,710<br>44,650<br>44,650                | 205,820<br>151,230<br>151,230<br>103,560<br>97,610 | 264,450<br>195,940<br>195,940<br>148,210<br>142,260           | 264,450<br>195,940<br>195,940<br>148,210<br>142,260           |
|                                 | Little Menomonee River          | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                               | 2,530<br>2,530<br>2,530                        | 30<br>30<br>30                              | 0 0 0                                               | 2,560<br>2,560<br>2,560                             | 1,976,270<br>1,568,570<br>1,568,570                           | 437,140<br>209,970<br>209,970                      | 2,413,410<br>1,778,540<br>1,778,540                           | 2,415,970<br>1,781,100<br>1,781,100                           |
|                                 |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                                  | 2,530<br>2,530                                 | 30<br>30                                    | 0                                                   | 2,560<br>2,560                                      | 1,559,610<br>1,559,570                                        | 155,070<br>148,330                                 | 1,714,680<br>1,707,900                                        | 1,717,240<br>1,710,460                                        |
|                                 | Lower Menomonee River           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures                   | 51,660<br>30,880<br>30,880<br>30,880<br>30,880 | 31,670<br>18,400<br>5,080<br>5,080<br>5,080 | 182,960<br>132,120<br>108,140<br>108,140<br>108,140 | 266,290<br>181,400<br>144,100<br>144,100<br>144,100 | 4,001,330<br>3,092,990<br>3,092,990<br>3,071,350<br>3,071,330 | 10,180<br>10,280<br>10,280<br>10,160<br>10,160     | 4,011,510<br>3,103,270<br>3,103,270<br>3,081,510<br>3,081,490 | 4,277,800<br>3,284,670<br>3,247,370<br>3,225,610<br>3,225,590 |
|                                 | North Branch<br>Menomonee River | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                               | 0 0 0                                          | 0 0 0                                       | 0 0 0                                               | 0 0 0                                               | 27,660<br>25,290<br>25,290                                    | 117,390<br>106,030<br>106,030                      | 145,050<br>131,320<br>131,320                                 | 145,050<br>131,320<br>131,320                                 |
|                                 |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                                  | 0<br>0                                         | 0                                           | 0                                                   | 0<br>0                                              | 25,750<br>25,750                                              | 67,430<br>63,470                                   | 93,180<br>89,220                                              | 93,180<br>89,220                                              |

|                                             |                                |                                                                                                   |                             | Point So                  | ources                        |                               | N                                      | onpoint Source <sup>8</sup>         | a,b                                    |                                        |
|---------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|-------------------------------|-------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|
| Water Quality Indicator                     | Subwatershed                   | Condition                                                                                         | Industrial<br>Point Sources | SSOs                      | CSOs                          | Subtotal                      | Urban                                  | Rural <sup>C</sup>                  | Subtotal                               | Total                                  |
| Total Suspended Solids (pounds) (continued) | Nor-X-Way Channel              | Existing                                                                                          | 280                         | 0                         | 0                             | 280                           | 478,790                                | 351,000                             | 829,790                                | 830,070                                |
| (pourius) (continueu)                       |                                | Revised 2020 Baseline                                                                             | 280                         | 0                         | 0                             | 280                           | 493,480                                | 107,560                             | 601,040                                | 601,320                                |
|                                             |                                | Revised 2020 Baseline<br>with Five-Year LOP                                                       | 280                         | 0                         | 0                             | 280                           | 493,480                                | 107,560                             | 601,040                                | 601,320                                |
|                                             |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                             | 280<br>280                  | 0                         | 0                             | 280<br>280                    | 486,900<br>486,900                     | 96,140<br>95,560                    | 583,040<br>582,460                     | 583,320<br>582,740                     |
|                                             | Underwood Creek                | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline                                        | 90<br>90<br>90              | 860<br>740<br>740         | 0<br>0<br>0                   | 950<br>830<br>830             | 3,031,420<br>2,233,400<br>2,233,400    | 46,540<br>15,690<br>15,690          | 3,077,960<br>2,249,090<br>2,249,090    | 3,078,910<br>2,249,920<br>2,249,920    |
|                                             |                                | with Five-Year LOP<br>Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 90<br>90                    | 740<br>740                | 0                             | 830<br>830                    | 2,320,320<br>2,320,150                 | 15,530<br>15,500                    | 2,335,850<br>2,335,650                 | 2,336,680<br>2,336,480                 |
|                                             | Upper Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 3,380<br>3,380<br>3,380     | 240<br>110<br>110         | 0<br>0<br>0                   | 3,620<br>3,490<br>3,490       | 2,504,060<br>2,382,930<br>2,382,930    | 462,670<br>281,120<br>281,120       | 2,966,730<br>2,664,050<br>2,664,050    | 2,970,350<br>2,667,540<br>2,667,540    |
|                                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 3,380<br>3,380              | 110<br>110                | 0                             | 3,490<br>3,490                | 2,309,140<br>2,308,420                 | 236,910<br>232,470                  | 2,546,050<br>2,540,890                 | 2,549,540<br>2,544,380                 |
|                                             | West Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0               | 0<br>0<br>0                   | 0<br>0<br>0                   | 232,070<br>251,480<br>251,480          | 103,580<br>89,010<br>89,010         | 335,650<br>340,490<br>340,490          | 335,650<br>340,490<br>340,490          |
|                                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0                           | 0                         | 0                             | 0<br>0                        | 255,490<br>255,470                     | 62,210<br>60,580                    | 317,700<br>316,050                     | 317,700<br>316,050                     |
|                                             | Willow Creek                   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0               | 0<br>0<br>0                   | 0<br>0<br>0                   | 197,990<br>211,650<br>211,650          | 151,790<br>137,580<br>137,580       | 349,780<br>349,230<br>349,230          | 349,780<br>349,230<br>349,230          |
|                                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0<br>0                      | 0                         | 0                             | 0<br>0                        | 204,320<br>204,320                     | 105,350<br>103,580                  | 309,670<br>307,900                     | 309,670<br>307,900                     |
|                                             | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 58,740<br>37,960<br>37,960  | 33,590<br>20,010<br>6,690 | 182,960<br>132,120<br>108,140 | 275,290<br>190,090<br>152,790 | 15,738,270<br>12,738,350<br>12,738,370 | 1,950,230<br>1,115,930<br>1,115,940 | 17,688,500<br>13,854,310<br>13,854,310 | 17,963,790<br>14,044,400<br>14,007,100 |
|                                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 37,960<br>37,960            | 6,690<br>6,690            | 108,140<br>108,140            | 152,790<br>152,790            | 12,724,740<br>12,723,770               | 860,930<br>835,830                  | 13,585,670<br>13,559,600               | 13,738,460<br>13,712,390               |

|                                                 |                                 |                                                                                                            |                              | Point So                     | ources                           |                                      | N                                             | onpoint Source <sup>8</sup>          | a,b                                           |                                               |
|-------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Water Quality Indicator                         | Subwatershed                    | Condition                                                                                                  | Industrial<br>Point Sources  | SSOs                         | CSOs                             | Subtotal                             | Urban                                         | Rural <sup>C</sup>                   | Subtotal                                      | Total                                         |
| Fecal Coliform Bacteria<br>(trillions of cells) | Butler Ditch                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures | 0.00<br>0.00<br>0.00<br>0.00 | 6.07<br>5.55<br>5.55<br>5.55 | 0.00<br>0.00<br>0.00<br>0.00     | 6.07<br>5.55<br>5.55<br>5.55<br>5.55 | 223.75<br>186.21<br>186.21<br>122.08<br>60.85 | 0.46<br>0.18<br>0.18<br>0.18<br>0.18 | 224.21<br>186.39<br>186.39<br>122.26<br>61.03 | 230.28<br>191.94<br>191.94<br>127.81<br>66.58 |
|                                                 | Honey Creek                     | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline                                | 0.00<br>0.00<br>0.00         | 9.01<br>8.44<br>8.44         | 0.00<br>0.00<br>0.00             | 9.01<br>8.44<br>8.44                 | 2,342.61<br>1,961.47<br>1,961.47              | 0.14<br>0.12<br>0.12                 | 2,342.75<br>1,961.59<br>1,961.59              | 2,351.76<br>1,970.03<br>1,970.03              |
|                                                 |                                 | with Five-Year LOP<br>Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>          | 0.00<br>0.00                 | 8.44<br>8.44                 | 0.00<br>0.00                     | 8.44<br>8.44                         | 1,226.53<br>618.35                            | 0.10<br>0.10                         | 1,226.63<br>618.45                            | 1,235.07<br>626.89                            |
|                                                 | Lily Creek                      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup>      | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00                 | 199.31<br>182.84<br>182.84                    | 1.25<br>0.19<br>0.19                 | 200.56<br>183.03<br>183.03                    | 200.56<br>183.03<br>183.03                    |
|                                                 |                                 | Extreme Measures Conditiond                                                                                | 0.00<br>0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                     | 0.00<br>0.00                         | 103.39<br>52.46                               | 0.19<br>0.19                         | 103.58<br>52.65                               | 103.58<br>52.65                               |
|                                                 | Little Menomonee Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                    | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00                 | 65.43<br>58.45<br>58.45                       | 84.91<br>72.81<br>72.81              | 150.34<br>131.26<br>131.26                    | 150.34<br>131.26<br>131.26                    |
|                                                 |                                 | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                      | 0.00<br>0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                     | 0.00<br>0.00                         | 57.37<br>57.16                                | 69.48<br>69.21                       | 126.85<br>126.37                              | 126.85<br>126.37                              |
|                                                 | Little Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland                  | 0.00<br>0.00<br>0.00         | 0.52<br>0.52<br>0.52<br>0.52 | 0.00<br>0.00<br>0.00             | 0.52<br>0.52<br>0.52<br>0.52         | 2,097.81<br>1,815.94<br>1,815.94<br>1,640.53  | 105.28<br>105.81<br>105.81<br>98.79  | 2,203.09<br>1,921.75<br>1,921.75              | 2,203.61<br>1,922.27<br>1,922.27              |
|                                                 |                                 | Extreme Measures<br>Condition <sup>d</sup>                                                                 | 0.00                         | 0.52                         | 0.00                             | 0.52                                 | 1,634.66                                      | 98.36                                | 1,733.02                                      | 1,733.54                                      |
|                                                 | Lower Menomonee River           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                    | 0.00<br>0.00<br>0.00         | 604.24<br>351.07<br>96.96    | 1,727.39<br>1,314.48<br>1,088.25 | 2,331.63<br>1,665.55<br>1,185.21     | 4,067.91<br>3,365.96<br>3,365.96              | 0.28<br>0.45<br>0.45                 | 4,068.19<br>3,366.41<br>3,366.41              | 6,399.82<br>5,031.96<br>4,551.62              |
|                                                 |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                | 0.00<br>0.00                 | 96.96<br>96.96               | 1,088.25<br>1,088.25             | 1,185.21<br>1,185.21                 | 2,224.02<br>1,107.42                          | 0.39<br>0.39                         | 2,224.41<br>1,107.81                          | 3,409.62<br>2,293.02                          |
|                                                 | North Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland                  | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00                 | 9.30<br>8.90<br>8.90<br>9.18                  | 7.82<br>13.02<br>13.02<br>7.72       | 17.12<br>21.92<br>21.92<br>16.90              | 17.12<br>21.92<br>21.92<br>16.90              |
|                                                 |                                 | Extreme Measures Condition <sup>d</sup>                                                                    | 0.00                         | 0.00                         | 0.00                             | 0.00                                 | 9.18<br>8.65                                  | 7.72                                 | 15.83                                         | 15.83                                         |

Table M-2 (continued)

|                                                          |                                |                                                                                           |                             | Point So                   | ources                           |                                  | N                                            | onpoint Source <sup>a</sup> | ı,b                                          |                                              |
|----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------------------|-----------------------------|----------------------------------------------|----------------------------------------------|
| Water Quality Indicator                                  | Subwatershed                   | Condition                                                                                 | Industrial<br>Point Sources | SSOs                       | CSOs                             | Subtotal                         | Urban                                        | Rural <sup>C</sup>          | Subtotal                                     | Total                                        |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Nor-X-Way Channel              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00             | 256.06<br>257.77<br>257.77                   | 48.78<br>87.35<br>87.35     | 304.84<br>345.12<br>345.12                   | 304.84<br>345.12<br>345.12                   |
|                                                          |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0.00<br>0.00                | 0.00<br>0.00               | 0.00<br>0.00                     | 0.00<br>0.00                     | 161.65<br>82.79                              | 54.10<br>27.73              | 215.75<br>110.52                             | 215.75<br>110.52                             |
|                                                          | Underwood Creek                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0.00<br>0.00<br>0.00        | 16.33<br>14.07<br>14.07    | 0.00<br>0.00<br>0.00             | 16.33<br>14.07<br>14.07          | 3,454.09<br>2,785.45<br>2,785.45<br>1,817.14 | 1.67<br>1.04<br>1.04        | 3,455.76<br>2,786.49<br>2,786.49<br>1,818.16 | 3,472.09<br>2,800.56<br>2,800.56<br>1,832.23 |
|                                                          |                                | Extreme Measures<br>Condition <sup>d</sup>                                                | 0.00                        | 14.07                      | 0.00                             | 14.07                            | 922.19                                       | 1.02                        | 923.21                                       | 937.28                                       |
|                                                          | Upper Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 4.65<br>2.07<br>2.07       | 0.00<br>0.00<br>0.00             | 4.65<br>2.07<br>2.07             | 1,274.47<br>1,269.25<br>1,269.25             | 79.98<br>111.76<br>111.76   | 1,354.45<br>1,381.01<br>1,381.01             | 1,359.10<br>1,383.08<br>1,383.08             |
|                                                          |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0.00<br>0.00                | 2.07<br>2.07               | 0.00<br>0.00                     | 2.07<br>2.07                     | 882.90<br>623.26                             | 88.35<br>80.11              | 971.25<br>703.37                             | 973.32<br>705.44                             |
|                                                          | West Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00             | 62.41<br>66.66<br>66.66                      | 16.80<br>34.70<br>34.70     | 79.21<br>101.36<br>101.36                    | 79.21<br>101.36<br>101.36                    |
|                                                          |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0.00<br>0.00                | 0.00<br>0.00               | 0.00<br>0.00                     | 0.00<br>0.00                     | 68.72<br>64.66                               | 20.06<br>18.55              | 88.78<br>83.21                               | 88.78<br>83.21                               |
|                                                          | Willow Creek                   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00             | 58.69<br>63.80<br>63.80                      | 45.74<br>63.99<br>63.99     | 104.43<br>127.79<br>127.79                   | 104.43<br>127.79<br>127.79                   |
|                                                          |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0.00<br>0.00                | 0.00<br>0.00               | 0.00<br>0.00                     | 0.00<br>0.00                     | 57.73<br>56.86                               | 45.97<br>44.99              | 103.70<br>101.85                             | 103.70<br>101.85                             |
|                                                          | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.00<br>0.00<br>0.00        | 640.82<br>381.72<br>127.61 | 1,727.39<br>1,314.48<br>1,088.25 | 2,368.21<br>1,696.20<br>1,215.86 | 14,111.84<br>12,022.71<br>12,022.70          | 393.11<br>491.42<br>491.42  | 14,504.95<br>12,514.13<br>12,514.12          | 16,873.16<br>14,210.33<br>13,729.98          |
|                                                          |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0.00<br>0.00                | 127.61<br>127.61           | 1,088.25<br>1,088.25             | 1,215.86<br>1,215.86             | 8,371.24<br>5,289.31                         | 386.35<br>348.01            | 8,757.59<br>5,637.32                         | 9,973.45<br>6,853.18                         |

|                         |                                 |                                                                                                                                                                      |                                                          | Point So                          | ources                                     |                                                    | N                                                        | onpoint Source <sup>8</sup>                    | a,b                                            |                                                 |
|-------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|
| Water Quality Indicator | Subwatershed                    | Condition                                                                                                                                                            | Industrial<br>Point Sources                              | SSOs                              | CSOs                                       | Subtotal                                           | Urban                                                    | Rural <sup>C</sup>                             | Subtotal                                       | Total                                           |
| Total Nitrogen (pounds) | Butler Ditch                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures                                                           | 0<br>0<br>0                                              | 10<br>10<br>10<br>10              | 0<br>0<br>0                                | 10<br>10<br>10<br>10                               | 10,890<br>9,700<br>9,700<br>9,980<br>9,980               | 570<br>220<br>220<br>260<br>260                | 11,460<br>9,920<br>9,920<br>10,240<br>10,240   | 11,470<br>9,930<br>9,930<br>10,250<br>10,250    |
|                         | Honey Creek                     | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup> | 640<br>640<br>640<br>640<br>640                          | 20<br>20<br>20<br>20<br>20        | 0<br>0<br>0                                | 660<br>660<br>660<br>660                           | 27,300<br>24,730<br>24,730<br>24,730<br>24,620<br>24,620 | 220<br>160<br>160<br>150                       | 27,520<br>24,890<br>24,890<br>24,770<br>24,770 | 28,180<br>25,550<br>25,550<br>25,430<br>25,430  |
|                         | Lily Creek                      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 0<br>0<br>0                                              | 0<br>0<br>0                       | 0<br>0<br>0                                | 0<br>0<br>0<br>0                                   | 9,530<br>9,180<br>9,180<br>9,040<br>9,040                | 2,920<br>290<br>290<br>290<br>290              | 12,450<br>9,470<br>9,470<br>9,330<br>9,330     | 12,450<br>9,470<br>9,470<br>9,330<br>9,330      |
|                         | Little Menomonee Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 0<br>0<br>0                                              | 0<br>0<br>0                       | 0<br>0<br>0                                | 0<br>0<br>0                                        | 530<br>530<br>530<br>530<br>510                          | 9,610<br>7,890<br>7,890<br>6,210<br>5,850      | 10,140<br>8,420<br>8,420<br>6,720<br>6,350     | 10,140<br>8,420<br>8,420<br>6,720<br>6,350      |
|                         | Little Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 1,350<br>1,350<br>1,350<br>1,350<br>1,350                | <10<br><10<br><10<br><10          | 0<br>0<br>0                                | 1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350 | 25,150<br>23,310<br>23,310<br>22,800<br>22,750           | 22,270<br>12,840<br>12,840<br>10,860<br>10,450 | 47,420<br>36,150<br>36,150<br>33,660<br>33,200 | 48,770<br>37,500<br>37,500<br>35,010<br>34,550  |
|                         | Lower Menomonee River           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 52,730<br>20,850<br>20,850<br>20,850<br>20,850<br>20,850 | 1,160<br>670<br>190<br>190<br>190 | 11,610<br>8,200<br>6,670<br>6,670<br>6,670 | 65,500<br>29,720<br>27,710<br>27,710<br>27,710     | 49,520<br>44,520<br>44,520<br>44,250<br>44,220           | 730<br>670<br>670<br>670<br>670                | 50,250<br>45,190<br>45,190<br>44,920<br>44,890 | 115,750<br>74,910<br>72,900<br>72,630<br>72,600 |
|                         | North Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                                                | 0<br>0<br>0                                              | 0<br>0<br>0                       | 0<br>0<br>0                                | 0<br>0<br>0<br>0                                   | 310<br>300<br>300<br>300<br>280                          | 13,000<br>12,070<br>12,070<br>8,860<br>8,110   | 13,310<br>12,370<br>12,370<br>9,160<br>8,390   | 13,310<br>12,370<br>12,370<br>9,160<br>8,390    |

Table M-2 (continued)

|                                        |                                |                                                                                           |                             | Point So             | ources                   |                            | N                                    | onpoint Source <sup>a</sup>      | ı,b                                  |                                      |
|----------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|----------------------|--------------------------|----------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|
| Water Quality Indicator                | Subwatershed                   | Condition                                                                                 | Industrial<br>Point Sources | SSOs                 | CSOs                     | Subtotal                   | Urban                                | Rural <sup>C</sup>               | Subtotal                             | Total                                |
| Total Nitrogen (pounds)<br>(continued) | Nor-X-Way Channel              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 100<br>100<br>100           | 0                    | 0<br>0<br>0              | 100<br>100<br>100          | 4,350<br>4,670<br>4,670              | 8,110<br>3,900<br>3,900          | 12,460<br>8,570<br>8,570             | 12,560<br>8,670<br>8,670             |
|                                        |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 100<br>100                  | 0                    | 0<br>0                   | 100<br>100                 | 4,590<br>4,550                       | 3,720<br>3,650                   | 8,310<br>8,200                       | 8,410<br>8,300                       |
|                                        | Underwood Creek                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 20<br>20<br>20<br>20        | 30<br>30<br>30<br>30 | 0<br>0<br>0              | 50<br>50<br>50             | 45,090<br>40,150<br>40,150<br>40,950 | 2,810<br>1,590<br>1,590<br>1,580 | 47,900<br>41,740<br>41,740<br>42,530 | 47,950<br>41,790<br>41,790<br>42,580 |
|                                        |                                | Extreme Measures<br>Condition <sup>d</sup>                                                | 20                          | 30                   | 0                        | 50                         | 40,920                               | 1,580                            | 42,500                               | 42,550                               |
|                                        | Upper Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 810<br>810<br>810           | 10<br><10<br><10     | 0<br>0<br>0              | 820<br>810<br>810          | 32,240<br>33,780<br>33,780           | 32,270<br>22,250<br>22,250       | 64,510<br>56,030<br>56,030           | 65,330<br>56,840<br>56,840           |
|                                        |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 810<br>810                  | <10<br><10           | 0                        | 810<br>810                 | 32,650<br>31,800                     | 19,080<br>17,820                 | 51,730<br>49,620                     | 52,540<br>50,430                     |
|                                        | West Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                 | 0<br>0<br>0          | 0<br>0<br>0              | 0<br>0<br>0                | 2,500<br>2,860<br>2,860              | 10,770<br>7,840<br>7,840         | 13,270<br>10,700<br>10,700           | 13,270<br>10,700<br>10,700           |
|                                        |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0                           | 0                    | 0                        | 0<br>0                     | 2,880<br>2,670                       | 6,230<br>5,630                   | 9,110<br>8,300                       | 9,110<br>8,300                       |
|                                        | Willow Creek                   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                 | 0<br>0<br>0          | 0<br>0<br>0              | 0<br>0<br>0                | 1,930<br>2,140<br>2,140              | 15,130<br>10,060<br>10,060       | 17,060<br>12,200<br>12,200           | 17,060<br>12,200<br>12,200           |
|                                        |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0                           | 0                    | 0                        | 0                          | 2,130<br>2,100                       | 8,820<br>8,550                   | 10,950<br>10,650                     | 10,950<br>10,650                     |
|                                        | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 55,650<br>23,770<br>23,770  | 1,230<br>730<br>250  | 11,610<br>8,200<br>6,670 | 68,490<br>32,700<br>30,690 | 209,340<br>195,870<br>195,870        | 118,410<br>79,780<br>79,780      | 327,750<br>275,650<br>275,650        | 396,240<br>308,350<br>306,340        |
|                                        |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 23,770<br>23,770            | 250<br>250           | 6,670<br>6,670           | 30,690<br>30,690           | 194,700<br>193,430                   | 66,730<br>63,010                 | 261,430<br>256,440                   | 292,120<br>287,130                   |

|                                    |                                 |                                                                                                                                   |                                                 | Point So                                  | ources                                         |                                                  | N                                                   | onpoint Source <sup>2</sup>                        | a,b                                                 |                                                     |
|------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Water Quality Indicator            | Subwatershed                    | Condition                                                                                                                         | Industrial<br>Point Sources                     | SSOs                                      | CSOs                                           | Subtotal                                         | Urban                                               | Rural <sup>C</sup>                                 | Subtotal                                            | Total                                               |
| Biochemical Oxygen Demand (pounds) | Butler Ditch                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0<br>0<br>0                                     | 80<br>70<br>70<br>70<br>70                | 0<br>0<br>0                                    | 80<br>70<br>70<br>70<br>70                       | 44,260<br>35,720<br>35,720<br>36,870<br>36,870      | 1,680<br>1,210<br>1,210<br>1,660<br>1,660          | 45,940<br>36,930<br>36,930<br>38,530<br>38,530      | 46,020<br>37,000<br>37,000<br>38,600<br>38,600      |
|                                    | Honey Creek                     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Condition <sup>d</sup> | 970<br>970<br>970<br>970<br>970                 | 120<br>110<br>110<br>110                  | 0<br>0<br>0                                    | 1,090<br>1,080<br>1,080<br>1,080<br>1,080        | 119,400<br>100,280<br>100,280<br>99,010<br>99,010   | 720<br>530<br>530<br>530<br>530                    | 120,120<br>100,810<br>100,810<br>99,540<br>99,540   | 121,210<br>101,890<br>101,890<br>100,620<br>100,620 |
|                                    | Lily Creek                      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0<br>0<br>0                                     | 0<br>0<br>0                               | 0<br>0<br>0                                    | 0<br>0<br>0                                      | 42,390<br>36,690<br>36,690<br>35,460<br>35,460      | 4,250<br>1,090<br>1,090<br>1,090<br>1,090          | 46,640<br>37,780<br>37,780<br>36,550<br>36,550      | 46,640<br>37,780<br>37,780<br>36,550<br>36,550      |
|                                    | Little Menomonee Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0<br>0<br>0                                     | 0<br>0<br>0                               | 0<br>0<br>0                                    | 0<br>0<br>0                                      | 3,570<br>3,280<br>3,280<br>3,080<br>3,080           | 13,290<br>12,980<br>12,980<br>12,410<br>11,970     | 16,860<br>16,260<br>16,260<br>15,490<br>15,050      | 16,860<br>16,260<br>16,260<br>15,490<br>15,050      |
|                                    | Little Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 3,090<br>3,090<br>3,090<br>3,090<br>3,090       | 10<br>10<br>10<br>10                      | 0<br>0<br>0                                    | 3,100<br>3,100<br>3,100<br>3,100<br>3,100        | 126,650<br>114,100<br>114,100<br>109,120<br>109,110 | 32,380<br>24,300<br>24,300<br>23,720<br>23,210     | 159,030<br>138,400<br>138,400<br>132,840<br>132,320 | 162,130<br>141,500<br>141,500<br>135,940<br>135,420 |
|                                    | Lower Menomonee River           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 104,920<br>61,040<br>61,040<br>61,040<br>61,040 | 7,790<br>4,530<br>1,250<br>1,250<br>1,250 | 58,680<br>39,320<br>31,620<br>31,620<br>31,620 | 171,390<br>104,890<br>93,910<br>93,910<br>93,910 | 236,620<br>197,450<br>197,450<br>194,520<br>194,510 | 2,440<br>2,240<br>2,240<br>2,240<br>2,240<br>2,240 | 239,060<br>199,690<br>199,690<br>196,760<br>196,750 | 410,450<br>304,580<br>293,600<br>290,670<br>290,660 |
|                                    | North Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0<br>0<br>0<br>0                                | 0<br>0<br>0                               | 0<br>0<br>0                                    | 0<br>0<br>0<br>0                                 | 2,200<br>2,040<br>2,040<br>2,130<br>2,130           | 16,120<br>16,060<br>16,060<br>15,190<br>14,560     | 18,320<br>18,100<br>18,100<br>17,320<br>16,690      | 18,320<br>18,100<br>18,100<br>17,320<br>16,690      |

Table M-2 (continued)

|                                                |                                |                                                                                  |                             | Point So                | ources                     |                               | N                             | onpoint Source <sup>8</sup>   | a,b                                 |                                     |
|------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------|-----------------------------|-------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------|-------------------------------------|
| Water Quality Indicator                        | Subwatershed                   | Condition                                                                        | Industrial<br>Point Sources | SSOs                    | CSOs                       | Subtotal                      | Urban                         | Rural <sup>C</sup>            | Subtotal                            | Total                               |
| Biochemical Oxygen Demand (pounds) (continued) | Nor-X-Way Channel              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 450<br>450<br>450           | 0 0                     | 0<br>0<br>0                | 450<br>450<br>450             | 26,530<br>30,410<br>30,410    | 9,200<br>7,590<br>7,590       | 35,730<br>38,000<br>38,000          | 36,180<br>38,450<br>38,450          |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>      | 450<br>450                  | 0                       | 0                          | 450<br>450                    | 29,600<br>29,600              | 7,310<br>7,300                | 36,910<br>36,900                    | 37,360<br>37,350                    |
|                                                | Underwood Creek                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 200<br>200<br>200           | 210<br>180<br>180       | 0<br>0<br>0                | 410<br>380<br>380             | 194,480<br>159,060<br>159,060 | 9,490<br>6,450<br>6,450       | 203,970<br>165,510<br>165,510       | 204,380<br>165,890<br>165,890       |
|                                                |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>            | 200<br>200                  | 180<br>180              | 0                          | 380<br>380                    | 162,960<br>162,910            | 6,440<br>6,440                | 169,400<br>169,350                  | 169,780<br>169,730                  |
|                                                | Upper Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 6,880<br>6,880<br>6,880     | 60<br>30<br>30          | 0<br>0<br>0                | 6,940<br>6,910<br>6,910       | 164,500<br>175,250<br>175,250 | 52,650<br>46,050<br>46,050    | 217,150<br>221,300<br>221,300       | 224,090<br>228,210<br>228,210       |
|                                                |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>            | 6,880<br>6,880              | 30<br>30                | 0<br>0                     | 6,910<br>6,910                | 166,440<br>166,250            | 45,070<br>44,340              | 211,510<br>210,590                  | 218,420<br>217,500                  |
|                                                | West Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 0<br>0<br>0                 | 0                       | 0<br>0<br>0                | 0<br>0<br>0                   | 18,000<br>19,880<br>19,880    | 14,280<br>13,110<br>13,110    | 32,280<br>32,990<br>32,990          | 32,280<br>32,990<br>32,990          |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>      | 0<br>0                      | 0                       | 0<br>0                     | 0<br>0                        | 21,320<br>21,320              | 12,010<br>11,790              | 33,330<br>33,110                    | 33,330<br>33,110                    |
|                                                | Willow Creek                   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 0<br>0<br>0                 | 0 0                     | 0<br>0<br>0                | 0<br>0<br>0                   | 14,790<br>16,070<br>16,070    | 19,350<br>20,520<br>20,520    | 34,140<br>36,590<br>36,590          | 34,140<br>36,590<br>36,590          |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>      | 0                           | 0                       | 0<br>0                     | 0<br>0                        | 16,140<br>16,140              | 18,290<br>18,100              | 34,430<br>34,240                    | 34,430<br>34,240                    |
|                                                | Watershed Total                | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline<br>with Five-Year LOP | 116,510<br>72,630<br>72,630 | 8,270<br>4,930<br>1,650 | 58,680<br>39,320<br>31,620 | 183,460<br>116,880<br>105,900 | 993,390<br>890,230<br>890,230 | 175,850<br>152,130<br>152,130 | 1,169,240<br>1,042,360<br>1,042,360 | 1,352,700<br>1,159,240<br>1,148,260 |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>      | 72,630<br>72,630            | 1,650<br>1,650          | 31,620<br>31,620           | 105,900<br>105,900            | 876,650<br>876,390            | 145,960<br>143,230            | 1,022,610<br>1,019,620              | 1,128,510<br>1,125,520              |

|                         |                                 |                                                                                                                              |                             | Point So                   | ources         |                            | N                          | onpoint Source <sup>2</sup> | a,b                        |                            |
|-------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|----------------|----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|
| Water Quality Indicator | Subwatershed                    | Condition                                                                                                                    | Industrial<br>Point Sources | SSOs                       | CSOs           | Subtotal                   | Urban                      | Rural <sup>C</sup>          | Subtotal                   | Total                      |
| Copper (pounds)         | Butler Ditch                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures                   | 0<br>0<br>0                 | <1<br><1<br><1<br><1<br><1 | 0<br>0<br>0    | <1<br><1<br><1<br><1<br><1 | 78<br>60<br>60<br>61<br>61 | 1<br><1<br><1<br><1         | 79<br>60<br>60<br>61<br>61 | 79<br>60<br>60<br>61<br>61 |
|                         | Honey Creek                     | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> | 1<br>1<br>1                 | <1<br><1<br><1             | 0<br>0<br>0    | 1<br>1<br>1                | 211<br>171<br>171<br>171   | <1<br><1<br><1              | 211<br>171<br>171<br>171   | 212<br>172<br>172<br>172   |
|                         |                                 | Extreme Measures<br>Condition <sup>d</sup>                                                                                   | 1                           | <1                         | 0              | 1                          | 171                        | <1                          | 171                        | 172                        |
|                         | Lily Creek                      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                      | 0<br>0<br>0                 | 0<br>0<br>0                | 0<br>0<br>0    | 0<br>0<br>0                | 73<br>59<br>59             | 1<br><1<br><1               | 74<br>59<br>59             | 74<br>59<br>59             |
|                         |                                 | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                                        | 0                           | 0                          | 0<br>0         | 0                          | 59<br>59                   | <1<br><1                    | 59<br>59                   | 59<br>59                   |
|                         | Little Menomonee Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                      | 0<br>0<br>0                 | 0<br>0<br>0                | 0<br>0<br>0    | 0<br>0<br>0                | 6<br>5<br>5                | 9<br>8<br>8                 | 15<br>13<br>13             | 15<br>13<br>13             |
|                         |                                 | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                                        | 0                           | 0                          | 0              | 0                          | 5<br>5                     | 8<br>8                      | 13<br>13                   | 13<br>13                   |
|                         | Little Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                      | 0<br>0<br>0                 | <1<br><1<br><1             | 0<br>0<br>0    | <1<br><1<br><1             | 224<br>192<br>192          | 17<br>16<br>16              | 241<br>208<br>208          | 241<br>208<br>208          |
|                         |                                 | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                                        | 0                           | <1<br><1                   | 0              | <1<br><1                   | 186<br>186                 | 16<br>16                    | 202<br>202                 | 202<br>202                 |
|                         | Lower Menomonee River           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                      | 3<br>3<br>3                 | 5<br>3<br>1                | 48<br>36<br>30 | 56<br>42<br>34             | 428<br>347<br>347          | 1<br>1<br>1                 | 429<br>348<br>348          | 485<br>390<br>382          |
|                         |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                                  | 3<br>3                      | 1<br>1                     | 30<br>30       | 34<br>34                   | 343<br>343                 | 1                           | 344<br>344                 | 378<br>378                 |
|                         | North Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland                                    | 0<br>0<br>0                 | 0<br>0<br>0                | 0<br>0<br>0    | 0<br>0<br>0                | 4<br>4<br>4                | 6<br>7<br>7                 | 10<br>11<br>11             | 10<br>11<br>11             |
|                         |                                 | Extreme Measures Conditiond                                                                                                  | 0                           | 0                          | 0              | 0                          | 4                          | 7                           | 11                         | 11                         |

Table M-2 (continued)

|                             |                                |                                                                             |                             | Point So       | ources         |                | N                       | onpoint Source <sup>a</sup> | ı,b                     |                         |
|-----------------------------|--------------------------------|-----------------------------------------------------------------------------|-----------------------------|----------------|----------------|----------------|-------------------------|-----------------------------|-------------------------|-------------------------|
| Water Quality Indicator     | Subwatershed                   | Condition                                                                   | Industrial<br>Point Sources | SSOs           | CSOs           | Subtotal       | Urban                   | Rural <sup>C</sup>          | Subtotal                | Total                   |
| Copper (pounds) (continued) | Nor-X-Way Channel              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0 0            | 0<br>0<br>0    | 0<br>0<br>0    | 49<br>54<br>54          | 8<br>10<br>10               | 57<br>64<br>64          | 57<br>64<br>64          |
|                             |                                | Recommended Pland Extreme Measures Conditiond                               | 0                           | 0              | 0              | 0              | 53<br>53                | 10<br>10                    | 63<br>63                | 63<br>63                |
|                             | Underwood Creek                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | <1<br><1<br><1 | 0<br>0<br>0    | <1<br><1<br><1 | 340<br>267<br>267       | 3<br>2<br>2                 | 343<br>269<br>269       | 343<br>269<br>269       |
|                             |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | <1<br><1       | 0              | <1<br><1       | 273<br>273              | 2<br>2                      | 275<br>275              | 275<br>275              |
|                             | Upper Menomonee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | <1<br><1<br><1 | 0<br>0<br>0    | <1<br><1<br><1 | 295<br>302<br>302       | 35<br>39<br>39              | 330<br>341<br>341       | 330<br>341<br>341       |
|                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | <1<br><1       | 0              | <1<br><1       | 287<br>287              | 38<br>37                    | 325<br>324              | 325<br>324              |
|                             | West Branch<br>Menomonee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0    | 0<br>0<br>0    | 0<br>0<br>0    | 33<br>36<br>36          | 9<br>11<br>11               | 42<br>47<br>47          | 42<br>47<br>47          |
|                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0              | 0              | 0              | 37<br>37                | 10<br>10                    | 47<br>47                | 47<br>47                |
|                             | Willow Creek                   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0 0 0          | 0<br>0<br>0    | 0<br>0<br>0    | 27<br>29<br>29          | 16<br>18<br>18              | 43<br>47<br>47          | 43<br>47<br>47          |
|                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0              | 0              | 0              | 28<br>28                | 16<br>16                    | 44<br>44                | 44<br>44                |
|                             | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 4<br>4<br>4                 | 5<br>3<br>1    | 48<br>36<br>30 | 57<br>43<br>35 | 1,768<br>1,526<br>1,526 | 106<br>112<br>112           | 1,874<br>1,638<br>1,638 | 1,931<br>1,681<br>1,673 |
|                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 4 4                         | 1              | 30<br>30       | 35<br>35       | 1,507<br>1,507          | 108<br>107                  | 1,615<br>1,614          | 1,650<br>1,649          |

#### **Table M-2 Footnotes**

<sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

bln certain limited cases, relatively minor anomalies in nonpoint source pollutant loads may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a relatively slight increase load under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in pollutant load occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters established under the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively small anomalies in the comparative results.

<sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominately urban setting.

<sup>d</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

Table M-3

AVERAGE ANNUAL POLLUTANT LOADS FOR RECOMMENDED PLAN AND EXTREME MEASURES CONDITION: MILWAUKEE RIVER WATERSHED

|                           |                                |                                                                                                   |                             | Р           | oint Sources |                           |                           | No                      | npoint Source              | a,b                        |                            |
|---------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|-------------|--------------|---------------------------|---------------------------|-------------------------|----------------------------|----------------------------|----------------------------|
| Water Quality Indicator   | Subwatershed                   | Condition                                                                                         | Industrial<br>Point Sources | SSOs        | CSOs         | WWTPs                     | Subtotal                  | Urban                   | Rural <sup>C</sup>         | Subtotal                   | Total                      |
| Total Phosphorus (pounds) | Batavia Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0               | 0<br>0<br>0               | 120<br>120<br>120       | 480<br>460<br>460          | 600<br>580<br>580          | 600<br>580<br>580          |
|                           |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                             | 0                           | 0           | 0            | 0                         | 0                         | 120<br>120              | 350<br>350                 | 470<br>470                 | 470<br>470                 |
|                           | Cedar Creek                    | Existing Revised 2020 Baseline Revised 2020 Baseline                                              | <10<br><10<br><10           | 0<br>0<br>0 | 0<br>0<br>0  | 7,400<br>10,050<br>10,050 | 7,400<br>10,050<br>10,050 | 3,310<br>3,430<br>3,430 | 15,390<br>14,870<br>14,870 | 18,700<br>18,300<br>18,300 | 26,100<br>28,350<br>28,350 |
|                           |                                | with Five-Year LOP<br>Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | <10<br><10                  | 0<br>0      | 0            | 10,050<br>10,050          | 10,050<br>10,050          | 3,000<br>2,810          | 10,150<br>8,930            | 13,150<br>11,740           | 23,200<br>21,790           |
|                           | Cedar Lake                     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0               | 0<br>0<br>0               | 390<br>380<br>380       | 2,250<br>2,200<br>2,200    | 2,640<br>2,580<br>2,580    | 2,640<br>2,580<br>2,580    |
|                           |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                             | 0                           | 0<br>0      | 0            | 0                         | 0<br>0                    | 250<br>240              | 1,600<br>1,410             | 1,850<br>1,650             | 1,850<br>1,650             |
|                           | Chambers Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0               | 0<br>0<br>0               | 150<br>150<br>150       | 500<br>490<br>490          | 650<br>640<br>640          | 650<br>640<br>640          |
|                           |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                             | 0                           | 0           | 0            | 0                         | 0                         | 150<br>150              | 390<br>390                 | 540<br>540                 | 540<br>540                 |
|                           | East Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0               | 0<br>0<br>0               | 460<br>460<br>460       | 2,140<br>2,130<br>2,130    | 2,600<br>2,590<br>2,590    | 2,600<br>2,590<br>2,590    |
|                           |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0                           | 0<br>0      | 0            | 0<br>0                    | 0<br>0                    | 460<br>440              | 1,980<br>1,970             | 2,440<br>2,410             | 2,440<br>2,410             |
|                           | Kettle Moraine Lake            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0               | 0<br>0<br>0               | 270<br>270<br>270       | 3,180<br>3,050<br>3,050    | 3,450<br>3,320<br>3,320    | 3,450<br>3,320<br>3,320    |
|                           |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0                           | 0           | 0            | 0                         | 0                         | 260<br>260              | 1,810<br>1,770             | 2,070<br>2,030             | 2,070<br>2,030             |

|                                       |                        |                                                                                           |                                  | P                 | oint Sources            |                            |                                  | No                               | npoint Source           | <sub>e</sub> a,b                 |                                     |
|---------------------------------------|------------------------|-------------------------------------------------------------------------------------------|----------------------------------|-------------------|-------------------------|----------------------------|----------------------------------|----------------------------------|-------------------------|----------------------------------|-------------------------------------|
| Water Quality Indicator               | Subwatershed           | Condition                                                                                 | Industrial<br>Point Sources      | SSOs              | CSOs                    | WWTPs                      | Subtotal                         | Urban                            | Rural <sup>C</sup>      | Subtotal                         | Total                               |
| Total Phosphorus (pounds) (continued) | Kewaskum Creek         | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                      | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                      | 370<br>380<br>380                | 1,870<br>1,800<br>1,800 | 2,240<br>2,180<br>2,180          | 2,240<br>2,180<br>2,180             |
|                                       |                        | Recommended Pland<br>Extreme Measures<br>Conditiond                                       | 0<br>0                           | 0<br>0            | 0                       | 0                          | 0                                | 360<br>320                       | 1,690<br>1,530          | 2,050<br>1,850                   | 2,050<br>1,850                      |
|                                       | Lake Fifteen Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                      | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                      | 220<br>220<br>220                | 1,200<br>1,180<br>1,180 | 1,420<br>1,400<br>1,400          | 1,420<br>1,400<br>1,400             |
|                                       |                        | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0                                | 0                 | 0                       | 0                          | 0                                | 220<br>210                       | 1,080<br>1,050          | 1,300<br>1,260                   | 1,300<br>1,260                      |
|                                       | Lincoln Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 4,260<br>4,260<br>4,260<br>4,260 | 200<br>180<br>160 | 80<br>10<br>10          | 0<br>0<br>0                | 4,540<br>4,450<br>4,430<br>4,430 | 7,870<br>6,900<br>6,900<br>5,020 | 70<br>80<br>80<br>250   | 7,940<br>6,980<br>6,980<br>5,270 | 12,480<br>11,430<br>11,410<br>9,700 |
|                                       |                        | Extreme Measures<br>Condition <sup>d</sup>                                                | 0                                | 160               | 10                      | 0                          | 170                              | 4,390                            | 250                     | 4,640                            | 4,810                               |
|                                       | Lower Cedar Creek      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 10<br>10<br>10                   | 10<br>10<br>10    | 0<br>0<br>0             | 5,730<br>7,470<br>7,470    | 5,750<br>7,490<br>7,490          | 3,200<br>3,330<br>3,330          | 5,210<br>4,990<br>4,990 | 8,410<br>8,320<br>8,320          | 14,160<br>15,810<br>15,810          |
|                                       |                        | Recommended Pland Extreme Measures Conditiond                                             | 10<br>0                          | 10<br>10          | 0                       | 7,470<br>7,470             | 7,490<br>7,480                   | 2,760<br>2,260                   | 3,620<br>3,320          | 6,380<br>5,580                   | 13,870<br>13,060                    |
|                                       | Lower Milwaukee River  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 73,470<br>73,470<br>73,470       | 540<br>730<br>360 | 1,710<br>1,210<br>1,070 | 0<br>0<br>0                | 75,720<br>75,410<br>74,900       | 14,780<br>13,280<br>13,280       | 6,740<br>6,290<br>6,290 | 21,520<br>19,570<br>19,570       | 97,240<br>94,980<br>94,470          |
|                                       |                        | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 73,470<br>0                      | 360<br>360        | 1,070<br>1,070          | 0                          | 74,900<br>1,430                  | 9,790<br>8,260                   | 5,570<br>4,590          | 15,360<br>12,850                 | 90,260<br>14,280                    |
|                                       | Middle Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 10<br>10<br>10                   | 0<br>0<br>0       | 0<br>0<br>0             | 14,740<br>19,420<br>19,420 | 14,750<br>19,430<br>19,430       | 3,480<br>3,710<br>3,710          | 6,150<br>6,120<br>6,120 | 9,630<br>9,830<br>9,830          | 24,380<br>29,260<br>29,260          |
|                                       |                        | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 10<br>0                          | 0                 | 0                       | 19,420<br>19,420           | 19,430<br>19,420                 | 2,930<br>2,660                   | 5,240<br>4,500          | 8,170<br>7,160                   | 27,600<br>26,580                    |
|                                       | Mink Creek             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                      | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                      | 320<br>320<br>320                | 1,120<br>1,080<br>1,080 | 1,440<br>1,400<br>1,400          | 1,440<br>1,400<br>1,400             |
|                                       |                        | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0                                | 0                 | 0                       | 0                          | 0<br>0                           | 310<br>310                       | 850<br>880              | 1,160<br>1,190                   | 1,160<br>1,190                      |

Table M-3 (continued)

|                                       |                                    |                                                                             |                             | P                 | oint Sources |                            |                            | No                      | npoint Source           | a,b                      |                            |
|---------------------------------------|------------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------------|--------------|----------------------------|----------------------------|-------------------------|-------------------------|--------------------------|----------------------------|
| Water Quality Indicator               | Subwatershed                       | Condition                                                                   | Industrial<br>Point Sources | SSOs              | CSOs         | WWTPs                      | Subtotal                   | Urban                   | Rural <sup>C</sup>      | Subtotal                 | Total                      |
| Total Phosphorus (pounds) (continued) | North Branch<br>Milwaukee River    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 15,870<br>15,870<br>15,870  | <10<br><10<br><10 | 0<br>0<br>0  | 6,580<br>6,830<br>6,830    | 22,450<br>22,700<br>22,700 | 1,480<br>1,480<br>1,480 | 6,240<br>6,080<br>6,080 | 7,720<br>7,560<br>7,560  | 30,170<br>30,260<br>30,260 |
|                                       |                                    | Recommended Pland Extreme Measures Conditiond                               | 15,870<br>15,870            | <10<br><10        | 0            | 6,830<br>6,830             | 22,700<br>22,700           | 1,420<br>1,380          | 5,620<br>5,370          | 7,040<br>6,750           | 29,740<br>29,450           |
|                                       | Silver Creek<br>(Sheboygan County) | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0  | 900<br>1,070<br>1,070      | 900<br>1,070<br>1,070      | 830<br>940<br>940       | 1,350<br>1,300<br>1,300 | 2,180<br>2,240<br>2,240  | 3,080<br>3,310<br>3,310    |
|                                       |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0                 | 0            | 1,070<br>1,070             | 1,070<br>1,070             | 750<br>720              | 1,320<br>1,300          | 2,070<br>2,020           | 3,140<br>3,090             |
|                                       | Silver Creek (West Bend)           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0  | 0<br>0<br>0                | 0<br>0<br>0                | 1,280<br>1,400<br>1,400 | 730<br>750<br>750       | 2,010<br>2,150<br>2,150  | 2,010<br>2,150<br>2,150    |
|                                       |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0                 | 0            | 0                          | 0                          | 1,200<br>1,040          | 670<br>570              | 1,870<br>1,610           | 1,870<br>1,610             |
|                                       | Stony Creek                        | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0  | 0<br>0<br>0                | 0<br>0<br>0                | 310<br>310<br>310       | 1,090<br>1,060<br>1,060 | 1,400<br>1,370<br>1,370  | 1,400<br>1,370<br>1,370    |
|                                       |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0<br>0                      | 0                 | 0            | 0<br>0                     | 0<br>0                     | 310<br>300              | 960<br>950              | 1,270<br>1,250           | 1,270<br>1,250             |
|                                       | Upper Lower<br>Milwaukee River     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 140<br>140<br>140           | 30<br>30<br>30    | 0 0 0        | 12,850<br>17,370<br>17,370 | 13,020<br>17,540<br>17,540 | 3,480<br>3,840<br>3,840 | 5,120<br>4,810<br>4,810 | 8,600<br>8,650<br>8,650  | 21,620<br>26,190<br>26,190 |
|                                       |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 140<br>0                    | 30<br>30          | 0            | 17,370<br>17,370           | 17,540<br>17,400           | 2,960<br>2,570          | 4,240<br>3,900          | 7,200<br>6,470           | 24,740<br>23,870           |
|                                       | Upper Milwaukee River              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 80<br>80<br>80              | 0<br>0<br>0       | 0<br>0<br>0  | 3,540<br>4,620<br>4,620    | 3,620<br>4,700<br>4,700    | 1,400<br>1,480<br>1,480 | 8,830<br>8,420<br>8,420 | 10,230<br>9,900<br>9,900 | 13,850<br>14,600<br>14,600 |
|                                       |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 80<br>70                    | 0                 | 0            | 4,620<br>4,620             | 4,700<br>4,690             | 1,290<br>1,220          | 5,990<br>5,670          | 7,280<br>6,890           | 11,980<br>11,580           |
|                                       | Watercress Creek                   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0  | 0<br>0<br>0                | 0<br>0<br>0                | 300<br>300<br>300       | 2,360<br>2,290<br>2,290 | 2,660<br>2,590<br>2,590  | 2,660<br>2,590<br>2,590    |
|                                       |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0                 | 0            | 0                          | 0                          | 240<br>240              | 1,540<br>1,480          | 1,780<br>1,720           | 1,780<br>1,720             |

|                                       |                                |                                                                             |                             | P                 | oint Sources            |                            |                               | No                                  | npoint Source                       | a,b                                 |                                     |
|---------------------------------------|--------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------------|-------------------------|----------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Water Quality Indicator               | Subwatershed                   | Condition                                                                   | Industrial<br>Point Sources | SSOs              | CSOs                    | WWTPs                      | Subtotal                      | Urban                               | Rural <sup>C</sup>                  | Subtotal                            | Total                               |
| Total Phosphorus (pounds) (continued) | West Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 1,270<br>1,260<br>1,260             | 9,040<br>8,630<br>8,630             | 10,310<br>9,890<br>9,890            | 10,310<br>9,890<br>9,890            |
|                                       |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0<br>0                      | 0<br>0            | 0<br>0                  | 0<br>0                     | 0                             | 1,140<br>1,110                      | 7,820<br>7,320                      | 8,960<br>8,430                      | 8,960<br>8,430                      |
|                                       | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 93,840<br>93,840<br>93,840  | 780<br>950<br>560 | 1,790<br>1,220<br>1,080 | 51,740<br>66,830<br>66,830 | 148,150<br>162,840<br>162,310 | 45,290<br>43,960<br>43,960          | 81,060<br>78,080<br>78,080          | 126,350<br>122,040<br>122,040       | 274,500<br>284,880<br>284,350       |
|                                       |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 93,840<br>15,940            | 560<br>560        | 1,080<br>1,080          | 66,830<br>66,830           | 162,310<br>84,410             | 34,940<br>31,010                    | 66,740<br>57,500                    | 97,680<br>88,510                    | 259,990<br>172,920                  |
| Total Suspended Solids (pounds)       | Batavia Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 40,000<br>40,000<br>40,000          | 186,000<br>180,000<br>180,000       | 226,000<br>220,000<br>220,000       | 226,000<br>220,000<br>220,000       |
|                                       |                                | Recommended Pland Extreme Measures Conditiond                               | 0                           | 0<br>0            | 0                       | 0                          | 0                             | 24,000<br>24,000                    | 84,000<br>88,000                    | 108,000<br>112,000                  | 108,000<br>112,000                  |
|                                       | Cedar Creek                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 24,000<br>32,000<br>32,000 | 24,000<br>32,000<br>32,000    | 1,504,000<br>1,526,000<br>1,526,000 | 6,782,000<br>6,632,000<br>6,632,000 | 8,286,000<br>8,158,000<br>8,158,000 | 8,310,000<br>8,190,000<br>8,190,000 |
|                                       |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0<br>0                      | 0<br>0            | 0<br>0                  | 32,000<br>32,000           | 32,000<br>32,000              | 908,000<br>870,000                  | 3,354,000<br>3,486,000              | 4,262,000<br>4,356,000              | 4,294,000<br>4,388,000              |
|                                       | Cedar Lake                     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 186,000<br>180,000<br>180,000       | 1,070,000<br>1,048,000<br>1,048,000 | 1,256,000<br>1,228,000<br>1,228,000 | 1,256,000<br>1,228,000<br>1,228,000 |
|                                       |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0<br>0            | 0                       | 0                          | 0                             | 86,000<br>82,000                    | 542,000<br>542,000                  | 628,000<br>624,000                  | 628,000<br>624,000                  |
|                                       | Chambers Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 52,000<br>52,000<br>52,000          | 200,000<br>194,000<br>194,000       | 252,000<br>246,000<br>246,000       | 252,000<br>246,000<br>246,000       |
|                                       |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0                 | 0<br>0                  | 0<br>0                     | 0                             | 30,000<br>30,000                    | 90,000<br>94,000                    | 120,000<br>124,000                  | 120,000<br>124,000                  |
|                                       | East Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 150,000<br>150,000<br>150,000       | 860,000<br>852,000<br>852,000       | 1,010,000<br>1,002,000<br>1,002,000 | 1,010,000<br>1,002,000<br>1,002,000 |
|                                       |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0<br>0            | 0<br>0                  | 0<br>0                     | 0<br>0                        | 90,000<br>88,000                    | 476,000<br>486,000                  | 566,000<br>574,000                  | 566,000<br>574,000                  |

|                                             |                        |                                                                                           |                               | P                          | oint Sources                 |                            |                               | Noi                                 | npoint Source                       | a,b                                 |                                     |
|---------------------------------------------|------------------------|-------------------------------------------------------------------------------------------|-------------------------------|----------------------------|------------------------------|----------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Water Quality Indicator                     | Subwatershed           | Condition                                                                                 | Industrial<br>Point Sources   | SSOs                       | CSOs                         | WWTPs                      | Subtotal                      | Urban                               | Rural <sup>C</sup>                  | Subtotal                            | Total                               |
| Total Suspended Solids (pounds) (continued) | Kettle Moraine Lake    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                   | 0<br>0<br>0                | 0<br>0<br>0                  | 0<br>0<br>0                | 0<br>0<br>0                   | 126,000<br>126,000<br>126,000       | 1,916,000<br>1,874,000<br>1,874,000 | 2,042,000<br>2,000,000<br>2,000,000 | 2,042,000<br>2,000,000<br>2,000,000 |
|                                             |                        | Recommended Pland Extreme Measures Conditiond                                             | 0                             | 0<br>0                     | 0<br>0                       | 0<br>0                     | 0<br>0                        | 80,000<br>78,000                    | 956,000<br>1,018,000                | 1,036,000<br>1,096,000              | 1,036,000<br>1,096,000              |
|                                             | Kewaskum Creek         | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                   | 0<br>0<br>0                | 0<br>0<br>0                  | 0<br>0<br>0                | 0<br>0<br>0                   | 162,000<br>160,000<br>160,000       | 878,000<br>842,000<br>842,000       | 1,040,000<br>1,002,000<br>1,002,000 | 1,040,000<br>1,002,000<br>1,002,000 |
|                                             |                        | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0                             | 0<br>0                     | 0                            | 0                          | 0                             | 100,000<br>96,000                   | 562,000<br>586,000                  | 662,000<br>682,000                  | 662,000<br>682,000                  |
|                                             | Lake Fifteen Creek     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0<br>0<br>0                   | 0 0 0                      | 0<br>0<br>0                  | 0<br>0<br>0                | 0<br>0<br>0                   | 94,000<br>94,000<br>94,000          | 686,000<br>680,000<br>680,000       | 780,000<br>774,000<br>774,000       | 780,000<br>774,000<br>774,000       |
|                                             |                        | Extreme Measures Conditiond                                                               | 0                             | 0                          | 0                            | 0                          | 0                             | 58,000<br>56,000                    | 408,000<br>420,000                  | 466,000<br>476,000                  | 466,000<br>476,000                  |
|                                             | Lincoln Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 28,000<br>28,000<br>28,000    | 6,000<br>6,000<br>4,000    | 4,000<br>0<br>0              | 0<br>0<br>0                | 38,000<br>34,000<br>32,000    | 2,778,000<br>2,170,000<br>2,170,000 | 48,000<br>42,000<br>42,000          | 2,826,000<br>2,212,000<br>2,212,000 | 2,864,000<br>2,246,000<br>2,244,000 |
|                                             |                        | Recommended Pland Extreme Measures Conditiond                                             | 28,000<br>28,000              | 4,000<br>4,000             | 0                            | 0                          | 32,000<br>32,000              | 1,152,000<br>1,152,000              | 100,000<br>100,000                  | 1,252,000<br>1,252,000              | 1,284,000<br>1,284,000              |
|                                             | Lower Cedar Creek      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                   | 0<br>0<br>0                | 0 0 0                        | 46,000<br>62,000<br>62,000 | 46,000<br>62,000<br>62,000    | 1,256,000<br>1,270,000<br>1,270,000 | 3,094,000<br>3,026,000<br>3,026,000 | 4,350,000<br>4,296,000<br>4,296,000 | 4,396,000<br>4,358,000<br>4,358,000 |
|                                             |                        | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0                             | 0                          | 0                            | 62,000<br>62,000           | 62,000<br>62,000              | 684,000<br>644,000                  | 1,692,000<br>1,764,000              | 2,376,000<br>2,408,000              | 2,438,000<br>2,470,000              |
|                                             | Lower Milwaukee River  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 370,000<br>370,000<br>370,000 | 16,000<br>20,000<br>10,000 | 139,650<br>103,670<br>91,810 | 0<br>0<br>0                | 525,650<br>493,670<br>471,810 | 5,236,000<br>4,224,000<br>4,224,000 | 3,032,000<br>2,682,000<br>2,682,000 | 8,268,000<br>6,906,000<br>6,906,000 | 8,793,650<br>7,399,670<br>7,377,810 |
|                                             |                        | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 370,000<br>370,000            | 10,000<br>10,000           | 91,810<br>91,810             | 0                          | 471,810<br>471,810            | 2,300,000<br>2,264,000              | 1,678,000<br>1,692,000              | 3,978,000<br>3,956,000              | 4,449,810<br>4,427,810              |
|                                             | Middle Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                   | 0<br>0<br>0                | 0<br>0<br>0                  | 44,000<br>60,000<br>60,000 | 44,000<br>60,000<br>60,000    | 1,510,000<br>1,564,000<br>1,564,000 | 3,088,000<br>2,992,000<br>2,992,000 | 4,598,000<br>4,556,000<br>4,556,000 | 4,642,000<br>4,616,000<br>4,616,000 |
|                                             |                        | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0                             | 0                          | 0                            | 60,000<br>60,000           | 60,000<br>60,000              | 804,000<br>768,000                  | 1,758,000<br>1,782,000              | 2,562,000<br>2,550,000              | 2,622,000<br>2,610,000              |

|                                             |                                    |                                                                             |                             | P                       | oint Sources |                               |                               | No                                  | npoint Source                       | a,b                                 |                                     |
|---------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------------------|--------------|-------------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Water Quality Indicator                     | Subwatershed                       | Condition                                                                   | Industrial<br>Point Sources | SSOs                    | CSOs         | WWTPs                         | Subtotal                      | Urban                               | Rural <sup>C</sup>                  | Subtotal                            | Total                               |
| Total Suspended Solids (pounds) (continued) | Mink Creek                         | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0  | 0<br>0<br>0                   | 0<br>0<br>0                   | 106,000<br>106,000<br>106,000       | 460,000<br>442,000<br>442,000       | 566,000<br>548,000<br>548,000       | 566,000<br>548,000<br>548,000       |
|                                             |                                    | Recommended Pland Extreme Measures Conditiond                               | 0                           | 0                       | 0<br>0       | 0<br>0                        | 0<br>0                        | 62,000<br>60,000                    | 204,000<br>218,000                  | 266,000<br>278,000                  | 266,000<br>278,000                  |
|                                             | North Branch<br>Milwaukee River    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 54,000<br>54,000<br>54,000  | 0<br>0<br>0             | 0<br>0<br>0  | 8,000<br>22,280<br>22,280     | 62,000<br>76,280<br>76,280    | 532,000<br>528,000<br>528,000       | 2,666,000<br>2,584,000<br>2,584,000 | 3,198,000<br>3,112,000<br>3,112,000 | 3,260,000<br>3,188,280<br>3,188,280 |
|                                             |                                    | Recommended Pland Extreme Measures Conditiond                               | 54,000<br>54,000            | 0                       | 0            | 22,280<br>22,280              | 76,280<br>76,280              | 306,000<br>298,000                  | 1,512,000<br>1,536,000              | 1,818,000<br>1,834,000              | 1,894,280<br>1,910,280              |
|                                             | Silver Creek<br>(Sheboygan County) | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0  | 16,000<br>20,000<br>20,000    | 16,000<br>20,000<br>20,000    | 292,000<br>328,000<br>328,000       | 532,000<br>514,000<br>514,000       | 824,000<br>842,000<br>842,000       | 840,000<br>862,000<br>862,000       |
|                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0                       | 0            | 20,000<br>20,000              | 20,000<br>20,000              | 152,000<br>148,000                  | 322,000<br>324,000                  | 474,000<br>472,000                  | 494,000<br>492,000                  |
|                                             | Silver Creek (West Bend)           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0  | 0<br>0<br>0                   | 0<br>0<br>0                   | 526,000<br>542,000<br>542,000       | 470,000<br>458,000<br>458,000       | 996,000<br>1,000,000<br>1,000,000   | 996,000<br>1,000,000<br>1,000,000   |
|                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0                       | 0            | 0                             | 0<br>0                        | 278,000<br>264,000                  | 264,000<br>262,000                  | 542,000<br>526,000                  | 542,000<br>526,000                  |
|                                             | Stony Creek                        | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0  | 0<br>0<br>0                   | 0<br>0<br>0                   | 100,000<br>100,000<br>100,000       | 434,000<br>426,000<br>426,000       | 534,000<br>526,000<br>526,000       | 534,000<br>526,000<br>526,000       |
|                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0                       | 0            | 0<br>0                        | 0<br>0                        | 58,000<br>58,000                    | 228,000<br>236,000                  | 286,000<br>294,000                  | 286,000<br>294,000                  |
|                                             | Upper Lower<br>Milwaukee River     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 2,000<br>2,000<br>2,000 | 0<br>0<br>0  | 130,000<br>172,000<br>172,000 | 132,000<br>174,000<br>174,000 | 1,748,000<br>1,904,000<br>1,904,000 | 2,574,000<br>2,422,000<br>2,422,000 | 4,322,000<br>4,326,000<br>4,326,000 | 4,454,000<br>4,500,000<br>4,500,000 |
|                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 2,000<br>2,000          | 0            | 172,000<br>172,000            | 174,000<br>174,000            | 952,000<br>900,000                  | 1,416,000<br>1,446,000              | 2,368,000<br>2,346,000              | 2,542,000<br>2,520,000              |
|                                             | Upper Milwaukee River              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 2,000<br>2,000<br>2,000     | 0<br>0<br>0             | 0<br>0<br>0  | 26,000<br>36,000<br>36,000    | 28,000<br>38,000<br>38,000    | 580,000<br>610,000<br>610,000       | 4,714,000<br>4,574,000<br>4,574,000 | 5,294,000<br>5,184,000<br>5,184,000 | 5,322,000<br>5,222,000<br>5,222,000 |
|                                             |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 2,000<br>2,000              | 0                       | 0            | 36,000<br>36,000              | 38,000<br>38,000              | 352,000<br>344,000                  | 2,514,000<br>2,650,000              | 2,866,000<br>2,994,000              | 2,904,000<br>3,032,000              |

|                                                 |                                |                                                                                                                       |                                                     | Po                                             | oint Sources                                     |                                                     |                                                     | Noi                                                              | npoint Source                                                      | a,b                                                                |                                                                    |
|-------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator                         | Subwatershed                   | Condition                                                                                                             | Industrial<br>Point Sources                         | SSOs                                           | CSOs                                             | WWTPs                                               | Subtotal                                            | Urban                                                            | Rural <sup>C</sup>                                                 | Subtotal                                                           | Total                                                              |
| Total Suspended Solids (pounds) (continued)     | Watercress Creek               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                               | 0<br>0<br>0                                         | 0<br>0<br>0                                    | 0<br>0<br>0                                      | 0<br>0<br>0                                         | 0<br>0<br>0                                         | 134,000<br>134,000<br>134,000                                    | 1,388,000<br>1,358,000<br>1,358,000                                | 1,522,000<br>1,492,000<br>1,492,000                                | 1,522,000<br>1,492,000<br>1,492,000                                |
|                                                 |                                | Recommended Pland Extreme Measures Conditiond                                                                         | 0                                                   | 0                                              | 0<br>0                                           | 0<br>0                                              | 0<br>0                                              | 74,000<br>72,000                                                 | 738,000<br>782,000                                                 | 812,000<br>854,000                                                 | 812,000<br>854,000                                                 |
|                                                 | West Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0<br>0                                    | 0<br>0<br>0                                    | 0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0                                    | 596,000<br>590,000<br>590,000<br>356,000<br>348,000              | 4,682,000<br>4,538,000<br>4,538,000<br>2,954,000<br>3,078,000      | 5,278,000<br>5,128,000<br>5,128,000<br>3,310,000<br>3,426,000      | 5,278,000<br>5,128,000<br>5,128,000<br>3,310,000<br>3,426,000      |
|                                                 | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 454,000<br>454,000<br>454,000<br>454,000<br>454,000 | 24,000<br>28,000<br>16,000<br>16,000<br>16,000 | 143,650<br>103,670<br>91,810<br>91,810<br>91,810 | 294,000<br>404,280<br>404,280<br>404,280<br>404,280 | 915,650<br>989,950<br>966,090<br>966,090<br>966,090 | 17,708,000<br>16,398,000<br>16,398,000<br>8,906,000<br>8,644,000 | 39,760,000<br>38,360,000<br>38,360,000<br>21,852,000<br>22,590,000 | 57,468,000<br>54,758,000<br>54,758,000<br>30,758,000<br>31,234,000 | 58,383,650<br>55,747,950<br>55,724,090<br>31,724,090<br>32,200,090 |
| Fecal Coliform Bacteria<br>(trillions of cells) | Batavia Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 73.50<br>73.30<br>73.30<br>72.02<br>70.09                        | 87.60<br>87.52<br>87.52<br>29.67<br>28.65                          | 161.10<br>160.82<br>160.82<br>101.69<br>98.74                      | 161.10<br>160.82<br>160.82<br>101.69<br>98.74                      |
|                                                 | Cedar Creek                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0.01<br>0.01<br>0.01<br>0.01<br>0.01                | 0.00<br>0.00<br>0.00<br>0.00                   | 0.00<br>0.00<br>0.00<br>0.00                     | 0.20<br>0.27<br>0.27<br>0.27<br>0.27                | 0.21<br>0.28<br>0.28<br>0.28<br>0.28                | 1,664.36<br>1,505.35<br>1,505.35<br>843.05<br>802.19             | 1,878.04<br>1,595.56<br>1,595.56<br>698.22<br>660.43               | 3,542.40<br>3,100.91<br>3,100.91<br>1,541.27<br>1,462.62           | 3,542.61<br>3,101.19<br>3,101.19<br>1,541.55<br>1,462.90           |
|                                                 | Cedar Lake                     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 212.84<br>3.03<br>3.03<br>35.11<br>33.60                         | 1,362.21<br>51.54<br>51.54<br>223.83<br>213.60                     | 1,575.05<br>54.57<br>54.57<br>258.94<br>247.20                     | 1,575.05<br>54.57<br>54.57<br>258.94<br>247.20                     |
|                                                 | Chambers Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 82.08<br>81.86<br>81.86<br>80.42<br>78.27                        | 105.88<br>105.74<br>105.74<br>52.27<br>50.63                       | 187.96<br>187.60<br>187.60<br>132.69<br>128.90                     | 187.96<br>187.60<br>187.60<br>132.69<br>128.90                     |

|                                                             |                                |                                                                                                                                   |                                      | Р                                              | oint Sources                                             |                                      |                                                          | Noi                                                      | npoint Source                                  | a,b                                                      |                                                           |
|-------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|----------------------------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| Water Quality Indicator                                     | Subwatershed                   | Condition                                                                                                                         | Industrial<br>Point Sources          | SSOs                                           | CSOs                                                     | WWTPs                                | Subtotal                                                 | Urban                                                    | Rural <sup>C</sup>                             | Subtotal                                                 | Total                                                     |
| Fecal Coliform Bacteria<br>(trillions of cells) (continued) | East Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00                             | 0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 270.07<br>269.35<br>269.35<br>232.11<br>225.89           | 521.74<br>532.82<br>532.82<br>388.94<br>378.02 | 791.81<br>802.17<br>802.17<br>621.05<br>603.91           | 791.81<br>802.17<br>802.17<br>621.05<br>603.91            |
|                                                             | Kettle Moraine Lake            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 157.94<br>157.84<br>157.84<br>150.66<br>147.89           | 540.89<br>540.62<br>540.62<br>328.19<br>321.79 | 698.83<br>698.46<br>698.46<br>478.85<br>469.68           | 698.83<br>698.46<br>698.46<br>478.85<br>469.68            |
|                                                             | Kewaskum Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 198.48<br>131.68<br>131.68<br>105.02<br>100.12           | 180.39<br>204.79<br>204.79<br>74.18<br>70.16   | 378.87<br>336.47<br>336.47<br>179.20<br>170.28           | 378.87<br>336.47<br>336.47<br>179.20<br>170.28            |
|                                                             | Lake Fifteen Creek             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Condition <sup>d</sup> | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 114.69<br>114.49<br>114.49<br>112.75<br>110.14           | 340.61<br>340.00<br>340.00<br>283.49<br>276.22 | 455.30<br>454.49<br>454.49<br>396.24<br>386.36           | 455.30<br>454.49<br>454.49<br>396.24<br>386.36            |
|                                                             | Lincoln Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0.79<br>0.79<br>0.79<br>0.79<br>0.79 | 111.29<br>97.03<br>89.69<br>89.69<br>89.69     | 57.96<br>5.81<br>4.05<br>4.05<br>4.05                    | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 170.04<br>103.63<br>94.53<br>94.53<br>94.53              | 4,178.24<br>3,454.26<br>3,454.26<br>1,601.37<br>999.90   | 0.28<br>17.82<br>17.82<br>194.37<br>188.25     | 4,178.52<br>3,472.08<br>3,472.08<br>1,794.74<br>1,188.15 | 4,348.56<br>3,575.71<br>3,566.61<br>1,890.27<br>1,282.68  |
|                                                             | Lower Cedar Creek              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 2.78<br>2.78<br>2.78<br>2.78<br>2.78           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 1.67<br>2.17<br>2.17<br>2.17<br>2.17 | 4.45<br>4.95<br>4.95<br>4.95<br>4.95                     | 1,637.71<br>847.85<br>847.85<br>495.00<br>384.17         | 851.03<br>890.00<br>890.00<br>510.64<br>486.37 | 2,488.74<br>1,737.85<br>1,737.85<br>1,005.64<br>870.54   | 2,493.19<br>1,742.80<br>1,742.80<br>1,010.59<br>875.49    |
|                                                             | Lower Milwaukee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond             | 9.84<br>9.84<br>9.84<br>9.84<br>9.84 | 296.62<br>397.29<br>195.71<br>195.71<br>195.71 | 1,820.95<br>1,343.30<br>1,186.54<br>1,186.54<br>1,186.54 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 2,127.41<br>1,750.43<br>1,392.09<br>1,392.09<br>1,392.09 | 7,522.97<br>5,871.29<br>5,871.29<br>3,000.89<br>2,007.26 | 973.60<br>946.20<br>946.20<br>955.25<br>897.12 | 8,496.57<br>6,817.49<br>6,817.49<br>3,956.14<br>2,904.38 | 10,623.98<br>8,567.92<br>8,209.58<br>5,348.23<br>4,296.47 |

|                                                             |                                    |                                                                             |                             | P                       | oint Sources         |                         |                         | No                               | npoint Source                    | a,b                              |                                  |
|-------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------------------|----------------------|-------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Water Quality Indicator                                     | Subwatershed                       | Condition                                                                   | Industrial<br>Point Sources | SSOs                    | CSOs                 | WWTPs                   | Subtotal                | Urban                            | Rural <sup>C</sup>               | Subtotal                         | Total                            |
| Fecal Coliform Bacteria<br>(trillions of cells) (continued) | Middle Milwaukee River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0.02<br>0.02<br>0.02        | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00 | 27.70<br>37.73<br>37.73 | 27.72<br>37.75<br>37.75 | 1,909.21<br>647.52<br>647.52     | 1,396.42<br>1,366.47<br>1,366.47 | 3,305.63<br>2,013.99<br>2,013.99 | 3,333.35<br>2,051.74<br>2,051.74 |
|                                                             |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0.02<br>0.02                | 0.00<br>0.00            | 0.00<br>0.00         | 37.73<br>37.73          | 37.75<br>37.75          | 488.31<br>413.51                 | 726.49<br>695.63                 | 1,214.80<br>1,109.14             | 1,252.55<br>1,146.89             |
|                                                             | Mink Creek                         | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00    | 183.01<br>182.53<br>182.53       | 263.94<br>263.62<br>263.62       | 446.95<br>446.15<br>446.15       | 446.95<br>446.15<br>446.15       |
|                                                             |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0.00<br>0.00                | 0.00<br>0.00            | 0.00<br>0.00         | 0.00<br>0.00            | 0.00<br>0.00            | 179.33<br>174.53                 | 121.80<br>118.05                 | 301.13<br>292.58                 | 301.13<br>292.58                 |
|                                                             | North Branch                       | Existing                                                                    | 0.67                        | 1.77                    | 0.00                 | 8.19                    | 10.63                   | 814.80                           | 1,623.75                         | 2,438.55                         | 2,449.18                         |
|                                                             | Milwaukee River                    | Revised 2020 Baseline<br>Revised 2020 Baseline<br>with Five-Year LOP        | 0.67<br>0.67                | 1.77<br>1.77            | 0.00<br>0.00         | 8.26<br>8.26            | 10.70<br>10.70          | 812.17<br>812.17                 | 1,667.64<br>1,667.64             | 2,479.81<br>2,479.81             | 2,490.51<br>2,490.51             |
|                                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0.67<br>0.67                | 1.77<br>1.77            | 0.00<br>0.00         | 8.26<br>8.26            | 10.70<br>10.70          | 690356<br>671.28                 | 910.24<br>881.66                 | 1,600.80<br>1,552.94             | 1,611.50<br>1,563.64             |
|                                                             | Silver Creek<br>(Sheboygan County) | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0.05<br>0.05<br>0.05        | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00 | 0.82<br>0.97<br>0.97    | 0.87<br>1.02<br>1.02    | 599.28<br>314.93<br>314.93       | 295.74<br>309.31<br>309.31       | 895.02<br>624.24<br>624.24       | 895.89<br>625.26<br>625.26       |
|                                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0.05<br>0.05                | 0.00<br>0.00            | 0.00<br>0.00         | 0.97<br>0.97            | 1.02<br>1.02            | 192.44<br>185.99                 | 208.06<br>201.25                 | 400.50<br>387.24                 | 401.52<br>388.26                 |
|                                                             | Silver Creek (West Bend)           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00    | 722.20<br>193.65<br>193.65       | 210.56<br>184.03<br>184.03       | 932.76<br>377.68<br>377.68       | 932.76<br>377.68<br>377.68       |
|                                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0.00<br>0.00                | 0.00<br>0.00            | 0.00<br>0.00         | 0.00<br>0.00            | 0.00<br>0.00            | 231.76<br>162.80                 | 176.74<br>168.73                 | 408.50<br>331.53                 | 408.50<br>331.53                 |
|                                                             | Stony Creek                        | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00    | 188.85<br>188.35<br>188.35       | 271.65<br>271.24<br>271.24       | 460.50<br>459.59<br>459.59       | 460.50<br>459.59<br>459.59       |
|                                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0.00<br>0.00                | 0.00<br>0.00            | 0.00<br>0.00         | 0.00<br>0.00            | 0.00<br>0.00            | 185.05<br>180.09                 | 153.39<br>148.66                 | 338.44<br>328.75                 | 338.44<br>328.75                 |
|                                                             | Upper Lower<br>Milwaukee River     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0.62<br>0.62<br>0.62        | 16.58<br>16.58<br>16.58 | 0.00<br>0.00<br>0.00 | 1.75<br>2.22<br>2.22    | 18.95<br>19.42<br>19.42 | 1,849.48<br>1,463.29<br>1,463.29 | 1,104.93<br>1,189.59<br>1,189.59 | 2,954.41<br>2,652.88<br>2,652.88 | 2,973.36<br>2,672.30<br>2,672.30 |
|                                                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0.62<br>0.62                | 16.58<br>16.58          | 0.00<br>0.00         | 2.22<br>2.22            | 19.42<br>19.42          | 429.53<br>386.84                 | 557.42<br>534.96                 | 986.95<br>921.80                 | 1,006.37<br>941.22               |

|                                                             |                                |                                                                                           |                             | P                          | oint Sources                     |                         |                                  | No                                  | npoint Source                        | a,b                                        |                                            |
|-------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|----------------------------|----------------------------------|-------------------------|----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------------|
| Water Quality Indicator                                     | Subwatershed                   | Condition                                                                                 | Industrial<br>Point Sources | SSOs                       | CSOs                             | WWTPs                   | Subtotal                         | Urban                               | Rural <sup>C</sup>                   | Subtotal                                   | Total                                      |
| Fecal Coliform Bacteria<br>(trillions of cells) (continued) | Upper Milwaukee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0.11<br>0.11<br>0.11        | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00             | 1.21<br>1.45<br>1.45    | 1.32<br>1.56<br>1.56             | 820.18<br>792.32<br>792.32          | 809.09<br>835.49<br>835.49           | 1,629.27<br>1,627.81<br>1,627.81           | 1,630.59<br>1,629.37<br>1,629.37           |
|                                                             |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0.11<br>0.11                | 0.00<br>0.00               | 0.00<br>0.00                     | 1.45<br>1.45            | 1.56<br>1.56                     | 445.64<br>415.43                    | 267.21<br>257.02                     | 712.85<br>672.45                           | 714.41<br>674.01                           |
|                                                             | Watercress Creek               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00             | 201.89<br>201.74<br>201.74          | 723.77<br>723.37<br>723.37<br>422.03 | 925.66<br>925.11<br>925.11<br>589.05       | 925.66<br>925.11<br>925.11<br>589.05       |
|                                                             |                                | Extreme Measures<br>Condition <sup>d</sup>                                                | 0.00                        | 0.00                       | 0.00                             | 0.00                    | 0.00                             | 163.86                              | 413.72                               | 577.58                                     | 577.58                                     |
|                                                             | West Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00    | 0.00<br>0.00<br>0.00             | 697.12<br>690.13<br>690.13          | 824.04<br>823.45<br>823.45<br>315.69 | 1,521.16<br>1,513.58<br>1,513.58<br>862.06 | 1,521.16<br>1,513.58<br>1,513.58<br>862.06 |
|                                                             |                                | Extreme Measures Condition <sup>d</sup>                                                   | 0.00                        | 0.00                       | 0.00                             | 0.00                    | 0.00                             | 532.02                              | 303.02                               | 835.85                                     | 835.85                                     |
|                                                             | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 12.11<br>12.11<br>12.11     | 429.04<br>515.45<br>306.53 | 1,878.91<br>1,349.11<br>1,190.59 | 41.54<br>53.07<br>53.07 | 2,361.60<br>1,929.74<br>1,562.30 | 24,098.90<br>17,996.93<br>17,996.93 | 14,366.16<br>12,946.82<br>12,946.82  | 38,465.06<br>30,943.75<br>30,943.75        | 40,826.66<br>32,873.49<br>32,506.05        |
|                                                             |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 12.11<br>12.11              | 306.53<br>306.53           | 1,190.59<br>1,190.59             | 53.07<br>53.07          | 1,562.30<br>1,562.30             | 10,284.41<br>8,245.87               | 7,598.12<br>7,294.75                 | 17,882.53<br>15,540.62                     | 19,444.83<br>17,102.92                     |
| Total Nitrogen (pounds)                                     | Batavia Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                 | 0<br>0<br>0                | 0<br>0<br>0                      | 0<br>0<br>0             | 0<br>0<br>0                      | 560<br>560<br>560                   | 18,950<br>18,800<br>18,800           | 19,510<br>19,360<br>19,360                 | 19,510<br>19,360<br>19,360                 |
|                                                             |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0<br>0                      | 0                          | 0                                | 0                       | 0                                | 550<br>540                          | 10,800<br>10,020                     | 11,350<br>10,560                           | 11,350<br>10,560                           |
|                                                             | Cedar Creek                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 40<br>40<br>40              | 0<br>0<br>0                | 0<br>0<br>0                      | 4,580<br>6,220<br>6,220 | 4,620<br>6,260<br>6,260          | 13,420<br>14,180<br>14,180          | 286,240<br>273,120<br>273,120        | 299,660<br>287,300<br>287,300              | 304,280<br>293,560<br>293,560              |
|                                                             |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 40<br>40                    | 0                          | 0                                | 6,220<br>6,220          | 6,260<br>6,260                   | 12,570<br>11,910                    | 157,950<br>145,090                   | 170,520<br>157,000                         | 176,780<br>163,260                         |
|                                                             | Cedar Lake                     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                 | 0<br>0<br>0                | 0<br>0<br>0                      | 0<br>0<br>0             | 0<br>0<br>0                      | 1,610<br>1,610<br>1,610             | 24,990<br>24,560<br>24,560           | 26,600<br>26,170<br>26,170                 | 26,600<br>26,170<br>26,170                 |
|                                                             |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0<br>0                      | 0<br>0                     | 0<br>0                           | 0<br>0                  | 0                                | 1,050<br>1,010                      | 18,100<br>16,600                     | 19,150<br>17,610                           | 19,150<br>17,610                           |

|                                     |                                |                                                                                                   |                             | P                 | oint Sources     |                       |                         | No                               | npoint Source                        | <sub>e</sub> a,b                     |                                      |
|-------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|-------------------|------------------|-----------------------|-------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Water Quality Indicator             | Subwatershed                   | Condition                                                                                         | Industrial<br>Point Sources | SSOs              | CSOs             | WWTPs                 | Subtotal                | Urban                            | Rural <sup>C</sup>                   | Subtotal                             | Total                                |
| Total Nitrogen (pounds) (continued) | Chambers Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline                                              | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>0<br>0             | 650<br>650<br>650                | 18,970<br>18,830<br>18,830           | 19,620<br>19,480<br>19,480           | 19,620<br>19,480<br>19,480           |
|                                     |                                | with Five-Year LOP<br>Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0<br>0            | 0                | 0                     | 0<br>0                  | 640<br>620                       | 11,100<br>10,330                     | 11,740<br>10,950                     | 11,740<br>10,950                     |
|                                     | East Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>0<br>0             | 2,080<br>2,080<br>2,080          | 41,270<br>40,700<br>40,700           | 43,350<br>42,780<br>42,780           | 43,350<br>42,780<br>42,780           |
|                                     |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0<br>0                      | 0                 | 0                | 0                     | 0                       | 2,040<br>1,980                   | 28,000<br>26,760                     | 30,040<br>28,740                     | 30,040<br>28,740                     |
|                                     | Kettle Moraine Lake            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland         | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>0<br>0             | 1,220<br>1,220<br>1,220<br>1,170 | 58,780<br>57,820<br>57,820<br>21,990 | 60,000<br>59,040<br>59,040<br>23,160 | 60,000<br>59,040<br>59,040<br>23,160 |
|                                     |                                | Extreme Measures Conditiond                                                                       | ő                           | Ö                 | ő                | ő                     | ő                       | 1,150                            | 20,890                               | 22,040                               | 22,040                               |
|                                     | Kewaskum Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>0<br>0             | 1,780<br>1,850<br>1,850          | 42,100<br>39,920<br>39,920           | 43,880<br>41,770<br>41,770           | 43,880<br>41,770<br>41,770           |
|                                     |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 0<br>0                      | 0                 | 0                | 0                     | 0                       | 1,770<br>1,660                   | 36,640<br>33,270                     | 38,410<br>34,930                     | 38,410<br>34,930                     |
|                                     | Lake Fifteen Creek             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland         | 0<br>0<br>0                 | 0 0 0             | 0<br>0<br>0      | 0 0 0                 | 0 0 0                   | 920<br>920<br>920                | 20,270<br>20,080<br>20,080           | 21,190<br>21,000<br>21,000           | 21,190<br>21,000<br>21,000           |
|                                     |                                | Extreme Measures Condition <sup>d</sup>                                                           | 0                           | 0                 | 0                | 0                     | 0                       | 910<br>890                       | 15,630<br>14,680                     | 16,540<br>15,570                     | 16,540<br>15,570                     |
|                                     | Lincoln Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | 3,530<br>3,530<br>3,530     | 850<br>740<br>690 | 960<br>100<br>70 | 0<br>0<br>0           | 5,340<br>4,370<br>4,290 | 42,420<br>39,480<br>39,480       | 500<br>490<br>490                    | 42,920<br>39,970<br>39,970           | 48,260<br>44,340<br>44,260           |
|                                     |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | 3,530<br>3,530              | 690<br>690        | 70<br>70         | 0                     | 4,290<br>4,290          | 32,820<br>32,820                 | 920<br>920                           | 33,740<br>33,740                     | 38,030<br>38,030                     |
|                                     | Lower Cedar Creek              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                           | <10<br><10<br><10           | 20<br>20<br>20    | 0<br>0<br>0      | 950<br>1,230<br>1,230 | 970<br>1,250<br>1,250   | 16,910<br>17,980<br>17,980       | 95,100<br>89,350<br>89,350           | 112,010<br>107,330<br>107,330        | 112,980<br>108,580<br>108,580        |
|                                     |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                       | <10<br><10                  | 20<br>20          | 0                | 1,230<br>1,230        | 1,250<br>1,250          | 15,870<br>14,490                 | 50,050<br>46,520                     | 65,920<br>61,010                     | 67,170<br>62,260                     |

|                                     |                                    |                                                                                  |                             | P                       | oint Sources               |                            |                            | No                         | npoint Source                 | a,b                           |                               |
|-------------------------------------|------------------------------------|----------------------------------------------------------------------------------|-----------------------------|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|
| Water Quality Indicator             | Subwatershed                       | Condition                                                                        | Industrial<br>Point Sources | SSOs                    | CSOs                       | WWTPs                      | Subtotal                   | Urban                      | Rural <sup>C</sup>            | Subtotal                      | Total                         |
| Total Nitrogen (pounds) (continued) | Lower Milwaukee River              | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline<br>with Five-Year LOP | 64,010<br>64,010<br>64,010  | 2,270<br>3,040<br>1,500 | 16,950<br>11,630<br>10,300 | 0<br>0<br>0                | 83,230<br>78,680<br>75,810 | 79,020<br>76,690<br>76,690 | 109,560<br>82,750<br>82,750   | 188,580<br>159,440<br>159,440 | 271,810<br>238,120<br>235,250 |
|                                     |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>      | 64,010<br>64,010            | 1,500<br>1,500          | 10,300<br>10,300           | 0                          | 75,810<br>75,810           | 64,500<br>63,350           | 65,770<br>60,580              | 130,270<br>123,930            | 206,080<br>199,740            |
| Middle Milw                         | Middle Milwaukee River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 10<br>10<br>10              | 0<br>0<br>0             | 0 0 0                      | 27,930<br>37,670<br>37,670 | 27,940<br>37,680<br>37,680 | 16,190<br>17,330<br>17,330 | 123,790<br>109,140<br>109,140 | 139,980<br>126,470<br>126,470 | 167,920<br>164,150<br>164,150 |
|                                     |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>            | 10<br>10                    | 0<br>0                  | 0                          | 37,670<br>37,670           | 37,680<br>37,680           | 14,150<br>13,280           | 90,200<br>82,340              | 104,350<br>95,620             | 142,030<br>133,300            |
|                                     | Mink Creek                         | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                | 0<br>0<br>0                | 1,420<br>1,420<br>1,420    | 49,620<br>49,240<br>49,240    | 51,040<br>50,660<br>50,660    | 51,040<br>50,660<br>50,660    |
|                                     |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>      | 0                           | 0<br>0                  | 0                          | 0                          | 0<br>0                     | 1,390<br>1,350             | 27,170<br>25,240              | 28,560<br>26,590              | 28,560<br>26,590              |
|                                     | North Branch<br>Milwaukee River    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 7,560<br>7,560<br>7,560     | 10<br>10<br>10          | 0<br>0<br>0                | 9,530<br>9,780<br>9,780    | 17,100<br>17,350<br>17,350 | 6,410<br>6,410<br>6,410    | 171,210<br>167,880<br>167,880 | 177,620<br>174,290<br>174,290 | 194,720<br>191,640<br>191,640 |
|                                     |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>            | 7,560<br>7,560              | 10<br>10                | 0                          | 9,780<br>9,780             | 17,350<br>17,350           | 6,140<br>5,970             | 138,100<br>126,640            | 144,240<br>132,610            | 161,590<br>149,960            |
|                                     | Silver Creek<br>(Sheboygan County) | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0                | 350<br>420<br>420          | 350<br>420<br>420          | 3,680<br>4,300<br>4,300    | 44,550<br>42,790<br>42,790    | 48,230<br>47,090<br>47,090    | 48,580<br>47,510<br>47,510    |
|                                     |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>            | 0                           | 0                       | 0                          | 420<br>420                 | 420<br>420                 | 3,680<br>3,530             | 39,500<br>36,090              | 43,180<br>39,620              | 43,600<br>40,040              |
|                                     | Silver Creek (West Bend)           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                | 0<br>0<br>0                | 6,410<br>7,230<br>7,230    | 10,860<br>8,820<br>8,820      | 17,270<br>16,050<br>16,050    | 17,270<br>16,050<br>16,050    |
|                                     |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>      | 0<br>0                      | 0                       | 0                          | 0                          | 0<br>0                     | 6,520<br>6,020             | 7,380<br>6,840                | 13,900<br>12,860              | 13,900<br>12,860              |
|                                     | Stony Creek                        | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP          | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                | 0<br>0<br>0                | 1,440<br>1,440<br>1,440    | 39,770<br>39,540<br>39,540    | 41,210<br>40,980<br>40,980    | 41,210<br>40,980<br>40,980    |
|                                     |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>      | 0                           | 0                       | 0                          | 0                          | 0                          | 1,410<br>1,370             | 28,530<br>26,360              | 29,940<br>27,730              | 29,940<br>27,730              |

|                                     |                                |                                                                                                            |                                 | Р                        | oint Sources               |                                                |                                                    | No                                             | npoint Source                                     | a,b                                                |                                                     |
|-------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|----------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| Water Quality Indicator             | Subwatershed                   | Condition                                                                                                  | Industrial<br>Point Sources     | SSOs                     | CSOs                       | WWTPs                                          | Subtotal                                           | Urban                                          | Rural <sup>C</sup>                                | Subtotal                                           | Total                                               |
| Total Nitrogen (pounds) (continued) | Upper Lower<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures | 350<br>350<br>350<br>350<br>350 | 130<br>130<br>130<br>130 | 0<br>0<br>0                | 77,920<br>99,960<br>99,960<br>99,960<br>99,960 | 78,400<br>100,440<br>100,440<br>100,440<br>100,440 | 17,730<br>19,560<br>19,560<br>16,310<br>14,990 | 123,670<br>114,090<br>114,090<br>92,460<br>84,500 | 141,400<br>133,650<br>133,650<br>108,770<br>99,490 | 219,800<br>234,090<br>234,090<br>209,210<br>199,930 |
|                                     |                                | Conditiond                                                                                                 |                                 |                          |                            |                                                |                                                    | ,,,,,,                                         | ,                                                 |                                                    |                                                     |
|                                     | Upper Milwaukee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland                  | 30<br>30<br>30<br>30            | 0<br>0<br>0              | 0 0 0                      | 1,950<br>2,300<br>2,300<br>2,300               | 1,980<br>2,330<br>2,330<br>2.330                   | 6,740<br>7,130<br>7,130<br>6.060               | 194,190<br>188,880<br>188,880<br>116,360          | 200,930<br>196,010<br>196,010                      | 202,910<br>198,340<br>198,340<br>125,050            |
|                                     |                                | Extreme Measures Condition <sup>d</sup>                                                                    | 30                              | 0                        | 0                          | 2,300                                          | 2,330                                              | 6,130                                          | 107,150                                           | 113,280                                            | 115,610                                             |
|                                     | Watercress Creek               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland                  | 0<br>0<br>0                     | 0<br>0<br>0              | 0<br>0<br>0                | 0<br>0<br>0                                    | 0<br>0<br>0                                        | 1,480<br>1,480<br>1,480<br>1,220               | 40,150<br>39,440<br>39,440<br>20,970              | 41,630<br>40,920<br>40,920<br>22,190               | 41,630<br>40,920<br>40,920<br>22,190                |
|                                     |                                | Extreme Measures<br>Condition <sup>d</sup>                                                                 | 0                               | ő                        | ő                          | ő                                              | ő                                                  | 1,200                                          | 19,880                                            | 21,080                                             | 21,080                                              |
|                                     | West Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland                  | 0<br>0<br>0                     | 0<br>0<br>0              | 0<br>0<br>0                | 0<br>0<br>0                                    | 0<br>0<br>0                                        | 5,390<br>5,360<br>5,360<br>4,900               | 219,160<br>214,960<br>214,960<br>186,200          | 224,550<br>220,320<br>220,320<br>191,100           | 224,550<br>220,320<br>220,320<br>191,100            |
|                                     |                                | Extreme Measures<br>Condition <sup>d</sup>                                                                 | 0                               | 0                        | 0                          | 0                                              | 0                                                  | 4,770                                          | 169,470                                           | 174,240                                            | 174,240                                             |
|                                     | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                    | 75,530<br>75,530<br>75,530      | 3,280<br>3,940<br>2,350  | 17,910<br>11,730<br>10,370 | 123,210<br>157,580<br>157,580                  | 219,930<br>248,780<br>245,830                      | 227,480<br>228,880<br>228,880                  | 1,733,700<br>1,641,200<br>1,641,200               | 1,961,180<br>1,870,080<br>1,870,080                | 2,181,110<br>2,118,860<br>2,115,910                 |
|                                     |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                      | 75,530<br>75,530                | 2,350<br>2,350           | 10,370<br>10,370           | 157,580<br>157,580                             | 245,830<br>245,830                                 | 195,970<br>189,030                             | 1,163,820<br>1,070,170                            | 1,359,790<br>1,259,200                             | 1,605,620<br>1,505,030                              |
| Biochemical Oxygen Demand (pounds)  | Batavia Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                    | 0<br>0<br>0                     | 0<br>0<br>0              | 0<br>0<br>0                | 0<br>0<br>0                                    | 0<br>0<br>0                                        | 4,000<br>3,990<br>3,990                        | 24,470<br>23,680<br>23,680                        | 28,470<br>27,670<br>27,670                         | 28,470<br>27,670<br>27,670                          |
|                                     |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                      | 0                               | 0                        | 0                          | 0                                              | 0                                                  | 3,920<br>3,810                                 | 15,480<br>15,330                                  | 19,400<br>19,140                                   | 19,400<br>19,140                                    |
|                                     | Cedar Creek                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                    | 60<br>60<br>60                  | 0<br>0<br>0              | 0<br>0<br>0                | 10,370<br>14,080<br>14,080                     | 10,430<br>14,140<br>14,140                         | 105,650<br>109,810<br>109,810                  | 632,050<br>604,330<br>604,330                     | 737,700<br>714,140<br>714,140                      | 748,130<br>728,280<br>728,280                       |
|                                     |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                      | 60<br>60                        | 0<br>0                   | 0                          | 14,080<br>14,080                               | 14,140<br>14,140                                   | 95,970<br>91,420                               | 366,220<br>344,760                                | 462,190<br>436,180                                 | 476,330<br>450,320                                  |

|                                                |                                |                                                                             |                             | P                       | oint Sources    |             |                            | No                            | npoint Source                 | a,b                           |                               |
|------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------------------|-----------------|-------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Water Quality Indicator                        | Subwatershed                   | Condition                                                                   | Industrial<br>Point Sources | SSOs                    | CSOs            | WWTPs       | Subtotal                   | Urban                         | Rural <sup>C</sup>            | Subtotal                      | Total                         |
| Biochemical Oxygen Demand (pounds) (continued) | Cedar Lake                     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0     | 0<br>0<br>0 | 0<br>0<br>0                | 12,700<br>12,440<br>12,440    | 68,630<br>67,470<br>67,470    | 81,330<br>79,910<br>79,910    | 81,330<br>79,910<br>79,910    |
|                                                |                                | Recommended Pland Extreme Measures Conditiond                               | 0<br>0                      | 0<br>0                  | 0<br>0          | 0<br>0      | 0<br>0                     | 8,170<br>7,820                | 48,860<br>46,180              | 57,030<br>54,000              | 57,030<br>54,000              |
|                                                | Chambers Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0     | 0<br>0<br>0 | 0<br>0<br>0                | 5,140<br>5,130<br>5,130       | 23,440<br>22,900<br>22,900    | 28,580<br>28,030<br>28,030    | 28,580<br>28,030<br>28,030    |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0                       | 0               | 0           | 0                          | 5,040<br>4,900                | 16,150<br>16,070              | 21,190<br>20,970              | 21,190<br>20,970              |
|                                                | East Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0     | 0<br>0<br>0 | 0<br>0<br>0                | 15,060<br>15,020<br>15,020    | 82,180<br>80,980<br>80,980    | 97,240<br>96,000<br>96,000    | 97,240<br>96,000<br>96,000    |
|                                                |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0<br>0                  | 0               | 0           | 0                          | 14,760<br>14,360              | 69,060<br>68,740              | 83,820<br>83,100              | 83,820<br>83,100              |
|                                                | Kettle Moraine Lake            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0     | 0<br>0<br>0 | 0<br>0<br>0                | 8,880<br>8,880<br>8,880       | 120,250<br>115,640<br>115,640 | 129,130<br>124,520<br>124,520 | 129,130<br>124,520<br>124,520 |
|                                                |                                | Recommended Pland<br>Extreme Measures<br>Conditiond                         | 0<br>0                      | 0                       | 0               | 0<br>0      | 0                          | 8,480<br>8,330                | 55,250<br>54,770              | 63,730<br>63,100              | 63,730<br>63,100              |
|                                                | Kewaskum Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0     | 0<br>0<br>0 | 0<br>0<br>0                | 11,340<br>11,260<br>11,260    | 81,960<br>76,800<br>76,800    | 93,300<br>88,060<br>88,060    | 93,300<br>88,060<br>88,060    |
|                                                |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0<br>0                  | 0               | 0           | 0                          | 10,800<br>10,270              | 71,520<br>66,260              | 82,320<br>76,530              | 82,320<br>76,530              |
|                                                | Lake Fifteen Creek             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0             | 0<br>0<br>0     | 0<br>0<br>0 | 0<br>0<br>0                | 7,770<br>7,760<br>7,760       | 41,080<br>40,510<br>40,510    | 48,850<br>48,270<br>48,270    | 48,850<br>48,270<br>48,270    |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0                       | 0               | 0           | 0                          | 7,640<br>7,460                | 35,180<br>34,570              | 42,820<br>42,030              | 42,820<br>42,030              |
|                                                | Lincoln Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 15,210<br>15,210<br>15,210  | 1,440<br>1,250<br>1,160 | 720<br>70<br>50 | 0<br>0<br>0 | 17,370<br>16,530<br>16,420 | 216,100<br>186,070<br>186,070 | 1,840<br>2,140<br>2,140       | 217,940<br>188,210<br>188,210 | 235,310<br>204,740<br>204,630 |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 15,210<br>15,210            | 1,160<br>1,160          | 50<br>50        | 0           | 16,420<br>16,420           | 133,290<br>133,280            | 6,100<br>6,100                | 139,390<br>139,380            | 155,810<br>155,800            |

|                                                |                                    |                                                                             |                               | P                       | oint Sources               |                               |                               | No                            | npoint Source                 | a,b                           |                               |
|------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|-------------------------------|-------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Water Quality Indicator                        | Subwatershed                       | Condition                                                                   | Industrial<br>Point Sources   | SSOs                    | CSOs                       | WWTPs                         | Subtotal                      | Urban                         | Rural <sup>C</sup>            | Subtotal                      | Total                         |
| Biochemical Oxygen Demand (pounds) (continued) | Lower Cedar Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 20<br>20<br>20                | 40<br>40<br>40          | 0<br>0<br>0                | 20,080<br>26,160<br>26,160    | 20,140<br>26,220<br>26,220    | 85,590<br>88,320<br>88,320    | 185,110<br>176,340<br>176,340 | 270,700<br>264,660<br>264,660 | 290,840<br>290,880<br>290,880 |
|                                                |                                    | Recommended Pland Extreme Measures Conditiond                               | 20<br>20                      | 40<br>40                | 0<br>0                     | 26,160<br>26,160              | 26,220<br>26,220              | 74,820<br>70,460              | 113,230<br>109,290            | 188,050<br>179,750            | 214,270<br>205,970            |
|                                                | Lower Milwaukee River              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 259,990<br>259,990<br>259,990 | 3,830<br>5,120<br>2,520 | 22,550<br>16,640<br>14,690 | 0<br>0<br>0                   | 286,370<br>281,750<br>277,200 | 388,570<br>343,650<br>343,650 | 234,560<br>180,190<br>180,190 | 623,130<br>523,840<br>523,840 | 909,500<br>805,590<br>801,040 |
|                                                |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 259,990<br>259,990            | 2,520<br>2,520          | 14,690<br>14,690           | 0                             | 277,200<br>277,200            | 248,640<br>244,740            | 152,810<br>144,800            | 401,450<br>389,540            | 678,650<br>666,740            |
|                                                | Middle Milwaukee River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 20<br>20<br>20                | 0<br>0<br>0             | 0<br>0<br>0                | 296,770<br>390,710<br>390,710 | 296,790<br>390,730<br>390,730 | 108,290<br>117,190<br>117,190 | 220,120<br>201,100<br>201,100 | 328,410<br>318,290<br>318,290 | 625,200<br>709,020<br>709,020 |
|                                                |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 20<br>20                      | 0<br>0                  | 0                          | 390,710<br>390,710            | 390,730<br>390,730            | 94,220<br>89,860              | 171,240<br>161,870            | 265,460<br>251,730            | 656,190<br>642,460            |
|                                                | Mink Creek                         | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0 0                           | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 0<br>0<br>0                   | 10,490<br>10,460<br>10,460    | 56,310<br>54,640<br>54,640    | 66,800<br>65,100<br>65,100    | 66,800<br>65,100<br>65,100    |
|                                                |                                    | Recommended Pland<br>Extreme Measures<br>Conditiond                         | 0                             | 0                       | 0<br>0                     | 0                             | 0<br>0                        | 10,280<br>10,000              | 36,810<br>36,870              | 47,090<br>46,870              | 47,090<br>46,870              |
|                                                | North Branch<br>Milwaukee River    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 7,020<br>7,020<br>7,020       | 20<br>20<br>20          | 0<br>0<br>0                | 6,080<br>6,700<br>6,700       | 13,120<br>13,740<br>13,740    | 50,380<br>50,240<br>50,240    | 267,240<br>256,750<br>256,750 | 317,620<br>306,990<br>306,990 | 330,740<br>320,730<br>320,730 |
|                                                |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 7,020<br>7,020                | 20<br>20                | 0<br>0                     | 6,700<br>6,700                | 13,740<br>13,740              | 48,020<br>46,640              | 227,150<br>218,010            | 275,170<br>264,650            | 288,910<br>278,390            |
|                                                | Silver Creek<br>(Sheboygan County) | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 4,330<br>4,330<br>4,330       | 0<br>0<br>0             | 0<br>0<br>0                | 2,990<br>3,560<br>3,560       | 7,320<br>7,890<br>7,890       | 26,810<br>30,820<br>30,820    | 63,180<br>60,320<br>60,320    | 89,990<br>91,140<br>91,140    | 97,310<br>99,030<br>99,030    |
|                                                |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 4,330<br>4,330                | 0<br>0                  | 0<br>0                     | 3,560<br>3,560                | 7,890<br>7,890                | 25,460<br>24,680              | 58,750<br>56,260              | 84,210<br>80,940              | 92,100<br>88,830              |
|                                                | Silver Creek (West Bend)           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                   | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 0<br>0<br>0                   | 36,060<br>40,190<br>40,190    | 23,710<br>22,180<br>22,180    | 59,770<br>62,370<br>62,370    | 59,770<br>62,370<br>62,370    |
|                                                |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                             | 0                       | 0                          | 0                             | 0                             | 35,400<br>33,500              | 19,900<br>18,970              | 55,300<br>52,470              | 55,300<br>52,470              |

|                                                |                                |                                                                             | Point Sources                 |                         |                            |                               |                               | Noi                                 | npoint Source                       | a,b                                 |                                     |
|------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|-------------------------------|-------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Water Quality Indicator                        | Subwatershed                   | Condition                                                                   | Industrial<br>Point Sources   | SSOs                    | CSOs                       | WWTPs                         | Subtotal                      | Urban                               | Rural <sup>C</sup>                  | Subtotal                            | Total                               |
| Biochemical Oxygen Demand (pounds) (continued) | Stony Creek                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                   | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 0<br>0<br>0                   | 10,240<br>10,220<br>10,220          | 51,490<br>50,450<br>50,450          | 61,730<br>60,670<br>60,670          | 61,730<br>60,670<br>60,670          |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                        | 0                       | 0                          | 0<br>0                        | 0                             | 10,040<br>9,770                     | 41,290<br>40,530                    | 51,330<br>50,300                    | 51,330<br>50,300                    |
|                                                | Upper Lower<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 2,770<br>2,770<br>2,770       | 210<br>210<br>210       | 0<br>0<br>0                | 52,690<br>68,820<br>68,820    | 55,670<br>71,800<br>71,800    | 103,450<br>115,060<br>115,060       | 199,780<br>182,470<br>182,470       | 303,230<br>297,530<br>297,530       | 358,900<br>369,330<br>369,330       |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 2,770<br>2,770                | 210<br>210              | 0                          | 68,820<br>68,820              | 71,800<br>71,800              | 90,100<br>85,360                    | 155,230<br>147,910                  | 245,330<br>233,270                  | 317,130<br>305,070                  |
|                                                | Upper Milwaukee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 1,030<br>1,030<br>1,030       | 0<br>0<br>0             | 0<br>0<br>0                | 10,830<br>14,490<br>14,490    | 11,860<br>15,520<br>15,520    | 44,460<br>47,150<br>47,150          | 373,160<br>356,200<br>356,200       | 417,620<br>403,350<br>403,350       | 429,480<br>418,870<br>418,870       |
|                                                |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 1,030<br>1,030                | 0                       | 0                          | 14,490<br>14,490              | 15,520<br>15,520              | 41,370<br>40,200                    | 232,580<br>221,280                  | 273,950<br>261,480                  | 289,470<br>277,000                  |
|                                                | Watercress Creek               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                   | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 0<br>0<br>0                   | 10,130<br>10,130<br>10,130          | 86,840<br>83,890<br>83,890          | 96,970<br>94,020<br>94,020          | 96,970<br>94,020<br>94,020          |
|                                                |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                             | 0                       | 0                          | 0                             | 0                             | 8,260<br>8,110                      | 50,620<br>49,880                    | 58,880<br>57,990                    | 58,880<br>57,990                    |
|                                                | West Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                   | 0<br>0<br>0             | 0<br>0<br>0                | 0<br>0<br>0                   | 0<br>0<br>0                   | 42,450<br>42,090<br>42,090          | 373,130<br>358,060<br>358,060       | 415,580<br>400,150<br>400,150       | 415,580<br>400,150<br>400,150       |
|                                                |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                        | 0                       | 0<br>0                     | 0<br>0                        | 0<br>0                        | 37,810<br>36,870                    | 315,970<br>295,980                  | 353,780<br>332,850                  | 353,780<br>332,850                  |
|                                                | Watershed Total                | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 290,450<br>290,450<br>290,450 | 5,540<br>6,640<br>3,950 | 23,270<br>16,710<br>14,740 | 399,810<br>524,520<br>524,520 | 719,070<br>838,320<br>833,660 | 1,303,560<br>1,265,880<br>1,265,880 | 3,210,530<br>3,017,040<br>3,017,040 | 4,514,090<br>4,282,920<br>4,282,920 | 5,233,160<br>5,121,240<br>5,116,580 |
|                                                |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 290,450<br>290,450            | 3,950<br>3,950          | 14,740<br>14,740           | 524,520<br>524,520            | 833,660<br>833,660            | 1,012,490<br>981,840                | 2,259,400<br>2,154,430              | 3,271,890<br>3,136,270              | 4,105,550<br>3,969,930              |

|                         |                                |                                                                             |                             | Р           | oint Sources |                |                | No                | npoint Source      | <sub>e</sub> a,b  |                   |
|-------------------------|--------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------|--------------|----------------|----------------|-------------------|--------------------|-------------------|-------------------|
| Water Quality Indicator | Subwatershed                   | Condition                                                                   | Industrial<br>Point Sources | SSOs        | CSOs         | WWTPs          | Subtotal       | Urban             | Rural <sup>C</sup> | Subtotal          | Total             |
| Copper (pounds)         | Batavia Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0    | 0<br>0<br>0    | 7<br>7<br>7       | 11<br>11<br>11     | 18<br>18<br>18    | 18<br>18<br>18    |
|                         |                                | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0<br>0      | 0            | 0              | 0<br>0         | 7<br>7            | 8<br>8             | 15<br>15          | 15<br>15          |
|                         | Cedar Creek                    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 46<br>63<br>63 | 46<br>63<br>63 | 190<br>197<br>197 | 187<br>189<br>189  | 377<br>386<br>386 | 423<br>449<br>449 |
|                         |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0<br>0      | 0            | 63<br>63       | 63<br>63       | 177<br>177        | 156<br>159         | 333<br>336        | 396<br>399        |
|                         | Cedar Lake                     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0    | 0<br>0<br>0    | 23<br>22<br>22    | 76<br>74<br>74     | 99<br>96<br>96    | 99<br>96<br>96    |
|                         |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0<br>0      | 0            | 0              | 0<br>0         | 15<br>15          | 54<br>54           | 69<br>69          | 69<br>69          |
|                         | Chambers Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0    | 0<br>0<br>0    | 9<br>9<br>9       | 13<br>13<br>13     | 22<br>22<br>22    | 22<br>22<br>22    |
|                         |                                | Recommended Pland Extreme Measures Conditiond                               | 0                           | 0<br>0      | 0            | 0              | 0<br>0         | 9<br>9            | 11<br>11           | 20<br>20          | 20<br>20          |
|                         | East Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0    | 0<br>0<br>0    | 27<br>27<br>27    | 61<br>62<br>62     | 88<br>89<br>89    | 88<br>89<br>89    |
|                         |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0<br>0      | 0            | 0              | 0<br>0         | 27<br>27          | 57<br>57           | 84<br>84          | 84<br>84          |
|                         | Kettle Moraine Lake            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0    | 0<br>0<br>0    | 16<br>16<br>16    | 47<br>47<br>47     | 63<br>63<br>63    | 63<br>63<br>63    |
|                         |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0<br>0      | 0            | 0              | 0<br>0         | 16<br>16          | 35<br>36           | 51<br>52          | 51<br>52          |
|                         | Kewaskum Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0    | 0<br>0<br>0    | 20<br>20<br>20    | 21<br>22<br>22     | 41<br>42<br>42    | 41<br>42<br>42    |
|                         |                                | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0<br>0      | 0            | 0              | 0              | 20<br>20          | 21<br>21           | 41<br>41          | 41<br>41          |

|                             |                                 |                                                                             |                             | Р           | oint Sources   |                   |                   | No                | npoint Source      | a,b               |                   |
|-----------------------------|---------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------|----------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|
| Water Quality Indicator     | Subwatershed                    | Condition                                                                   | Industrial<br>Point Sources | SSOs        | CSOs           | WWTPs             | Subtotal          | Urban             | Rural <sup>C</sup> | Subtotal          | Total             |
| Copper (pounds) (continued) | Lake Fifteen Creek              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0    | 0<br>0<br>0       | 0<br>0<br>0       | 14<br>14<br>14    | 30<br>30<br>30     | 44<br>44<br>44    | 44<br>44<br>44    |
|                             |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0           | 0              | 0<br>0            | 0<br>0            | 14<br>14          | 29<br>29           | 43<br>43          | 43<br>43          |
|                             | Lincoln Creek                   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 1<br>1<br>1 | 2<br>0<br>0    | 0<br>0<br>0       | 3<br>1<br>1       | 380<br>313<br>313 | 1<br>1<br>1        | 381<br>314<br>314 | 384<br>315<br>315 |
|                             |                                 | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 1<br>1      | 0              | 0                 | 1<br>1            | 222<br>222        | 7<br>7             | 229<br>229        | 230<br>230        |
|                             | Lower Cedar Creek               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0    | 97<br>127<br>127  | 97<br>127<br>127  | 146<br>149<br>149 | 83<br>83<br>83     | 229<br>232<br>232 | 326<br>359<br>359 |
|                             |                                 | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0<br>0      | 0              | 127<br>127        | 127<br>127        | 130<br>130        | 69<br>70           | 199<br>200        | 326<br>327        |
|                             | Lower Milwaukee River           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 2<br>3<br>2 | 50<br>37<br>33 | 0<br>0<br>0       | 52<br>40<br>35    | 684<br>576<br>576 | 101<br>112<br>112  | 785<br>688<br>688 | 837<br>728<br>723 |
|                             |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 2<br>2      | 33<br>33       | 0                 | 35<br>35          | 414<br>414        | 115<br>116         | 529<br>530        | 564<br>565        |
|                             | Middle Milwaukee River          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0    | 307<br>405<br>405 | 307<br>405<br>405 | 192<br>205<br>205 | 119<br>130<br>130  | 311<br>335<br>335 | 618<br>740<br>740 |
|                             |                                 | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0           | 0              | 405<br>405        | 405<br>405        | 167<br>167        | 118<br>119         | 285<br>286        | 690<br>691        |
|                             | Mink Creek                      | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0    | 0<br>0<br>0       | 0<br>0<br>0       | 19<br>19<br>19    | 30<br>30<br>30     | 49<br>49<br>49    | 49<br>49<br>49    |
|                             |                                 | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0           | 0              | 0                 | 0                 | 19<br>19          | 23<br>24           | 42<br>43          | 42<br>43          |
|                             | North Branch<br>Milwaukee River | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0    | 18<br>18<br>18    | 18<br>18<br>18    | 93<br>92<br>92    | 144<br>145<br>145  | 237<br>237<br>237 | 255<br>255<br>255 |
|                             |                                 | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0           | 0              | 18<br>18          | 18<br>18          | 90<br>90          | 136<br>137         | 226<br>227        | 244<br>245        |

|                             |                                    |                                                                             |                             | P           | oint Sources |                   |                   | No                | npoint Source      | a,b               |                   |
|-----------------------------|------------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------|--------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|
| Water Quality Indicator     | Subwatershed                       | Condition                                                                   | Industrial<br>Point Sources | SSOs        | CSOs         | WWTPs             | Subtotal          | Urban             | Rural <sup>C</sup> | Subtotal          | Total             |
| Copper (pounds) (continued) | Silver Creek<br>(Sheboygan County) | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 15<br>18<br>18    | 15<br>18<br>18    | 49<br>55<br>55    | 30<br>30<br>30     | 79<br>85<br>85    | 94<br>103<br>103  |
|                             |                                    | Recommended Pland Extreme Measures Conditiond                               | 0                           | 0<br>0      | 0<br>0       | 18<br>18          | 18<br>18          | 46<br>46          | 32<br>32           | 78<br>78          | 96<br>96          |
|                             | Silver Creek (West Bend)           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0       | 0<br>0<br>0       | 62<br>68<br>68    | 19<br>21<br>21     | 81<br>89<br>89    | 81<br>89<br>89    |
|                             |                                    | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                           | 0           | 0<br>0       | 0                 | 0                 | 62<br>62          | 20<br>20           | 82<br>82          | 82<br>82          |
|                             | Stony Creek                        | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0       | 0<br>0<br>0       | 18<br>18<br>18    | 30<br>30<br>30     | 48<br>48<br>48    | 48<br>48<br>48    |
|                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0           | 0            | 0                 | 0                 | 18<br>18          | 27<br>27           | 45<br>45          | 45<br>45          |
|                             | Upper Lower<br>Milwaukee River     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 113<br>145<br>145 | 113<br>145<br>145 | 181<br>201<br>201 | 96<br>98<br>98     | 277<br>299<br>299 | 390<br>444<br>444 |
|                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0           | 0<br>0       | 145<br>145        | 145<br>145        | 161<br>161        | 95<br>95           | 256<br>256        | 401<br>401        |
|                             | Upper Milwaukee River              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 38<br>49<br>49    | 38<br>49<br>49    | 80<br>84<br>84    | 99<br>100<br>100   | 179<br>184<br>184 | 217<br>233<br>233 |
|                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0<br>0                      | 0<br>0      | 0            | 49<br>49          | 49<br>49          | 75<br>75          | 84<br>87           | 159<br>162        | 208<br>211        |
|                             | Watercress Creek                   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0       | 0<br>0<br>0       | 18<br>18<br>18    | 55<br>55<br>55     | 73<br>73<br>73    | 73<br>73<br>73    |
|                             |                                    | Recommended Pland<br>Extreme Measures<br>Conditiond                         | 0<br>0                      | 0           | 0<br>0       | 0                 | 0                 | 15<br>15          | 41<br>42           | 56<br>57          | 56<br>57          |
|                             | West Branch<br>Milwaukee River     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                 | 0<br>0<br>0 | 0<br>0<br>0  | 0<br>0<br>0       | 0<br>0<br>0       | 77<br>76<br>76    | 99<br>99<br>99     | 176<br>175<br>175 | 176<br>175<br>175 |
|                             |                                    | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                           | 0           | 0            | 0                 | 0                 | 70<br>70          | 96<br>97           | 166<br>167        | 166<br>167        |

|                             |                 |                                                                                                                                               |                             | No                    |                            |                                 |                                 |                                           |                                           |                                           |                                           |
|-----------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|----------------------------|---------------------------------|---------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Water Quality Indicator     | Subwatershed    | Condition                                                                                                                                     | Industrial<br>Point Sources | SSOs                  | CSOs                       | WWTPs                           | Subtotal                        | Urban                                     | Rural <sup>C</sup>                        | Subtotal                                  | Total                                     |
| Copper (pounds) (continued) | Watershed Total | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup> | 0 0 0                       | 3<br>4<br>3<br>3<br>3 | 52<br>37<br>33<br>33<br>33 | 634<br>825<br>825<br>825<br>825 | 689<br>866<br>861<br>861<br>861 | 2,305<br>2,186<br>2,186<br>1,774<br>1,774 | 1,352<br>1,382<br>1,382<br>1,234<br>1,248 | 3,657<br>3,568<br>3,568<br>3,008<br>3,022 | 4,346<br>4,434<br>4,429<br>3,869<br>3,883 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

bIn certain limited cases, relatively minor anomalies in nonpoint source pollutant loads may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a relatively slight increase load under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in pollutant load occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters established under the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively small anomalies in the comparative results.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominately urban setting.

<sup>&</sup>lt;sup>d</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

Table M-4

AVERAGE ANNUAL POLLUTANT LOADS FOR RECOMMENDED PLAN AND EXTREME MEASURES CONDITION: OAK CREEK WATERSHED

|                                 |                                  |                                                                                           |                             | Point Sources     |                         | N                             |                          |                               |                                 |
|---------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|-------------------|-------------------------|-------------------------------|--------------------------|-------------------------------|---------------------------------|
| Water Quality Indicator         | Subwatershed                     | Condition                                                                                 | Industrial<br>Point Sources | SSOs              | Subtotal                | Urban                         | Rural <sup>C</sup>       | Subtotal                      | Total                           |
| Total Phosphorus (pounds)       | Lower Oak Creek                  | Existing                                                                                  | 10                          | 10                | 20                      | 2,200                         | 40                       | 2,240                         | 2,260                           |
| , ,                             |                                  | Revised 2020 Baseline<br>Revised 2020 Baseline with<br>Five-Year LOP                      | 10<br>10                    | 10<br>10          | 20<br>20                | 1,830<br>1,830                | 20<br>20                 | 1,850<br>1,850                | 1,870<br>1,870                  |
|                                 |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup>                  | 10<br>10                    | 10<br>10          | 20<br>20                | 1,730<br>1,670                | 20<br>20                 | 1,750<br>1,690                | 1,770<br>1,710                  |
|                                 | Middle Oak Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 1,310<br>1,230<br>1,230       | 980<br>1,050<br>1,050    | 2,290<br>2,280<br>2,280       | 2,290<br>2,280<br>2,280         |
|                                 |                                  | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0<br>0                      | 0<br>0            | 0<br>0                  | 1,160<br>1,130                | 970<br>930               | 2,130<br>2,060                | 2,130<br>2,060                  |
|                                 | Mitchell Field<br>Drainage Ditch | Existing<br>Revised 2020 Baseline                                                         | <10<br><10                  | 0                 | <10<br><10              | 980<br>950                    | 410<br>350               | 1,390<br>1,300                | 1,390<br>1,300                  |
|                                 |                                  | Revised 2020 Baseline with<br>Five-Year LOP<br>Recommended Plan <sup>d</sup>              | <10<br><10                  | 0                 | <10<br><10              | 950<br>730                    | 350<br>260               | 1,300<br>990                  | 1,300<br>990                    |
|                                 |                                  | Extreme Measures Condition <sup>d</sup>                                                   | <10                         | 0                 | <10                     | 720                           | 250                      | 970                           | 970                             |
|                                 | North Branch Oak Creek           | Existing Revised 2020 Baseline Revised 2020 Baseline with                                 | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 2,650<br>2,370<br>2,370       | 510<br>520<br>520        | 3,160<br>2,890<br>2,890       | 3,160<br>2,890<br>2,890         |
|                                 |                                  | Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0<br>0                      | 0<br>0            | 0<br>0                  | 1,950<br>1,900                | 460<br>440               | 2,410<br>2,340                | 2,410<br>2,340                  |
|                                 | Upper Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with                                 | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 1,360<br>1,270<br>1,270       | 170<br>120<br>120        | 1,530<br>1,390<br>1,390       | 1,530<br>1,390<br>1,390         |
|                                 |                                  | Five-Year LOP<br>Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 0<br>0                      | 0<br>0            | 0<br>0                  | 1,190<br>1,150                | 110<br>100               | 1,300<br>1,250                | 1,300<br>1,250                  |
|                                 | Watershed Total                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 10<br>10<br>10              | 10<br>10<br>10    | 20<br>20<br>20          | 8,500<br>7,650<br>7,650       | 2,110<br>2,060<br>2,060  | 10,610<br>9,710<br>9,710      | 10,630<br>9,730<br>9,730        |
|                                 |                                  | Recommended Pland Extreme Measures Conditiond                                             | 10<br>10                    | 10<br>10          | 20<br>20                | 6,760<br>6,570                | 1,820<br>1,740           | 8,580<br>8,310                | 8,600<br>8,330                  |
| Total Suspended Solids (pounds) | Lower Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 1,930<br>1,930<br>1,930     | 500<br>500<br>500 | 2,430<br>2,430<br>2,430 | 974,250<br>689,780<br>689,780 | 23,560<br>3,970<br>3,970 | 997,810<br>693,750<br>693,750 | 1,000,240<br>696,180<br>696,180 |
|                                 |                                  | Recommended Pland<br>Extreme Measures Conditiond                                          | 1,930<br>1,930              | 500<br>500        | 2,430<br>2,430          | 692,760<br>692,750            | 3,970<br>3,970           | 696,730<br>696,720            | 699,160<br>699,150              |

|                                              |                                  |                                                                          |                             | Point Sources        |                         | N                                   |                               |                                     |                                     |
|----------------------------------------------|----------------------------------|--------------------------------------------------------------------------|-----------------------------|----------------------|-------------------------|-------------------------------------|-------------------------------|-------------------------------------|-------------------------------------|
| Water Quality Indicator                      | Subwatershed                     | Condition                                                                | Industrial<br>Point Sources | SSOs                 | Subtotal                | Urban                               | Rural <sup>C</sup>            | Subtotal                            | Total                               |
| Total Suspended Solids (pounds) (continued)  | Middle Oak Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0<br>0<br>0                 | 0<br>0<br>0          | 0<br>0<br>0             | 685,780<br>528,200<br>528,200       | 387,670<br>102,730<br>102,730 | 1,073,450<br>630,930<br>630,930     | 1,073,450<br>630,930<br>630,930     |
|                                              |                                  | Recommended Pland Extreme Measures Conditiond                            | 0<br>0                      | 0<br>0               | 0<br>0                  | 545,020<br>545,020                  | 102,060<br>101,660            | 647,080<br>646,680                  | 647,080<br>646,680                  |
|                                              | Mitchell Field<br>Drainage Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | <10<br><10<br><10           | 0<br>0<br>0          | <10<br><10<br><10       | 532,620<br>438,880<br>438,880       | 108,810<br>29,820<br>29,820   | 641,430<br>468,700<br>468,700       | 641,430<br>468,700<br>468,700       |
|                                              |                                  | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>    | <10<br><10                  | 0<br>0               | <10<br><10              | 364,090<br><b>364,090</b>           | 23,660<br><b>23,570</b>       | 387,750<br><b>387,660</b>           | 387,750<br><b>387,660</b>           |
|                                              | North Branch Oak Creek           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0<br>0<br>0                 | 0<br>0<br>0          | 0<br>0<br>0             | 1,558,560<br>1,169,670<br>1,169,670 | 212,030<br>50,010<br>50,010   | 1,770,590<br>1,219,680<br>1,219,680 | 1,770,590<br>1,219,680<br>1,219,680 |
|                                              |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 0<br>0                      | 0<br>0               | 0<br>0                  | 1,012,020<br>1,012,020              | 47,270<br>47,110              | 1,059,290<br>1,059,130              | 1,059,290<br>1,059,130              |
|                                              | Upper Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0<br>0<br>0                 | 0<br>0<br>0          | 0<br>0<br>0             | 663,060<br>513,460<br>513,460       | 156,240<br>10,710<br>10,710   | 819,300<br>524,170<br>524,170       | 819,300<br>524,170<br>524,170       |
|                                              |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 0<br>0                      | 0<br>0               | 0<br>0                  | 532,840<br>532,840                  | 10,360<br>10,320              | 543,200<br>543,160                  | 543,200<br>543,160                  |
|                                              | Watershed Total                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 1,930<br>1,930<br>1,930     | 500<br>500<br>500    | 2,430<br>2,430<br>2,430 | 4,414,270<br>3,339,990<br>3,339,990 | 888,310<br>197,240<br>197,240 | 5,302,580<br>3,537,230<br>3,537,230 | 5,305,010<br>3,539,660<br>3,539,660 |
|                                              |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 1,930<br>1,930              | 500<br>500           | 2,430<br>2,430          | 3,146,730<br>3,146,720              | 187,320<br>186,630            | 3,334,050<br>3,333,350              | 3,336,480<br>3,335,780              |
| Fecal Coliform Bacteria (trillions of cells) | Lower Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0.00<br>0.00<br>0.00        | 9.55<br>9.55<br>9.55 | 9.55<br>9.55<br>9.55    | 612.67<br>493.55<br>493.55          | 0.33<br>0.10<br>0.10          | 613.00<br>493.65<br>493.65          | 622.55<br>503.20<br>503.20          |
|                                              |                                  | Recommended Pland Extreme Measures Conditiond                            | 0.00<br>0.00                | 9.55<br>9.55         | 9.55<br>9.55            | 315.86<br>160.17                    | 0.10<br>0.10                  | 315.96<br>160.27                    | 325.51<br>169.82                    |
|                                              | Middle Oak Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00    | 394.77<br>357.33<br>357.33          | 96.09<br>100.90<br>100.90     | 490.86<br>458.23<br>458.23          | 490.86<br>458.23<br>458.23          |
|                                              |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 0.00<br>0.00                | 0.00<br>0.00         | 0.00<br>0.00            | 227.44<br>115.34                    | 66.76<br>34.09                | 294.20<br>149.43                    | 294.20<br>149.43                    |

|                                                          |                                  |                                                                          |                             | Point Sources        |                      | N                                | Ionpoint Source <sup>a</sup> | b                                |                                  |
|----------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------|-----------------------------|----------------------|----------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------|
| Water Quality Indicator                                  | Subwatershed                     | Condition                                                                | Industrial<br>Point Sources | SSOs                 | Subtotal             | Urban                            | Rural <sup>C</sup>           | Subtotal                         | Total                            |
| Fecal Coliform Bacteria (trillions of cells) (continued) | Mitchell Field<br>Drainage Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 505.12<br>524.29<br>524.29       | 36.28<br>28.76<br>28.76      | 541.40<br>553.05<br>553.05       | 541.40<br>553.05<br>553.05       |
|                                                          |                                  | Recommended Pland Extreme Measures Conditiond                            | 0.00<br>0.00                | 0.00<br>0.00         | 0.00<br>0.00         | 269.75<br>136.89                 | 15.19<br>8.03                | 284.94<br>144.92                 | 284.94<br>144.92                 |
|                                                          | North Branch Oak Creek           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 735.48<br>646.58<br>646.58       | 39.60<br>47.39<br>47.39      | 775.08<br>693.97<br>693.97       | 775.08<br>693.97<br>693.97       |
|                                                          |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 0.00<br>0.00                | 0.00<br>0.00         | 0.00<br>0.00         | 359.89<br>182.62                 | 30.36<br>15.55               | 390.25<br>198.17                 | 390.25<br>198.17                 |
|                                                          | Upper Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 354.83<br>310.06<br>310.06       | 7.39<br>6.17<br>6.17         | 362.22<br>316.23<br>316.23       | 362.22<br>316.23<br>316.23       |
|                                                          |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 0.00<br>0.00                | 0.00<br>0.00         | 0.00<br>0.00         | 201.08<br>101.76                 | 4.16<br>2.16                 | 205.24<br>103.92                 | 205.24<br>103.92                 |
|                                                          | Watershed Total                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0.00<br>0.00<br>0.00        | 9.55<br>9.55<br>9.55 | 9.55<br>9.55<br>9.55 | 2,602.87<br>2,331.81<br>2,331.81 | 179.69<br>183.32<br>183.32   | 2,782.56<br>2,515.13<br>2,515.13 | 2,792.11<br>2,524.68<br>2,524.68 |
|                                                          |                                  | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>    | 0.00<br>0.00                | 9.55<br>9.55         | 9.55<br>9.55         | 1,374.02<br>696.78               | 116.57<br>59.93              | 1,490.59<br>756.71               | 1,500.14<br>766.26               |
| Total Nitrogen (pounds)                                  | Lower Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 340<br>340<br>340           | 20<br>20<br>20       | 360<br>360<br>360    | 15,280<br>13,320<br>13,320       | 1,010<br>380<br>380          | 16,290<br>13,700<br>13,700       | 16,650<br>14,060<br>14,060       |
|                                                          |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 340<br>340                  | 20<br>20             | 360<br>360           | 13,350<br>13,320                 | 380<br>380                   | 13,730<br>13,700                 | 14,090<br>14,060                 |
|                                                          | Middle Oak Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0<br>0<br>0                 | 0<br>0<br>0          | 0<br>0<br>0          | 9,240<br>8,950<br>8,950          | 13,810<br>8,280<br>8,280     | 23,050<br>17,230<br>17,230       | 23,050<br>17,230<br>17,230       |
|                                                          |                                  | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>    | 0<br>0                      | 0<br>0               | 0<br>0               | 8,920<br>8,910                   | 8,290<br>8,270               | 17,210<br>17,180                 | 17,210<br>17,180                 |
|                                                          | Mitchell Field<br>Drainage Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | <10<br><10<br><10           | 0<br>0<br>0          | <10<br><10<br><10    | 9,360<br>9,060<br>9,060          | 7,580<br>4,630<br>4,630      | 16,940<br>13,690<br>13,690       | 16,940<br>13,690<br>13,690       |
|                                                          |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | <10<br><10                  | 0<br>0               | <10<br><10           | 7,340<br>7,340                   | 3,740<br>3,730               | 11,080<br>11,070                 | 11,080<br>11,070                 |

|                                     |                                  |                                                                                     |                             | Point Sources     |                         | ١                          | lonpoint Source <sup>a,</sup> | ,b                         |                            |
|-------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|-----------------------------|-------------------|-------------------------|----------------------------|-------------------------------|----------------------------|----------------------------|
| Water Quality Indicator             | Subwatershed                     | Condition                                                                           | Industrial<br>Point Sources | SSOs              | Subtotal                | Urban                      | Rural <sup>C</sup>            | Subtotal                   | Total                      |
| Total Nitrogen (pounds) (continued) | North Branch Oak Creek           | Existing Revised 2020 Baseline Revised 2020 Baseline with                           | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 17,590<br>16,500<br>16,500 | 8,790<br>4,490<br>4,490       | 26,380<br>20,990<br>20,990 | 26,380<br>20,990<br>20,990 |
|                                     |                                  | Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup> | 0<br>0                      | 0<br>0            | 0<br>0                  | 14,290<br>14,290           | 4,280<br>4,270                | 18,570<br>18,560           | 18,570<br>18,560           |
|                                     | Upper Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP             | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 9,180<br>9,000<br>9,000    | 4,910<br>1,140<br>1,140       | 14,090<br>10,140<br>10,140 | 14,090<br>10,140<br>10,140 |
|                                     |                                  | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>               | 0<br>0                      | 0<br>0            | 0<br>0                  | 8,920<br>8,880             | 1,130<br>1,130                | 10,050<br>10,010           | 10,050<br>10,010           |
|                                     | Watershed Total                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP             | 340<br>340<br>340           | 20<br>20<br>20    | 360<br>360<br>360       | 60,650<br>56,830<br>56,830 | 36,100<br>18,920<br>18,920    | 96,750<br>75,750<br>75,750 | 97,110<br>76,110<br>76,110 |
|                                     |                                  | Recommended Pland Extreme Measures Conditiond                                       | 340<br>340                  | 20<br>20          | 360<br>360              | 52,820<br>52,740           | 17,820<br>17,780              | 70,640<br>70,520           | 71,000<br>70,880           |
| Biochemical Oxygen Demand (pounds)  | Lower Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP             | 3,440<br>3,440<br>3,440     | 120<br>120<br>120 | 3,560<br>3,560<br>3,560 | 56,390<br>45,430<br>45,430 | 1,970<br>1,210<br>1,210       | 58,360<br>46,640<br>46,640 | 61,920<br>50,200<br>50,200 |
|                                     |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup>            | 3,440<br>3,440              | 120<br>120        | 3,560<br>3,560          | 45,210<br>45,210           | 1,210<br>1,210                | 46,420<br>46,420           | 49,980<br>49,980           |
|                                     | Middle Oak Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP             | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 37,820<br>34,950<br>34,950 | 26,670<br>19,500<br>19,500    | 64,490<br>54,450<br>54,450 | 64,490<br>54,450<br>54,450 |
|                                     |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup>            | 0<br>0                      | 0<br>0            | 0<br>0                  | 34,380<br>34,380           | 19,530<br>19,510              | 53,910<br>53,890           | 53,910<br>53,890           |
|                                     | Mitchell Field<br>Drainage Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with                           | <10<br><10<br><10           | 0<br>0<br>0       | <10<br><10<br><10       | 28,860<br>30,710<br>30,710 | 9,150<br>5,480<br>5,480       | 38,010<br>36,190<br>36,190 | 38,010<br>36,190<br>36,190 |
|                                     |                                  | Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | <10<br><10                  | 0<br>0            | <10<br><10              | 24,310<br>24,310           | 4,580<br>4,570                | 28,890<br>28,880           | 28,890<br>28,880           |
|                                     | North Branch Oak Creek           | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP             | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 79,090<br>71,670<br>71,670 | 15,680<br>9,450<br>9,450      | 94,770<br>81,120<br>81,120 | 94,770<br>81,120<br>81,120 |
|                                     |                                  | Recommended Pland Extreme Measures Conditiond                                       | 0<br>0                      | 0<br>0            | 0<br>0                  | 60,760<br>60,760           | 9,020<br>9,010                | 69,780<br>69,770           | 69,780<br>69,770           |

|                                                |                                  |                                                                          | Po                          |                   |                         | N                             | Ionpoint Source <sup>a,</sup> | b                             |                               |
|------------------------------------------------|----------------------------------|--------------------------------------------------------------------------|-----------------------------|-------------------|-------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Water Quality Indicator                        | Subwatershed                     | Condition                                                                | Industrial<br>Point Sources | SSOs              | Subtotal                | Urban                         | Rural <sup>C</sup>            | Subtotal                      | Total                         |
| Biochemical Oxygen Demand (pounds) (continued) | Upper Oak Creek                  | Existing                                                                 | 0                           | 0                 | 0                       | 35,580                        | 7,690                         | 43,270                        | 43,270                        |
| (pounds) (commuss)                             |                                  | Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP           | 0<br>0                      | 0<br>0            | 0<br>0                  | 35,250<br>35,250              | 2,550<br>2,550                | 37,800<br>37,800              | 37,800<br>37,800              |
|                                                |                                  | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>    | 0<br>0                      | 0<br>0            | 0<br>0                  | 34,110<br>34,110              | 2,550<br>2,540                | 36,660<br>36,650              | 36,660<br>36,650              |
|                                                | Watershed Total                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 3,440<br>3,440<br>3,440     | 120<br>120<br>120 | 3,560<br>3,560<br>3,560 | 237,740<br>218,010<br>218,010 | 61,160<br>38,190<br>38,190    | 298,900<br>256,200<br>256,200 | 302,460<br>259,760<br>259,760 |
|                                                |                                  | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>    | 3,440<br>3,440              | 120<br>120        | 3,560<br>3,560          | 198,770<br>198,770            | 36,890<br>36,840              | 235,660<br>235,610            | 239,220<br>239,170            |
| Copper (pounds)                                | Lower Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0<br>0<br>0                 | <1<br><1<br><1    | <1<br><1<br><1          | 105<br>80<br>80               | <1<br><1<br><1                | 105<br>80<br>80               | 105<br>80<br>80               |
|                                                |                                  | Recommended Pland Extreme Measures Conditiond                            | 0<br>0                      | <1<br><1          | <1<br><1                | 80<br>80                      | <1<br><1                      | 80<br>80                      | 80<br>80                      |
|                                                | Middle Oak Creek                 | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 70<br>60<br>60                | 25<br>24<br>24                | 95<br>84<br>84                | 95<br>84<br>84                |
|                                                |                                  | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>    | 0<br>0                      | 0<br>0            | 0<br>0                  | 60<br>60                      | 24<br>24                      | 84<br>84                      | 84<br>84                      |
|                                                | Mitchell Field<br>Drainage Ditch | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 56<br>52<br>52                | 11<br>8<br>8                  | 67<br>60<br>60                | 67<br>60<br>60                |
|                                                |                                  | Recommended Pland Extreme Measures Conditiond                            | 0<br>0                      | 0<br>0            | 0<br>0                  | 41<br>41                      | 6<br>6                        | 47<br>47                      | 47<br>47                      |
|                                                | North Branch Oak Creek           | Existing Revised 2020 Baseline Revised 2020 Baseline with                | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 148<br>123<br>123             | 13<br>12<br>12                | 161<br>135<br>135             | 161<br>135<br>135             |
|                                                |                                  | Five-Year LOP Recommended Pland Extreme Measures Conditiond              | 0<br>0                      | 0<br>0            | 0<br>0                  | 104<br>104                    | 11<br>11                      | 115<br>115                    | 115<br>115                    |
|                                                | Upper Oak Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP  | 0<br>0<br>0                 | 0<br>0<br>0       | 0<br>0<br>0             | 66<br>59<br>59                | 3<br>2<br>2                   | 69<br>61<br>61                | 69<br>61<br>61                |
|                                                |                                  | Recommended Plan <sup>d</sup><br>Extreme Measures Condition <sup>d</sup> | 0<br>0                      | 0<br>0            | 0<br>0                  | 58<br>58                      | 2<br>2                        | 60<br>60                      | 60<br>60                      |

|                             |                 |                                          |                             | Point Sources |          | N     |                    |          |       |
|-----------------------------|-----------------|------------------------------------------|-----------------------------|---------------|----------|-------|--------------------|----------|-------|
| Water Quality Indicator     | Subwatershed    | Condition                                | Industrial<br>Point Sources | SSOs          | Subtotal | Urban | Rural <sup>C</sup> | Subtotal | Total |
| Copper (pounds) (continued) | Watershed Total | Existing                                 | 0                           | <1            | <1       | 445   | 52                 | 497      | 497   |
|                             |                 | Revised 2020 Baseline                    | 0                           | <1            | <1       | 374   | 46                 | 420      | 420   |
|                             |                 | Revised 2020 Baseline with Five-Year LOP | 0                           | <1            | <1       | 374   | 46                 | 420      | 420   |
|                             |                 | Recommended Pland                        | 0                           | <1            | <1       | 343   | 43                 | 386      | 386   |
|                             |                 | Extreme Measures Condition <sup>d</sup>  | 0                           | <1            | <1       | 343   | 43                 | 386      | 386   |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>In certain limited cases, relatively minor anomalies in nonpoint source pollutant loads may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a relatively slight increase load under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in pollutant load occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters established under the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively small anomalies in the comparative results.

<sup>&</sup>lt;sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominately urban setting.

<sup>&</sup>lt;sup>d</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

Table M-5

AVERAGE ANNUAL POLLUTANT LOADS FOR RECOMMENDED PLAN AND EXTREME MEASURES CONDITION: ROOT RIVER WATERSHED

|                           |                              |                                                                                                                                               |                                | Point S                           | Sources                                 |                                         | N                                         |                                                    |                                                |                                                |
|---------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Water Quality Indicator   | Subwatershed                 | Condition                                                                                                                                     | Industrial<br>Point<br>Sources | SSOs                              | WWTPs                                   | Subtotal                                | Urban                                     | Rural <sup>C</sup>                                 | Subtotal                                       | Total                                          |
| Total Phosphorus (pounds) | Lower Root River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 130<br>130<br>130<br>130       | 10<br>10<br>10<br>10              | 0<br>0<br>0                             | 140<br>140<br>140<br>140                | 8,750<br>7,660<br>7,660<br>7,070<br>6,660 | 14,670<br>11,760<br>11,760<br>9,930<br>8,900       | 23,420<br>19,420<br>19,420<br>17,000<br>15,560 | 23,560<br>19,560<br>19,560<br>17,140<br>15,700 |
|                           | Middle Root River            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 0<br>0<br>0                    | 0<br>0<br>0                       | 0<br>0<br>0<br>0                        | 0<br>0<br>0                             | 3,780<br>3,530<br>3,530<br>3,320<br>3,200 | 5,130<br>4,520<br>4,520<br>3,880<br>3,410          | 8,910<br>8,050<br>8,050<br>7,200<br>6,610      | 8,910<br>8,050<br>8,050<br>7,200<br>6,610      |
|                           | Upper Root River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 0<br>0<br>0                    | <10<br>20<br>20<br>20<br>20<br>20 | 0<br>0<br>0                             | <10<br>20<br>20<br>20<br>20<br>20       | 6,000<br>4,450<br>4,450<br>4,260<br>4,150 | 170<br>120<br>120<br>120<br>120                    | 6,170<br>4,570<br>4,570<br>4,380<br>4,270      | 6,170<br>4,590<br>4,590<br>4,400<br>4,290      |
|                           | Hoods Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup> | 0<br>0<br>0                    | 0<br>0<br>0                       | 940<br>1,350<br>1,350<br>1,350<br>1,350 | 940<br>1,350<br>1,350<br>1,350<br>1,350 | 1,020<br>990<br>990<br>990<br>950<br>930  | 5,610<br>4,420<br>4,420<br>3,910<br>3,700          | 6,630<br>5,410<br>5,410<br>4,860<br>4,630      | 7,570<br>6,760<br>6,760<br>6,210<br>5,980      |
|                           | Root River Canal             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 0<br>0<br>0                    | 0<br>0<br>0                       | 0<br>0<br>0<br>0                        | 0<br>0<br>0                             | 180<br>170<br>170<br>170<br>160           | 4,720<br>4,260<br>4,260<br>4,260<br>3,400<br>3,130 | 4,900<br>4,430<br>4,430<br>3,570<br>3,290      | 4,900<br>4,430<br>4,430<br>3,570<br>3,290      |
|                           | East Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup> | 0<br>0<br>0<br>0               | 0<br>0<br>0<br>0                  | 220<br>220<br>220<br>220<br>220<br>220  | 220<br>220<br>220<br>220<br>220         | 430<br>500<br>500<br>480<br>460           | 6,880<br>6,010<br>6,010<br>4,710<br>4,340          | 7,310<br>6,510<br>6,510<br>5,190<br>4,800      | 7,530<br>6,730<br>6,730<br>5,410<br>5,020      |

|                                       |                              |                                                                                           |                                | Point S           | Sources                 |                         | N                                   |                                        |                                        |                                        |
|---------------------------------------|------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|-------------------|-------------------------|-------------------------|-------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Water Quality Indicator               | Subwatershed                 | Condition                                                                                 | Industrial<br>Point<br>Sources | SSOs              | WWTPs                   | Subtotal                | Urban                               | Rural <sup>C</sup>                     | Subtotal                               | Total                                  |
| Total Phosphorus (pounds) (continued) | West Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | <10<br><10<br><10              | 0<br>0<br>0       | 1,990<br>2,620<br>2,620 | 1,990<br>2,620<br>2,620 | 1,040<br>1,050<br>1,050             | 15,890<br>13,940<br>13,940             | 16,930<br>14,990<br>14,990             | 18,920<br>17,610<br>17,610             |
|                                       |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | <10<br><10                     | 0                 | 2,620<br>2,620          | 2,620<br>2,620          | 970<br>900                          | 10,950<br>10,140                       | 11,920<br>11,040                       | 14,540<br>13,660                       |
|                                       | East Branch Root River       | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland | 0 0 0                          | 0 0 0             | 0<br>0<br>0             | 0<br>0<br>0             | 1,660<br>1,460<br>1,460<br>1,380    | 180<br>50<br>50                        | 1,840<br>1,510<br>1,510                | 1,840<br>1,510<br>1,510                |
|                                       |                              | Extreme Measures<br>Condition <sup>d</sup>                                                | 0                              | 0                 | 0                       | 0                       | 1,340                               | 50                                     | 1,390                                  | 1,390                                  |
|                                       | Whitnall Park Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0<br>0<br>0                    | <10<br><10<br><10 | 0<br>0<br>0             | <10<br><10<br><10       | 3,650<br>2,940<br>2,940             | 1,010<br>740<br>740                    | 4,660<br>3,680<br>3,680                | 4,660<br>3,680<br>3,680                |
|                                       |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 0<br>0                         | <10<br><10        | 0                       | <10<br><10              | 2,790<br>2,710                      | 690<br>670                             | 3,480<br>3,380                         | 3,480<br>3,380                         |
|                                       | Watershed Total              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 130<br>130<br>130              | 10<br>30<br>30    | 3,150<br>4,190<br>4,190 | 3,290<br>4,350<br>4,350 | 26,510<br>22,750<br>22,750          | 54,260<br>45,820<br>45,820             | 80,770<br>68,570<br>68,570             | 84,060<br>72,920<br>72,920             |
|                                       |                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 130<br>130                     | 30<br>30          | 4,190<br>4,190          | 4,350<br>4,350          | 21,390<br>20,510                    | 37,640<br>34,460                       | 59,030<br>54,970                       | 63,380<br>59,320                       |
| Total Suspended Solids (pounds)       | Lower Root River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 480<br>480<br>480              | 710<br>710<br>710 | 0<br>0<br>0             | 1,190<br>1,190<br>1,190 | 2,781,990<br>2,052,910<br>2,052,910 | 18,169,680<br>11,915,640<br>11,915,640 | 20,951,670<br>13,968,550<br>13,968,550 | 20,952,860<br>13,969,740<br>13,969,740 |
|                                       |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>               | 480<br>480                     | 710<br>710        | 0<br>0                  | 1,190<br>1,190          | 2,104,660<br>2,104,660              | 9,405,010<br>8,431,590                 | 11,509,670<br>10,536,250               | 11,510,860<br>10,537,440               |
|                                       | Middle Root River            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                   | 0 0 0                          | 0 0 0             | 0<br>0<br>0             | 0<br>0<br>0             | 1,290,740<br>1,037,170<br>1,037,170 | 5,439,900<br>2,221,250<br>2,221,250    | 6,730,640<br>3,258,420<br>3,258,420    | 6,730,640<br>3,258,420<br>3,258,420    |
|                                       |                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                     | 0                              | 0                 | 0                       | 0                       | 1,077,250<br>1,077,250              | 1,783,570<br>1,615,200                 | 2,860,820<br>2,692,450                 | 2,860,820<br>2,692,450                 |

|                                                |                              |                                                                                                            |                                | Point S          | Sources                                   |                                           | N                                                   | onpoint Source <sup>2</sup>                                   | a,b                                                           |                                                               |
|------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Water Quality Indicator                        | Subwatershed                 | Condition                                                                                                  | Industrial<br>Point<br>Sources | SSOs             | WWTPs                                     | Subtotal                                  | Urban                                               | Rural <sup>C</sup>                                            | Subtotal                                                      | Total                                                         |
| Total Suspended Solids<br>(pounds) (continued) | Upper Root River             | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline with<br>Five-Year LOP                           | 0<br>0<br>0                    | 80<br>890<br>890 | 0<br>0<br>0                               | 80<br>890<br>890                          | 1,918,200<br>1,299,350<br>1,299,350                 | 18,970<br>8,060<br>8,060                                      | 1,937,170<br>1,307,410<br>1,307,410                           | 1,937,250<br>1,308,300<br>1,308,300                           |
|                                                |                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                      | 0                              | 890<br>890       | 0                                         | 890<br>890                                | 1,305,180<br>1,305,180                              | 8,060<br>8,060                                                | 1,313,240<br>1,313,240                                        | 1,314,130<br>1,314,130                                        |
|                                                | Hoods Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures | 0<br>0<br>0                    | 0<br>0<br>0      | 1,060<br>1,520<br>1,520<br>1,520<br>1,520 | 1,060<br>1,520<br>1,520<br>1,520<br>1,520 | 536,060<br>395,060<br>395,060<br>411,000<br>411,000 | 7,409,050<br>4,980,580<br>4,980,580<br>4,078,040<br>3,648,260 | 7,945,110<br>5,375,640<br>5,375,640<br>4,489,040<br>4,059,260 | 7,946,170<br>5,377,160<br>5,377,160<br>4,490,560<br>4,060,780 |
|                                                | Root River Canal             | Condition <sup>d</sup> Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP             | 0<br>0<br>0                    | 0<br>0<br>0      | 0<br>0<br>0                               | 0<br>0<br>0                               | 114,030<br>105,770<br>105,770                       | 7,048,210<br>6,051,940<br>6,051,940                           | 7,162,240<br>6,157,710<br>6,157,710                           | 7,162,240<br>6,157,710<br>6,157,710                           |
|                                                |                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                      | 0                              | 0                | 0                                         | 0                                         | 106,150<br>106,150                                  | 4,431,700<br>3,960,810                                        | 4,537,850<br>4,066,960                                        | 4,537,850<br>4,066,960                                        |
|                                                | East Branch Root River Canal | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline with<br>Five-Year LOP                           | 0<br>0<br>0                    | 0<br>0<br>0      | 450<br>450<br>450                         | 450<br>450<br>450                         | 271,250<br>296,030<br>296,030                       | 10,618,210<br>9,004,670<br>9,004,670                          | 10,889,460<br>9,300,700<br>9,300,700                          | 10,889,910<br>9,301,150<br>9,301,150                          |
|                                                |                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                      | 0                              | 0                | 450<br>450                                | 450<br>450                                | 301,200<br>301,200                                  | 6,583,660<br>5,879,240                                        | 6,884,860<br>6,180,440                                        | 6,885,310<br>6,180,890                                        |
|                                                | West Branch Root River Canal | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline with<br>Five-Year LOP                           | 0<br>0<br>0                    | 0<br>0<br>0      | 8,890<br>11,730<br>11,730                 | 8,890<br>11,730<br>11,730                 | 468,430<br>415,390<br>415,390                       | 25,202,610<br>21,557,740<br>21,557,740                        | 25,671,040<br>21,973,130<br>21,973,130                        | 25,679,930<br>21,984,860<br>21,984,860                        |
|                                                |                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>                                      | 0                              | 0                | 11,730<br>11,730                          | 11,730<br>11,730                          | 419,490<br>419,490                                  | 15,758,740<br>14,072,260                                      | 16,178,230<br>14,491,750                                      | 16,189,960<br>14,503,480                                      |
|                                                | East Branch Root River       | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                    | 0<br>0<br>0                    | 0<br>0<br>0      | 0<br>0<br>0                               | 0<br>0<br>0                               | 494,130<br>371,160<br>371,160                       | 229,360<br>4,170<br>4,170                                     | 723,490<br>375,330<br>375,330                                 | 723,490<br>375,330<br>375,330                                 |
|                                                |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                | 0                              | 0                | 0                                         | 0<br>0                                    | 378,760<br>378,760                                  | 4,170<br>4,170                                                | 382,930<br>382,930                                            | 382,930<br>382,930                                            |

|                                                 |                     |                                                                                                                       |                                      | Point S                                   | Sources                                        |                                                | N                                                             |                                                                    |                                                                    |                                                                    |
|-------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator                         | Subwatershed        | Condition                                                                                                             | Industrial<br>Point<br>Sources       | SSOs                                      | WWTPs                                          | Subtotal                                       | Urban                                                         | Rural <sup>c</sup>                                                 | Subtotal                                                           | Total                                                              |
| Total Suspended Solids (pounds) (continued)     | Whitnall Park Creek | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0                          | 240<br>240<br>240<br>240<br>240           | 0<br>0<br>0                                    | 240<br>240<br>240<br>240<br>240                | 1,112,640<br>781,980<br>781,980<br>795,850<br>795,850         | 636,060<br>66,120<br>66,120<br>66,280<br>66,280                    | 1,748,700<br>848,100<br>848,100<br>862,130<br>862,130              | 1,748,940<br>848,340<br>848,340<br>862,370<br>862,370              |
|                                                 | Watershed Total     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 480<br>480<br>480<br>480<br>480      | 1,030<br>1,840<br>1,840<br>1,840<br>1,840 | 10,400<br>13,700<br>13,700<br>13,700<br>13,700 | 11,910<br>16,020<br>16,020<br>16,020<br>16,020 | 8,987,470<br>6,754,820<br>6,754,820<br>6,899,540<br>6,899,540 | 74,772,050<br>55,810,170<br>55,810,170<br>42,119,230<br>37,685,870 | 83,759,520<br>62,564,990<br>62,564,990<br>49,018,770<br>44,585,410 | 83,771,430<br>62,581,010<br>62,581,010<br>49,034,790<br>44,601,430 |
| Fecal Coliform Bacteria<br>(trillions of cells) | Lower Root River    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 13.58<br>13.58<br>13.58<br>13.58<br>13.58 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 13.58<br>13.58<br>13.58<br>13.58<br>13.58      | 2,641.12<br>2,133.73<br>2,133.73<br>1,580.26<br>1,105.71      | 853.13<br>737.65<br>737.65<br>586.33<br>513.77                     | 3,494.25<br>2,871.38<br>2,871.38<br>2,166.59<br>1,619.48           | 3,507.83<br>2,884.96<br>2,884.96<br>2,180.17<br>1,633.06           |
|                                                 | Middle Root River   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 0.00<br>0.00<br>0.00<br>0.00                   | 1,323.10<br>1,223.78<br>1,223.78<br>849.20<br>531.95          | 317.14<br>340.37<br>340.37<br>279.53<br>232.15                     | 1,640.24<br>1,564.15<br>1,564.15<br>1,128.73<br>764.10             | 1,640.24<br>1,564.15<br>1,564.15<br>1,128.73<br>764.10             |
|                                                 | Upper Root River    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 1.55<br>16.89<br>16.89<br>16.89<br>16.89  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00           | 1.55<br>16.89<br>16.89<br>16.89<br>16.89       | 2,202.96<br>1,657.14<br>1,657.14<br>1,032.09<br>523.69        | 0.75<br>0.28<br>0.28<br>0.28<br>0.28                               | 2,203.71<br>1,657.42<br>1,657.42<br>1,032.37<br>523.97             | 2,205.26<br>1,674.31<br>1,674.31<br>1,049.26<br>540.86             |
|                                                 | Hoods Creek         | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00      | 0.30<br>0.43<br>0.43<br>0.43<br>0.43           | 0.30<br>0.43<br>0.43<br>0.43<br>0.43           | 418.83<br>361.82<br>361.82<br>231.09<br>117.62                | 276.59<br>243.26<br>243.26<br>141.43<br>73.39                      | 695.42<br>605.08<br>605.08<br>372.52<br>191.01                     | 695.72<br>605.51<br>605.51<br>372.95<br>191.44                     |

|                                                                |                              |                                                                                                                                               |                                      | Point S                                   | Sources                              |                                           | N                                                        |                                                          |                                                             |                                                             |
|----------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Water Quality Indicator                                        | Subwatershed                 | Condition                                                                                                                                     | Industrial<br>Point<br>Sources       | SSOs                                      | WWTPs                                | Subtotal                                  | Urban                                                    | Rural <sup>C</sup>                                       | Subtotal                                                    | Total                                                       |
| Fecal Coliform Bacteria<br>(trillions of cells)<br>(continued) | Root River Canal             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00              | 0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00              | 96.48<br>91.35<br>91.35<br>88.87<br>85.15                | 180.79<br>181.30<br>181.30<br>134.61<br>125.78           | 277.27<br>272.65<br>272.65<br>223.48<br>210.93              | 277.27<br>272.65<br>272.65<br>223.48<br>210.93              |
|                                                                | East Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00      | 0.14<br>0.14<br>0.14<br>0.14<br>0.14 | 0.14<br>0.14<br>0.14<br>0.14<br>0.14      | 215.12<br>228.91<br>228.91<br>217.11<br>208.03           | 251.23<br>237.03<br>237.03<br>166.12<br>155.31           | 466.35<br>465.94<br>465.94<br>383.23<br>363.34              | 466.49<br>466.08<br>466.08<br>383.37<br>363.48              |
|                                                                | West Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00      | 2.85<br>3.76<br>3.76<br>3.76<br>3.76 | 2.85<br>3.76<br>3.76<br>3.76<br>3.76      | 451.94<br>423.71<br>423.71<br>404.16<br>384.72           | 560.80<br>529.13<br>529.13<br>370.69<br>347.08           | 1,012.74<br>952.84<br>952.84<br>774.85<br>731.80            | 1,015.59<br>956.60<br>956.60<br>778.61<br>735.56            |
|                                                                | East Branch Root River       | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00      | 554.63<br>478.13<br>478.13<br>307.63<br>155.85           | 2.49<br>0.13<br>0.13<br>0.13<br>0.13                     | 557.12<br>478.26<br>478.26<br>307.76<br>155.98              | 557.12<br>478.26<br>478.26<br>307.76<br>155.98              |
|                                                                | Whitnall Park Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 4.52<br>4.52<br>4.52<br>4.52<br>4.52      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 4.52<br>4.52<br>4.52<br>4.52<br>4.52      | 1,309.52<br>1,043.97<br>1,043.97<br>653.06<br>331.34     | 100.59<br>93.23<br>93.23<br>58.95<br>30.11               | 1,410.11<br>1,137.20<br>1,137.20<br>712.01<br>361.45        | 1,414.63<br>1,141.72<br>1,141.72<br>716.53<br>365.97        |
|                                                                | Watershed Total              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup> | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 19.65<br>34.99<br>34.99<br>34.99<br>34.99 | 3.29<br>4.33<br>4.33<br>4.33<br>4.33 | 22.94<br>39.32<br>39.32<br>39.32<br>39.32 | 9,213.70<br>7,642.54<br>7,642.54<br>5,363.47<br>3,444.06 | 2,543.51<br>2,362.38<br>2,362.38<br>1,738.07<br>1,478.00 | 11,757.21<br>10,004.92<br>10,004.92<br>7,101.54<br>4,922.06 | 11,780.15<br>10,044.24<br>10,044.24<br>7,140.86<br>4,961.38 |

|                         |                              |                                                                                                                        |                                | Point S         | Sources                 | s Nonpoint Source <sup>a,b</sup> |                                      |                                      | a,b                                   |                               |
|-------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-------------------------|----------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-------------------------------|
| Water Quality Indicator | Subwatershed                 | Condition                                                                                                              | Industrial<br>Point<br>Sources | SSOs            | WWTPs                   | Subtotal                         | Urban                                | Rural <sup>C</sup>                   | Subtotal                              | Total                         |
| Total Nitrogen (pounds) | Lower Root River             | Existing<br>Revised 2020 Baseline<br>Revised 2020 Baseline with<br>Five-Year LOP                                       | 540<br>540<br>540              | 30<br>30<br>30  | 0<br>0<br>0             | 570<br>570<br>570                | 48,810<br>44,430<br>44,430           | 232,290<br>170,830<br>170,830        | 281,100<br>215,260<br>215,260         | 281,670<br>215,830<br>215,830 |
|                         |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                            | 540<br>540                     | 30<br>30        | 0                       | 570<br>570                       | 43,420<br>42,100                     | 140,330<br>126,720                   | 183,750<br>168,820                    | 184,320<br>169,390            |
|                         | Middle Root River            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>d</sup> Extreme Measures | 0<br>0<br>0                    | 0<br>0<br>0     | 0<br>0<br>0             | 0<br>0<br>0                      | 24,170<br>23,730<br>23,730<br>23,400 | 76,660<br>44,100<br>44,100<br>37,950 | 100,830<br>67,830<br>67,830<br>61,350 | 100,830<br>67,830<br>67,830   |
|                         |                              | Condition <sup>d</sup>                                                                                                 | 0                              | 0               | U                       | U                                | 23,090                               | 34,300                               | 57,390                                | 57,390                        |
|                         | Upper Root River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                | 0<br>0<br>0                    | <10<br>30<br>30 | 0<br>0<br>0             | <10<br>30<br>30                  | 38,610<br>29,920<br>29,920           | 1,220<br>780<br>780                  | 39,830<br>30,700<br>30,700            | 39,830<br>30,730<br>30,730    |
|                         |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                            | 0                              | 30<br>30        | 0<br>0                  | 30<br>30                         | 29,960<br>29,890                     | 780<br>780                           | 30,740<br>30,670                      | 30,770<br>30,700              |
|                         | Hoods Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                | 0<br>0<br>0                    | 0<br>0<br>0     | 3,980<br>5,690<br>5,690 | 3,980<br>5,690<br>5,690          | 6,060<br>5,940<br>5,940              | 97,320<br>72,550<br>72,550           | 103,380<br>78,490<br>78,490           | 107,360<br>84,180<br>84,180   |
|                         |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                            | 0                              | 0               | 5,690<br>5,690          | 5,690<br>5,690                   | 5,860<br>5,850                       | 61,870<br>57,090                     | 67,730<br>62,940                      | 73,420<br>68,630              |
|                         | Root River Canal             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                | 0<br>0<br>0                    | 0<br>0<br>0     | 0<br>0<br>0             | 0<br>0<br>0                      | 1,180<br>1,150<br>1,150              | 89,940<br>80,550<br>80,550           | 91,120<br>81,700<br>81,700            | 91,120<br>81,700<br>81,700    |
|                         |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                            | 0                              | 0               | 0                       | 0                                | 1,120<br>1,070                       | 60,990<br>55,350                     | 62,110<br>56,420                      | 62,110<br>56,420              |
|                         | East Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                | 0<br>0<br>0                    | 0<br>0<br>0     | 1,820<br>1,820<br>1,820 | 1,820<br>1,820<br>1,820          | 2,600<br>2,960<br>2,960              | 132,080<br>116,320<br>116,320        | 134,680<br>119,280<br>119,280         | 136,500<br>121,100<br>121,100 |
|                         |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup>                                            | 0                              | 0               | 1,820<br>1,820          | 1,820<br>1,820                   | 2,880<br>2,760                       | 87,290<br>79,040                     | 90,170<br>81,800                      | 91,990<br>83,620              |

|                                        |                              |                                                                                                                       |                                 | Point S                    | Sources                                        |                                                | Nonpoint Source <sup>a,b</sup>                      |                                                     |                                                       |                                                       |
|----------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Water Quality Indicator                | Subwatershed                 | Condition                                                                                                             | Industrial<br>Point<br>Sources  | SSOs                       | WWTPs                                          | Subtotal                                       | Urban                                               | Rural <sup>C</sup>                                  | Subtotal                                              | Total                                                 |
| Total Nitrogen (pounds)<br>(continued) | West Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | <10<br><10<br><10<br><10<br><10 | 0<br>0<br>0                | 20,720<br>27,340<br>27,340<br>27,340<br>27,340 | 20,720<br>27,340<br>27,340<br>27,340<br>27,340 | 6,720<br>6,800<br>6,800<br>6,530<br>6,120           | 305,720<br>271,210<br>271,210<br>203,490<br>184,420 | 312,440<br>278,010<br>278,010<br>210,020<br>190,540   | 333,160<br>305,350<br>305,350<br>237,360<br>217,880   |
|                                        | East Branch Root River       | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0<br>0                | 0<br>0<br>0                | 0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0                               | 10,570<br>9,840<br>9,840<br>9,800<br>9,770          | 4,030<br>410<br>410<br>410<br>410                   | 14,600<br>10,250<br>10,250<br>10,210<br>10,180        | 14,600<br>10,250<br>10,250<br>10,210<br>10,180        |
|                                        | Whitnall Park Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0<br>0                | 10<br>10<br>10<br>10       | 0<br>0<br>0<br>0                               | 10<br>10<br>10<br>10                           | 23,440<br>19,710<br>19,710<br>19,690<br>19,640      | 14,650<br>5,150<br>5,150<br>5,150<br>5,170<br>5,160 | 38,090<br>24,860<br>24,860<br>24,860<br>24,800        | 38,100<br>24,870<br>24,870<br>24,870<br>24,810        |
|                                        | Watershed Total              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 540<br>540<br>540<br>540<br>540 | 40<br>70<br>70<br>70<br>70 | 26,520<br>34,850<br>34,850<br>34,850<br>34,850 | 27,100<br>35,460<br>35,460<br>35,460<br>35,460 | 162,160<br>144,480<br>144,480<br>142,660<br>140,290 | 953,910<br>761,900<br>761,900<br>598,280<br>543,270 | 1,116,070<br>906,380<br>906,380<br>740,940<br>683,560 | 1,143,170<br>941,840<br>941,840<br>776,400<br>719,020 |
| Biochemical Oxygen<br>Demand (pounds)  | Lower Root River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 820<br>820<br>820<br>820<br>820 | 180<br>180<br>180<br>180   | 0<br>0<br>0                                    | 1,000<br>1,000<br>1,000<br>1,000<br>1,000      | 215,660<br>192,700<br>192,700<br>197,450<br>197,450 | 577,910<br>526,280<br>526,280<br>492,610<br>457,580 | 793,570<br>718,980<br>718,980<br>690,060<br>655,030   | 794,570<br>719,980<br>719,980<br>691,060<br>656,030   |
|                                        | Middle Root River            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Pland Extreme Measures Conditiond | 0<br>0<br>0<br>0                | 0<br>0<br>0                | 0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0                               | 105,600<br>105,760<br>105,760<br>106,860<br>106,860 | 186,700<br>126,990<br>126,990<br>121,580<br>115,510 | 292,300<br>232,750<br>232,750<br>228,440<br>222,370   | 292,300<br>232,750<br>232,750<br>228,440<br>222,370   |

|                                                      |                              |                                                                             |                                | Point S          | Sources                    |                            | N                             | onpoint Source <sup>8</sup>   | a,b                           |                               |
|------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------|--------------------------------|------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Water Quality Indicator                              | Subwatershed                 | Condition                                                                   | Industrial<br>Point<br>Sources | SSOs             | WWTPs                      | Subtotal                   | Urban                         | Rural <sup>C</sup>            | Subtotal                      | Total                         |
| Biochemical Oxygen<br>Demand (pounds)<br>(continued) | Upper Root River             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 20<br>220<br>220 | 0<br>0<br>0                | 20<br>220<br>220           | 169,850<br>126,190<br>126,190 | 6,380<br>4,610<br>4,610       | 176,230<br>130,800<br>130,800 | 176,250<br>131,020<br>131,020 |
|                                                      |                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                              | 220<br>220       | 0                          | 220<br>220                 | 130,170<br>130,170            | 4,610<br>4,610                | 134,780<br>134,780            | 135,000<br>135,000            |
|                                                      | Hoods Creek                  | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0 0 0                          | 0<br>0<br>0      | 990<br>1,410<br>1,410      | 990<br>1,410<br>1,410      | 37,740<br>35,610<br>35,610    | 214,960<br>198,010<br>198,010 | 252,700<br>233,620<br>233,620 | 253,690<br>235,030<br>235,030 |
|                                                      |                              | Recommended Plan <sup>d</sup> Extreme Measures Condition <sup>d</sup>       | 0                              | 0                | 1,410<br>1,410             | 1,410<br>1,410             | 36,500<br>36,500              | 184,730<br>171,140            | 221,230<br>207,640            | 222,640<br>209,050            |
|                                                      | Root River Canal             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0      | 0<br>0<br>0                | 0<br>0<br>0                | 8,330<br>8,000<br>8,000       | 230,680<br>246,990<br>246,990 | 239,010<br>254,990<br>254,990 | 239,010<br>254,990<br>254,990 |
|                                                      |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                              | 0                | 0                          | 0                          | 8,100<br>8,100                | 228,500<br>210,030            | 236,600<br>218,130            | 236,600<br>218,130            |
|                                                      | East Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0      | 750<br>750<br>750          | 750<br>750<br>750          | 19,720<br>23,540<br>23,540    | 383,470<br>407,750<br>407,750 | 403,190<br>431,290<br>431,290 | 403,940<br>432,040<br>432,040 |
|                                                      |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                              | 0                | 750<br>750                 | 750<br>750                 | 23,780<br>23,780              | 374,910<br>342,070            | 398,690<br>365,850            | 399,440<br>366,600            |
|                                                      | West Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 10<br>10<br>10                 | 0<br>0<br>0      | 11,280<br>14,890<br>14,890 | 11,290<br>14,900<br>14,900 | 36,630<br>35,170<br>35,170    | 870,200<br>931,950<br>931,950 | 906,830<br>967,120<br>967,120 | 918,120<br>982,020<br>982,020 |
|                                                      |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 10<br>10                       | 0                | 14,890<br>14,890           | 14,900<br>14,900           | 35,870<br>35,870              | 857,720<br>783,350            | 893,590<br>819,220            | 908,490<br>834,120            |
|                                                      | East Branch Root River       | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0      | 0<br>0<br>0                | 0<br>0<br>0                | 42,060<br>36,720<br>36,720    | 8,260<br>2,030<br>2,030       | 50,320<br>38,750<br>38,750    | 50,320<br>38,750<br>38,750    |
|                                                      |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                              | 0                | 0                          | 0                          | 37,430<br>37,430              | 2,030<br>2,030                | 39,460<br>39,460              | 39,460<br>39,460              |

|                                                      |                     |                                                                             |                                | Point S           | Sources                    |                            | N                             | onpoint Source <sup>8</sup>         | a,b                                 |                                     |
|------------------------------------------------------|---------------------|-----------------------------------------------------------------------------|--------------------------------|-------------------|----------------------------|----------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Water Quality Indicator                              | Subwatershed        | Condition                                                                   | Industrial<br>Point<br>Sources | SSOs              | WWTPs                      | Subtotal                   | Urban                         | Rural <sup>C</sup>                  | Subtotal                            | Total                               |
| Water Quality Indicator                              |                     |                                                                             |                                |                   |                            |                            |                               |                                     |                                     |                                     |
| Biochemical Oxygen<br>Demand (pounds)<br>(continued) | Whitnall Park Creek | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 60<br>60<br>60    | 0<br>0<br>0                | 60<br>60<br>60             | 99,220<br>80,110<br>80,110    | 31,140<br>14,620<br>14,620          | 130,360<br>94,730<br>94,730         | 130,420<br>94,790<br>94,790         |
|                                                      |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                              | 60<br>60          | 0                          | 60<br>60                   | 81,860<br>81,860              | 14,790<br>14,790                    | 96,650<br>96,650                    | 96,710<br>96,710                    |
|                                                      | Watershed Total     | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 830<br>830<br>830              | 260<br>460<br>460 | 13,020<br>17,050<br>17,050 | 14,110<br>18,340<br>18,340 | 734,810<br>643,800<br>643,800 | 2,509,700<br>2,459,230<br>2,459,230 | 3,244,510<br>3,103,030<br>3,103,030 | 3,258,620<br>3,121,370<br>3,121,370 |
|                                                      |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 830<br>830                     | 460<br>460        | 17,050<br>17,050           | 18,340<br>18,340           | 658,020<br>658,020            | 2,281,480<br>2,101,110              | 2,939,500<br>2,759,130              | 2,957,840<br>2,777,470              |
| Copper (pounds)                                      | Lower Root River    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 3<br>3<br>3                    | <1<br><1<br><1    | 0<br>0<br>0                | 3<br>3<br>3                | 404<br>333<br>333             | 171<br>146<br>146                   | 575<br>479<br>479                   | 578<br>482<br>482                   |
|                                                      |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 3<br>3                         | <1<br><1          | 0<br>0                     | 3<br>3                     | 328<br>328                    | 147<br>146                          | 475<br>474                          | 478<br>477                          |
|                                                      | Middle Root River   | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0       | 0<br>0<br>0                | 0<br>0<br>0                | 194<br>177<br>177             | 70<br>73<br>73                      | 264<br>250<br>250                   | 264<br>250<br>250                   |
|                                                      |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                              | 0<br>0            | 0                          | 0                          | 173<br>173                    | 74<br>74                            | 247<br>247                          | 247<br>247                          |
|                                                      | Upper Root River    | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | <1<br><1<br><1    | 0<br>0<br>0                | <1<br><1<br><1             | 305<br>217<br>217             | 2<br>1<br>1                         | 307<br>218<br>218                   | 307<br>218<br>218                   |
|                                                      |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                              | <1<br><1          | 0                          | <1<br><1                   | 217<br>217                    | 1<br>1                              | 218<br>218                          | 218<br>218                          |
|                                                      | Hoods Creek         | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0       | 4<br>5<br>5                | 4<br>5<br>5                | 69<br>59<br>59                | 64<br>54<br>54                      | 133<br>113<br>113                   | 137<br>118<br>118                   |
|                                                      |                     | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                              | 0<br>0            | 5<br>5                     | 5<br>5                     | 58<br>58                      | 54<br>53                            | 112<br>111                          | 117<br>116                          |

|                                |                              |                                                                             |                                | Point S        | Sources        |                | N                       | onpoint Source <sup>8</sup> | ı,b                     |                         |
|--------------------------------|------------------------------|-----------------------------------------------------------------------------|--------------------------------|----------------|----------------|----------------|-------------------------|-----------------------------|-------------------------|-------------------------|
| Water Quality Indicator        | Subwatershed                 | Condition                                                                   | Industrial<br>Point<br>Sources | SSOs           | WWTPs          | Subtotal       | Urban                   | Rural <sup>C</sup>          | Subtotal                | Total                   |
| Copper (pounds)<br>(continued) | Root River Canal             | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0    | 0<br>0<br>0    | 0<br>0<br>0    | 15<br>14<br>14          | 42<br>41<br>41              | 57<br>55<br>55          | 57<br>55<br>55          |
|                                |                              | Recommended Pland Extreme Measures Conditiond                               | 0                              | 0              | 0              | 0<br>0         | 14<br>14                | 40<br>40                    | 54<br>54                | 54<br>54                |
|                                | East Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0    | 1<br>1<br>1    | 1<br>1<br>1    | 36<br>42<br>42          | 55<br>51<br>51              | 91<br>93<br>93          | 92<br>94<br>94          |
|                                |                              | Recommended Pland Extreme Measures Conditiond                               | 0                              | 0              | 1              | 1<br>1         | 42<br>42                | 51<br>51                    | 93<br>93                | 94<br>94                |
|                                | West Branch Root River Canal | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0    | 35<br>47<br>47 | 35<br>47<br>47 | 67<br>63<br>63          | 122<br>112<br>112           | 189<br>175<br>175       | 224<br>222<br>222       |
|                                |                              | Recommended Pland Extreme Measures Conditiond                               | 0                              | 0              | 47<br>47       | 47<br>47       | 62<br>62                | 112<br>112                  | 174<br>174              | 221<br>221              |
|                                | East Branch Root River       | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | 0<br>0<br>0    | 0<br>0<br>0    | 0<br>0<br>0    | 77<br>63<br>63          | 2<br>1<br>1                 | 79<br>64<br>64          | 79<br>64<br>64          |
|                                |                              | Recommended Pland Extreme Measures Conditiond                               | 0                              | 0              | 0<br>0         | 0<br>0         | 62<br>62                | 1<br>1                      | 63<br>63                | 63<br>63                |
|                                | Whitnall Park Creek          | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 0<br>0<br>0                    | <1<br><1<br><1 | 0<br>0<br>0    | <1<br><1<br><1 | 181<br>138<br>138       | 20<br>16<br>16              | 201<br>154<br>154       | 201<br>154<br>154       |
|                                |                              | Recommended Plan <sup>d</sup><br>Extreme Measures<br>Condition <sup>d</sup> | 0                              | <1<br><1       | 0<br>0         | <1<br><1       | 137<br>137              | 16<br>16                    | 153<br>153              | 153<br>153              |
|                                | Watershed Total              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP     | 3<br>3<br>3                    | <1<br><1<br><1 | 40<br>53<br>53 | 43<br>56<br>56 | 1,348<br>1,106<br>1,106 | 548<br>495<br>495           | 1,896<br>1,601<br>1,601 | 1,939<br>1,657<br>1,657 |
|                                |                              | Recommended Pland Extreme Measures Conditiond                               | 3<br>3                         | <1<br><1       | 53<br>53       | 56<br>56       | 1,093<br>1,093          | 496<br>494                  | 1,589<br>1,587          | 1,645<br>1,643          |

#### **Table M-5 Footnotes**

<sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

b In certain limited cases, relatively minor anomalies in nonpoint source pollutant loads may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a relatively slight increase load under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in pollutant load occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters established under the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively small anomalies in the comparative results.

<sup>C</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominately urban setting.

<sup>d</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

Source: Brown and Caldwell; Tetra Tech, Inc.; and SEWRPC.

Table M-6

AVERAGE ANNUAL POLLUTANT LOADS FOR RECOMMENDED PLAN AND EXTREME MEASURES CONDITION: LAKE MICHIGAN DIRECT DRAINAGE AREA

|                                 |                                             |                                                                                                                                               |                                   | Point S                                     | Sources                                                       |                                                               | 1                                                             | Nonpoint Source                                     | а                                                             |                                                               |
|---------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Water Quality Indicator         | Location                                    | Condition                                                                                                                                     | SSOs                              | CSOs                                        | WWTPs                                                         | Subtotal                                                      | Urban                                                         | Rural <sup>b</sup>                                  | Subtotal                                                      | Total                                                         |
| Total Phosphorus (pounds)       | Ozaukee County                              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 10<br>10<br>10<br>10              | 0<br>0<br>0                                 | 0<br>0<br>0                                                   | 10<br>10<br>10<br>10                                          | 2,370<br>2,130<br>2,130<br>2,000<br>1,930                     | 630<br>550<br>550<br>550<br>510                     | 3,000<br>2,680<br>2,680<br>2,520<br>2,440                     | 3,010<br>2,690<br>2,690<br>2,530<br>2,450                     |
|                                 | Milwaukee County                            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>c</sup> Extreme Measures Condition <sup>c</sup> | 30<br><10<br><10<br><10           | 160<br>100<br>100<br>100                    | 316,550<br>336,550<br>337,940<br>337,940<br>337,940           | 316,740<br>336,650<br>338,040<br>338,040<br>338,040           | 5,930<br>5,190<br>5,190<br>4,910<br>4,770                     | 720<br>660<br>660<br>620<br>590                     | 6,650<br>5,850<br>5,850<br>5,530<br>5,360                     | 323,390<br>342,500<br>343,890<br>343,570<br>343,400           |
|                                 | Racine County                               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | <10<br><10<br><10<br><10          | 0<br>0<br>0                                 | 0<br>0<br>0<br>0                                              | <10<br><10<br><10<br><10                                      | 4,880<br>4,200<br>4,200<br>3,940<br>3,790                     | 890<br>670<br>670<br>650<br>630                     | 5,770<br>4,870<br>4,870<br>4,590<br>4,420                     | 5,770<br>4,870<br>4,870<br>4,590<br>4,420                     |
|                                 | Lake Michigan Direct<br>Drainage Area Total | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 40<br>10<br>10<br>10              | 160<br>100<br>100<br>100                    | 316,550<br>336,550<br>337,940<br>337,940<br>337,940           | 316,750<br>336,660<br>338,050<br>338,050<br>338,050           | 13,180<br>11,520<br>11,520<br>10,850<br>10,490                | 2,240<br>1,880<br>1,880<br>1,790<br>1,730           | 15,420<br>13,400<br>13,400<br>12,640<br>12,220                | 332,170<br>350,060<br>351,450<br>350,690<br>350,270           |
| Total Suspended Solids (pounds) | Ozaukee County                              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 310<br>360<br>340<br>340<br>340   | 0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0                                              | 310<br>360<br>340<br>340<br>340                               | 838,280<br>673,900<br>673,900<br>678,060<br>678,060           | 397,340<br>344,990<br>344,990<br>318,770<br>292,490 | 1,235,620<br>1,018,890<br>1,018,890<br>996,830<br>970,550     | 1,235,930<br>1,019,250<br>1,019,230<br>997,170<br>970,890     |
|                                 | Milwaukee County                            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 1,160<br>180<br>170<br>170<br>170 | 16,040<br>10,300<br>9,720<br>9,720<br>9,720 | 6,926,460<br>7,152,790<br>7,214,010<br>7,214,010<br>7,214,010 | 6,943,660<br>7,163,270<br>7,223,900<br>7,223,900<br>7,223,900 | 2,770,770<br>2,067,520<br>2,067,520<br>2,084,370<br>2,083,590 | 126,260<br>76,420<br>76,420<br>76,140<br>74,670     | 2,897,030<br>2,143,940<br>2,143,940<br>2,160,510<br>2,158,260 | 9,840,690<br>9,307,210<br>9,367,840<br>9,384,410<br>9,382,160 |

|                                                 |                                             |                                                                                                                                               |                                           | Point S                                     | Sources                                                       |                                                               | 1                                                             | Nonpoint Source                                       | a                                                             |                                                                    |
|-------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| Water Quality Indicator                         | Location                                    | Condition                                                                                                                                     | SSOs                                      | CSOs                                        | WWTPs                                                         | Subtotal                                                      | Urban                                                         | Rural <sup>b</sup>                                    | Subtotal                                                      | Total                                                              |
| Total Suspended Solids (pounds) (continued)     | Racine County                               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>c</sup> | 130<br>130<br>130<br>130<br>130           | 0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0                                              | 130<br>130<br>130<br>130<br>130                               | 1,932,680<br>1,433,770<br>1,433,770<br>1,456,570<br>1,452,240 | 703,620<br>550,150<br>550,150<br>468,680<br>423,950   | 2,636,300<br>1,983,920<br>1,983,920<br>1,925,250<br>1,876,190 | 2,636,430<br>1,984,050<br>1,984,050<br>1,925,380<br>1,876,320      |
|                                                 | Lake Michigan Direct<br>Drainage Area       | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 1,600<br>670<br>640<br>640<br>640         | 16,040<br>10,300<br>9,720<br>9,720<br>9,720 | 6,926,460<br>7,152,790<br>7,214,010<br>7,214,010<br>7,214,010 | 6,944,100<br>7,163,760<br>7,224,370<br>7,224,370<br>7,224,370 | 5,541,730<br>4,175,190<br>4,175,190<br>4,219,000<br>4,213,890 | 1,227,220<br>971,560<br>971,560<br>863,590<br>791,110 | 6,768,950<br>5,146,750<br>5,146,750<br>5,082,590<br>5,005,000 | 13,713,050<br>12,310,510<br>12,371,120<br>12,306,960<br>12,229,370 |
| Fecal Coliform Bacteria<br>(trillions of cells) | Ozaukee County                              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>c</sup> Extreme Measures Condition <sup>c</sup> | 5.87<br>6.83<br>6.44<br>6.44<br>6.44      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                          | 5.87<br>6.83<br>6.44<br>6.44<br>6.44                          | 682.50<br>589.01<br>589.01<br>394.56<br>200.22                | 60.95<br>51.63<br>51.63<br>32.55<br>16.86             | 743.45<br>640.64<br>640.64<br>427.11<br>217.08                | 749.32<br>647.47<br>647.08<br>433.55<br>223.52                     |
|                                                 | Milwaukee County                            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 25.07<br>3.97<br>3.74<br>3.74<br>3.74     | 132.23<br>84.95<br>80.13<br>80.13<br>80.13  | 2,043.01<br>2,157.78<br>2,167.02<br>2,167.02<br>2,167.02      | 2,200.31<br>2,246.70<br>2,250.89<br>2,250.89<br>2,250.89      | 1,971.96<br>1,663.36<br>1,663.36<br>1,111.79<br>564.01        | 43.48<br>50.43<br>50.43<br>34.00<br>17.40             | 2,015.44<br>1,713.79<br>1,713.79<br>1,145.79<br>581.41        | 4,215.75<br>3,960.49<br>3,964.68<br>3,396.68<br>2,832.30           |
|                                                 | Racine County                               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 2.88<br>2.88<br>2.88<br>2.88<br>2.88      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                          | 2.88<br>2.88<br>2.88<br>2.88<br>2.88                          | 1,252.98<br>1,037.60<br>1,037.60<br>692.32<br>350.21          | 50.70<br>40.38<br>40.38<br>24.99<br>13.02             | 1,303.68<br>1,077.98<br>1,077.98<br>717.31<br>363.23          | 1,306.56<br>1,080.86<br>1,080.86<br>720.19<br>366.11               |
|                                                 | Lake Michigan Direct<br>Drainage Area Total | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 33.82<br>13.68<br>13.06<br>13.06<br>13.06 | 132.23<br>84.95<br>80.13<br>80.13<br>80.13  | 2,043.01<br>2,157.78<br>2,167.02<br>2,167.02<br>2,167.02      | 2,209.06<br>2,256.41<br>2,260.21<br>2,260.21<br>2,260.21      | 3,907.44<br>3,289.97<br>3,289.97<br>2,198.67<br>1,114.44      | 155.13<br>142.44<br>142.44<br>91.54<br>47.28          | 4,062.57<br>3,432.41<br>3,432.41<br>2,290.21<br>1,161.72      | 6,271.63<br>5,688.82<br>5,692.62<br>4,550.42<br>3,421.93           |
| Total Nitrogen (pounds)                         | Ozaukee County                              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 10<br>10<br>10<br>10                      | 0<br>0<br>0<br>0                            | 0<br>0<br>0                                                   | 10<br>10<br>10<br>10                                          | 15,310<br>14,130<br>14,130<br>14,130<br>14,130                | 9,910<br>9,370<br>9,370<br>8,900<br>8,420             | 25,220<br>23,500<br>23,500<br>23,030<br>22,550                | 25,230<br>23,510<br>23,510<br>23,510<br>23,040<br>22,560           |

|                                        |                                             |                                                                                                                                               |                                 | Point S                                   | Sources                                                       |                                                               | 1                                                   | Nonpoint Source                                | a                                                   |                                                               |
|----------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| Water Quality Indicator                | Location                                    | Condition                                                                                                                                     | SSOs                            | CSOs                                      | WWTPs                                                         | Subtotal                                                      | Urban                                               | Rural <sup>b</sup>                             | Subtotal                                            | Total                                                         |
| Total Nitrogen (pounds)<br>(continued) | Milwaukee County                            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                                       | 60<br>10<br>10                  | 1,120<br>720<br>680                       | 8,261,880<br>8,750,650<br>8,780,750                           | 8,263,060<br>8,751,380<br>8,781,440                           | 38,940<br>35,140<br>35,140                          | 7,650<br>6,180<br>6,180                        | 46,590<br>41,320<br>41,320                          | 8,309,650<br>8,792,700<br>8,822,760                           |
|                                        |                                             | Recommended Plan <sup>c</sup> Extreme Measures Condition <sup>c</sup>                                                                         | 10<br>10                        | 680<br>680                                | 8,780,750<br>8,780,750                                        | 8,781,440<br>8,781,440                                        | 35,110<br>35,090                                    | 6,160<br>6,120                                 | 41,270<br>41,210                                    | 8,822,710<br>8,822,650                                        |
|                                        | Racine County                               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                                       | 10<br>10<br>10                  | 0<br>0<br>0                               | 0<br>0<br>0                                                   | 10<br>10<br>10                                                | 33,130<br>29,850<br>29,850                          | 20,450<br>14,800<br>14,800                     | 53,580<br>44,650<br>44,650                          | 53,590<br>44,660<br>44,660                                    |
|                                        |                                             | Recommended Plan <sup>C</sup><br>Extreme Measures<br>Condition <sup>C</sup>                                                                   | 10<br>10                        | 0                                         | 0                                                             | 10<br>10                                                      | 29,860<br>29,750                                    | 13,170<br>12,340                               | 43,030<br>42,090                                    | 43,040<br>42,100                                              |
|                                        | Lake Michigan Direct<br>Drainage Area Total | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>c</sup> Extreme Measures Condition <sup>c</sup> | 80<br>30<br>30<br>30<br>30      | 1,120<br>720<br>680<br>680<br>680         | 8,261,880<br>8,750,650<br>8,780,750<br>8,780,750<br>8,780,750 | 8,263,080<br>8,751,400<br>8,781,460<br>8,781,460<br>8,781,460 | 87,380<br>79,120<br>79,120<br>79,100<br>78,970      | 38,010<br>30,350<br>30,350<br>28,230<br>26,880 | 125,390<br>109,470<br>109,470<br>107,330<br>105,850 | 8,388,470<br>8,860,870<br>8,890,930<br>8,888,790<br>8,887,310 |
| Biochemical Oxygen<br>Demand (pounds)  | Ozaukee County                              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>c</sup> Extreme Measures Condition <sup>c</sup> | 80<br>90<br>80<br>80            | 0<br>0<br>0                               | 0<br>0<br>0                                                   | 80<br>90<br>80<br>80                                          | 52,360<br>45,770<br>45,770<br>45,660<br>45,660      | 16,560<br>21,810<br>21,810<br>20,940<br>20,070 | 68,920<br>67,580<br>67,580<br>66,600<br>65,730      | 69,000<br>67,670<br>67,660<br>66,680<br>65,810                |
|                                        | Milwaukee County                            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 320<br>50<br>50<br>50           | 2,980<br>1,920<br>1,810<br>1,810<br>1,810 | 7,380,790<br>7,697,200<br>7,744,930<br>7,744,930<br>7,744,930 | 7,384,090<br>7,699,170<br>7,746,790<br>7,746,790<br>7,746,790 | 162,330<br>134,800<br>134,800<br>134,220<br>134,170 | 15,420<br>12,860<br>12,860<br>12,850<br>12,780 | 177,750<br>147,660<br>147,660<br>147,070<br>146,950 | 7,561,840<br>7,846,830<br>7,894,450<br>7,893,860<br>7,893,740 |
|                                        | Racine County                               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>c</sup> Extreme Measures Condition <sup>c</sup> | 40<br>40<br>40<br>40<br>40      | 0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                                              | 40<br>40<br>40<br>40<br>40                                    | 119,170<br>97,400<br>97,400<br>97,350<br>97,060     | 31,920<br>37,100<br>37,100<br>35,090<br>33,020 | 151,090<br>134,500<br>134,500<br>132,440<br>130,080 | 151,130<br>134,540<br>134,540<br>132,480<br>130,120           |
|                                        | Lake Michigan Direct<br>Drainage Area Total | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | 440<br>180<br>170<br>170<br>170 | 2,980<br>1,920<br>1,810<br>1,810<br>1,810 | 7,380,790<br>7,697,200<br>7,744,930<br>7,744,930<br>7,744,930 | 7,384,210<br>7,699,300<br>7,746,910<br>7,746,910<br>7,746,910 | 333,860<br>277,970<br>277,970<br>277,230<br>276,890 | 63,900<br>71,770<br>71,770<br>68,880<br>65,870 | 397,760<br>349,740<br>349,740<br>346,110<br>342,760 | 7,781,970<br>8,049,040<br>8,096,650<br>8,093,020<br>8,089,670 |

|                         |                                             |                                                                                                                                               |                            | Point S               | Sources                                        |                                                | 1                               | Nonpoint Source            | a                                      |                                                |
|-------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|------------------------------------------------|------------------------------------------------|---------------------------------|----------------------------|----------------------------------------|------------------------------------------------|
| Water Quality Indicator | Location                                    | Condition                                                                                                                                     | SSOs                       | CSOs                  | WWTPs                                          | Subtotal                                       | Urban                           | Rural <sup>b</sup>         | Subtotal                               | Total                                          |
| Copper (pounds)         | Ozaukee County                              | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP                                                                       | <1<br><1<br><1             | 0<br>0<br>0           | 0<br>0<br>0                                    | <1<br><1<br><1                                 | 96<br>81<br>81                  | 13<br>11<br>11             | 109<br>92<br>92                        | 109<br>92<br>92                                |
|                         |                                             | Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>c</sup>                                                                         | <1<br><1                   | 0<br>0                | 0<br>0                                         | <1<br><1                                       | 81<br>81                        | 11<br>11                   | 92<br>92                               | 92<br>92                                       |
|                         | Milwaukee County                            | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | <1<br><1<br><1<br><1<br><1 | 4<br>2<br>2<br>2<br>2 | 10,445<br>10,853<br>10,906<br>10,906<br>10,906 | 10,449<br>10,855<br>10,908<br>10,908<br>10,908 | 298<br>237<br>237<br>236<br>236 | 17<br>14<br>14<br>14<br>14 | 315<br>251<br>251<br>251<br>250<br>250 | 10,764<br>11,106<br>11,159<br>11,158<br>11,158 |
|                         | Racine County                               | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | <1<br><1<br><1<br><1<br><1 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0                               | <1<br><1<br><1<br><1<br><1                     | 228<br>179<br>179<br>179<br>178 | 18<br>14<br>14<br>13<br>13 | 246<br>193<br>193<br>192<br>191        | 246<br>193<br>193<br>192<br>191                |
|                         | Lake Michigan Direct<br>Drainage Area Total | Existing Revised 2020 Baseline Revised 2020 Baseline with Five-Year LOP Recommended Plan <sup>C</sup> Extreme Measures Condition <sup>C</sup> | <1<br><1<br><1<br><1<br><1 | 4<br>2<br>2<br>2<br>2 | 10,445<br>10,853<br>10,906<br>10,906<br>10,906 | 10,449<br>10,855<br>10,908<br>10,908<br>10,908 | 622<br>497<br>497<br>496<br>495 | 48<br>39<br>39<br>38<br>38 | 670<br>536<br>536<br>536<br>534<br>533 | 11,119<br>11,391<br>11,444<br>11,442<br>11,441 |

<sup>&</sup>lt;sup>a</sup>Certain apparent anomalies in the relationship between urban and rural nonpoint source loads are due to the manner in which the loads were apportioned. In those cases, the loads in the nonpoint subtotal column generally exhibit the anticipated relationships between conditions.

Source: Brown and Caldwell; HydroQual, Inc.; and SEWRPC.

<sup>&</sup>lt;sup>b</sup>For reporting purposes, certain land uses such as forests and wetlands have been categorized as rural sources even though they may exist in a predominately urban setting.

<sup>&</sup>lt;sup>C</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

(This page intentionally left blank)

# Appendix N (revised)

# WATER QUALITY SUMMARY STATISTICS FOR THE RECOMMENDED PLAN

Table N-1

WATER QUALITY SUMMARY STATISTICS FOR THE RECOMMENDED PLAN: KINNICKINNIC RIVER WATERSHED<sup>a</sup>

|                     |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-1                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 5,659    | 4,770                    | 4,770                                           | 3,184                            | 1,632                                           |
| Lyons Park Creek    | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 80       | 81                       | 81                                              | 82                               | 85                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 492      | 416                      | 416                                             | 278                              | 143                                             |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 296      | 309                      | 309                                             | 331                              | 353                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 2,660    | 2,255                    | 2,255                                           | 1,522                            | 807                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 90       | 90                       | 90                                              | 92                               | 93                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 361      | 308                      | 308                                             | 205                              | 106                                             |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 150      | 152                      | 152                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                            | 6.6      | 6.7                      | 6.7                                             | 6.6                              | 6.6                                             |
|                     |                                 | Median (mg/l)                                                                          | 6.3      | 6.3                      | 6.3                                             | 6.3                              | 6.3                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                                            | 0.075    | 0.068                    | 0.068                                           | 0.067                            | 0.064                                           |
|                     |                                 | Median (mg/l)                                                                          | 0.036    | 0.034                    | 0.034                                           | 0.034                            | 0.033                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 85       | 86                       | 86                                              | 86                               | 87                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.14     | 1.03                     | 1.03                                            | 1.03                             | 1.03                                            |
|                     |                                 | Median (mg/l)                                                                          | 1.17     | 1.06                     | 1.06                                            | 1.06                             | 1.06                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                            | 8.5      | 6.8                      | 6.8                                             | 6.8                              | 6.8                                             |
|                     |                                 | Median (mg/l)                                                                          | 5.0      | 3.9                      | 3.9                                             | 4.0                              | 4.0                                             |
|                     | Copper                          | Mean (mg/l)                                                                            | 0.0036   | 0.0030                   | 0.0030                                          | 0.0030                           | 0.0030                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0013   | 0.0011                   | 0.0011                                          | 0.0011                           | 0.0011                                          |

Table N-1 (continued)

|                         |                                 |                                                                                        |          |                          | Condition                                                   |                                  |                                                 |
|-------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point     | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-2                    | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 4,080    | 3,402                    | 3,402                                                       | 2,280                            | 1,177                                           |
| S. 43rd Street<br>Ditch | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 82       | 81                       | 81                                                          | 84                               | 87                                              |
|                         |                                 | Geometric mean (cells per 100 ml)                                                      | 227      | 197                      | 197                                                         | 132                              | 68                                              |
|                         |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 325      | 334                      | 334                                                         | 347                              | 359                                             |
|                         | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 2,047    | 1,770                    | 1,770                                                       | 1,201                            | 650                                             |
|                         | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 91       | 90                       | 90                                                          | 92                               | 94                                              |
|                         |                                 | Geometric mean (cells per 100 ml)                                                      | 153      | 138                      | 138                                                         | 92                               | 47                                              |
|                         |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 153      | 153                      | 153                                                         | 153                              | 153                                             |
|                         | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.5      | 9.6                      | 9.6                                                         | 9.6                              | 9.2                                             |
|                         |                                 | Median (mg/l)                                                                          | 9.4      | 9.4                      | 9.4                                                         | 9.4                              | 8.8                                             |
|                         |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                         | Total Phosphorus                | Mean (mg/l)                                                                            | 0.347    | 0.338                    | 0.338                                                       | 0.338                            | 0.083                                           |
|                         |                                 | Median (mg/l)                                                                          | 0.346    | 0.337                    | 0.337                                                       | 0.336                            | 0.060                                           |
|                         |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 2        | 2                        | 2                                                           | 2                                | 85                                              |
|                         | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.63     | 1.56                     | 1.56                                                        | 1.56                             | 1.55                                            |
|                         |                                 | Median (mg/l)                                                                          | 1.61     | 1.54                     | 1.54                                                        | 1.54                             | 1.53                                            |
|                         | Total Suspended Solids          | Mean (mg/l)                                                                            | 9.2      | 7.5                      | 7.5                                                         | 8.0                              | 8.0                                             |
|                         |                                 | Median (mg/l)                                                                          | 3.8      | 3.4                      | 3.4                                                         | 3.4                              | 3.4                                             |
|                         | Copper                          | Mean (mg/l)                                                                            | 0.0033   | 0.0026                   | 0.0026                                                      | 0.0026                           | 0.0026                                          |
|                         |                                 | Median (mg/l)                                                                          | 0.0007   | 0.0006                   | 0.0006                                                      | 0.0006                           | 0.0006                                          |

Table N-1 (continued)

|                                                |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                            | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-3                                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 5,373    | 4,514                    | 4,510                                           | 3,011                            | 1,542                                           |
| Kinnickinnic River Upstream of Confluence with | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 79       | 80                       | 80                                              | 82                               | 85                                              |
| Wilson Park<br>Creek                           |                                 | Geometric mean (cells per 100 ml)                                                      | 371      | 318                      | 318                                             | 214                              | 110                                             |
| Creek                                          |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 305      | 317                      | 317                                             | 335                              | 355                                             |
|                                                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 2,747    | 2,356                    | 2,347                                           | 1,578                            | 830                                             |
|                                                | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 89       | 89                       | 89                                              | 91                               | 93                                              |
|                                                |                                 | Geometric mean (cells per 100 ml)                                                      | 260      | 228                      | 228                                             | 152                              | 79                                              |
|                                                |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 152      | 153                      | 153                                             | 153                              | 153                                             |
|                                                | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.4      | 9.4                      | 9.4                                             | 9.4                              | 9.3                                             |
|                                                |                                 | Median (mg/l)                                                                          | 8.8      | 8.8                      | 8.8                                             | 8.8                              | 8.5                                             |
|                                                |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                                | Total Phosphorus                | Mean (mg/l)                                                                            | 0.222    | 0.213                    | 0.213                                           | 0.212                            | 0.076                                           |
|                                                |                                 | Median (mg/l)                                                                          | 0.206    | 0.199                    | 0.199                                           | 0.198                            | 0.048                                           |
|                                                |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 13       | 14                       | 14                                              | 15                               | 85                                              |
|                                                | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.39     | 1.30                     | 1.30                                            | 1.30                             | 1.30                                            |
|                                                |                                 | Median (mg/l)                                                                          | 1.36     | 1.27                     | 1.27                                            | 1.27                             | 1.29                                            |
|                                                | Total Suspended Solids          | Mean (mg/l)                                                                            | 10.6     | 8.5                      | 8.5                                             | 8.7                              | 8.7                                             |
|                                                |                                 | Median (mg/l)                                                                          | 4.2      | 3.5                      | 3.5                                             | 3.5                              | 3.5                                             |
|                                                | Copper                          | Mean (mg/l)                                                                            | 0.0037   | 0.0030                   | 0.0030                                          | 0.0030                           | 0.0030                                          |
|                                                |                                 | Median (mg/l)                                                                          | 0.001    | 0.0008                   | 0.0008                                          | 0.0008                           | 0.0008                                          |

Table N-1 (continued)

|                                        |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                    | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-4                                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,897    | 3,249                    | 3,247                                                       | 2,091                            | 1,063                                           |
| Wilson Creek Upstream of Holmes Avenue | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 52       | 53                       | 53                                                          | 58                               | 66                                              |
| Creek                                  |                                 | Geometric mean (cells per 100 ml)                                       | 609      | 517                      | 517                                                         | 330                              | 169                                             |
|                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 54       | 72                       | 72                                                          | 126                              | 219                                             |
|                                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,179    | 1,781                    | 1,775                                                       | 1,024                            | 523                                             |
|                                        | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 67       | 68                       | 68                                                          | 75                               | 81                                              |
|                                        |                                 | Geometric mean (cells per 100 ml)                                       | 313      | 259                      | 258                                                         | 155                              | 79                                              |
|                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 36       | 46                       | 46                                                          | 80                               | 133                                             |
|                                        | Dissolved Oxygen                | Mean (mg/l)                                                             | 7.5      | 7.6                      | 7.6                                                         | 7.6                              | 7.6                                             |
|                                        |                                 | Median (mg/l)                                                           | 7.3      | 7.3                      | 7.3                                                         | 7.3                              | 7.3                                             |
|                                        |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                        | Total Phosphorus                | Mean (mg/l)                                                             | 0.222    | 0.218                    | 0.218                                                       | 0.216                            | 0.154                                           |
|                                        |                                 | Median (mg/l)                                                           | 0.123    | 0.121                    | 0.121                                                       | 0.120                            | 0.042                                           |
|                                        |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 35       | 34                       | 34                                                          | 35                               | 79                                              |
|                                        | Total Nitrogen                  | Mean (mg/l)                                                             | 1.65     | 1.56                     | 1.56                                                        | 1.56                             | 1.56                                            |
|                                        |                                 | Median (mg/l)                                                           | 0.99     | 0.89                     | 0.89                                                        | 0.89                             | 0.89                                            |
|                                        | Total Suspended Solids          | Mean (mg/l)                                                             | 20.1     | 15.1                     | 15.1                                                        | 15.1                             | 15.8                                            |
|                                        |                                 | Median (mg/l)                                                           | 6.5      | 5.4                      | 5.4                                                         | 5.4                              | 5.5                                             |
|                                        | Copper                          | Mean (mg/l)                                                             | 0.0041   | 0.0035                   | 0.0035                                                      | 0.0035                           | 0.0035                                          |
|                                        |                                 | Median (mg/l)                                                           | 0.0019   | 0.0018                   | 0.0018                                                      | 0.0017                           | 0.0017                                          |

Table N-1 (continued)

|                        |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point    | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-5                   | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 5,178    | 4,228                    | 4,228                                           | 2,824                            | 1,433                                           |
| Holmes Avenue<br>Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 72       | 71                       | 71                                              | 73                               | 77                                              |
|                        |                                    | Geometric mean (cells per 100 ml)                                       | 385      | 317                      | 317                                             | 213                              | 110                                             |
|                        |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 106      | 133                      | 133                                             | 199                              | 276                                             |
|                        | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,162    | 1,790                    | 1,790                                           | 1,192                            | 605                                             |
|                        | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 86       | 84                       | 84                                              | 85                               | 88                                              |
|                        |                                    | Geometric mean (cells per 100 ml)                                       | 213      | 179                      | 179                                             | 120                              | 62                                              |
|                        |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 58       | 73                       | 73                                              | 111                              | 150                                             |
|                        | Dissolved Oxygen                   | Mean (mg/l)                                                             | 9.9      | 9.9                      | 9.9                                             | 9.9                              | 9.9                                             |
|                        |                                    | Median (mg/l)                                                           | 9.8      | 9.8                      | 9.8                                             | 9.8                              | 9.8                                             |
|                        |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 92       | 92                       | 92                                              | 92                               | 93                                              |
|                        | Total Phosphorus                   | Mean (mg/l)                                                             | 0.450    | 0.442                    | 0.442                                           | 0.441                            | 0.333                                           |
|                        |                                    | Median (mg/l)                                                           | 0.400    | 0.391                    | 0.391                                           | 0.389                            | 0.287                                           |
|                        |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 2        | 2                        | 2                                               | 2                                | 9                                               |
|                        | Total Nitrogen                     | Mean (mg/l)                                                             | 2.35     | 2.26                     | 2.26                                            | 2.26                             | 2.25                                            |
|                        |                                    | Median (mg/l)                                                           | 2.03     | 1.93                     | 1.93                                            | 1.93                             | 1.93                                            |
|                        | Total Suspended Solids             | Mean (mg/l)                                                             | 9.7      | 7.5                      | 7.5                                             | 7.8                              | 7.8                                             |
|                        |                                    | Median (mg/l)                                                           | 3.8      | 3.0                      | 3.0                                             | 3.1                              | 3.1                                             |
|                        | Copper                             | Mean (mg/l)                                                             | 0.0040   | 0.0033                   | 0.0033                                          | 0.0033                           | 0.0033                                          |
|                        |                                    | Median (mg/l)                                                           | 0.0009   | 0.0008                   | 0.0008                                          | 0.0008                           | 0.0008                                          |

Table N-1 (continued)

|                     |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-6                | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 5,565    | 4,563                    | 4,563                                           | 3,041                            | 1,544                                           |
| Villa Mann Creek    | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 72       | 71                       | 71                                              | 73                               | 76                                              |
|                     |                                    | Geometric mean (cells per 100 ml)                                       | 557      | 462                      | 462                                             | 309                              | 158                                             |
|                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 38       | 59                       | 59                                              | 122                              | 258                                             |
|                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,339    | 1,952                    | 1,952                                           | 1,294                            | 657                                             |
|                     | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 87       | 84                       | 84                                              | 85                               | 88                                              |
|                     |                                    | Geometric mean (cells per 100 ml)                                       | 346      | 293                      | 293                                             | 196                              | 101                                             |
|                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 19       | 33                       | 33                                              | 68                               | 143                                             |
|                     | Dissolved Oxygen                   | Mean (mg/l)                                                             | 7.4      | 7.4                      | 7.4                                             | 7.4                              | 7.4                                             |
|                     |                                    | Median (mg/l)                                                           | 6.6      | 6.7                      | 6.7                                             | 6.7                              | 6.7                                             |
|                     |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 70       | 71                       | 71                                              | 71                               | 71                                              |
|                     | Total Phosphorus                   | Mean (mg/l)                                                             | 0.085    | 0.076                    | 0.076                                           | 0.075                            | 0.071                                           |
|                     |                                    | Median (mg/l)                                                           | 0.041    | 0.037                    | 0.037                                           | 0.037                            | 0.037                                           |
|                     |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 82       | 82                       | 82                                              | 83                               | 83                                              |
|                     | Total Nitrogen                     | Mean (mg/l)                                                             | 1.18     | 1.05                     | 1.05                                            | 1.05                             | 1.05                                            |
|                     |                                    | Median (mg/l)                                                           | 1.20     | 1.07                     | 1.07                                            | 1.07                             | 1.07                                            |
|                     | Total Suspended Solids             | Mean (mg/l)                                                             | 8.9      | 6.9                      | 6.9                                             | 7.3                              | 7.3                                             |
|                     |                                    | Median (mg/l)                                                           | 5.0      | 3.7                      | 3.7                                             | 3.7                              | 3.7                                             |
|                     | Copper                             | Mean (mg/l)                                                             | 0.0041   | 0.0034                   | 0.0034                                          | 0.0033                           | 0.0033                                          |
|                     |                                    | Median (mg/l)                                                           | 0.0013   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

Table N-1 (continued)

|                        |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point    | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-7                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,715    | 3,950                    | 3,950                                                       | 2,632                            | 1,337                                           |
| Cherokee Park<br>Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 75       | 74                       | 74                                                          | 75                               | 78                                              |
|                        |                                 | Geometric mean (cells per 100 ml)                                       | 453      | 393                      | 393                                                         | 265                              | 139                                             |
|                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 47       | 64                       | 64                                                          | 137                              | 267                                             |
|                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,187    | 1,905                    | 1,905                                                       | 1,260                            | 641                                             |
|                        | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 87       | 84                       | 84                                                          | 85                               | 87                                              |
|                        |                                 | Geometric mean (cells per 100 ml)                                       | 337      | 301                      | 301                                                         | 203                              | 107                                             |
|                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 19       | 28                       | 28                                                          | 66                               | 140                                             |
|                        | Dissolved Oxygen                | Mean (mg/l)                                                             | 7.3      | 7.3                      | 7.3                                                         | 7.3                              | 7.3                                             |
|                        |                                 | Median (mg/l)                                                           | 6.5      | 6.7                      | 6.7                                                         | 6.7                              | 6.7                                             |
|                        |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 71       | 71                       | 71                                                          | 71                               | 71                                              |
|                        | Total Phosphorus                | Mean (mg/l)                                                             | 0.076    | 0.069                    | 0.069                                                       | 0.068                            | 0.065                                           |
|                        |                                 | Median (mg/l)                                                           | 0.039    | 0.036                    | 0.036                                                       | 0.036                            | 0.036                                           |
|                        |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 84       | 84                       | 84                                                          | 84                               | 85                                              |
|                        | Total Nitrogen                  | Mean (mg/l)                                                             | 1.12     | 1.02                     | 1.02                                                        | 1.02                             | 1.02                                            |
|                        |                                 | Median (mg/l)                                                           | 1.01     | 0.94                     | 0.94                                                        | 0.93                             | 0.93                                            |
|                        | Total Suspended Solids          | Mean (mg/l)                                                             | 7.7      | 6.3                      | 6.3                                                         | 6.7                              | 6.7                                             |
|                        |                                 | Median (mg/l)                                                           | 5.0      | 4.0                      | 4.0                                                         | 4.0                              | 4.0                                             |
|                        | Copper                          | Mean (mg/l)                                                             | 0.0036   | 0.0030                   | 0.0030                                                      | 0.0030                           | 0.0030                                          |
|                        |                                 | Median (mg/l)                                                           | 0.0012   | 0.0010                   | 0.0010                                                      | 0.0010                           | 0.0010                                          |

Table N-1 (continued)

|                                     |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|-------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                 | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-8                                | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 5,124    | 4,259                    | 4,259                                           | 2,794                            | 1,419                                           |
| Wilson Park<br>Creek, USGS<br>Gauge | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 56       | 57                       | 57                                              | 63                               | 70                                              |
| J                                   |                                    | Geometric mean (cells per 100 ml)                                       | 697      | 596                      | 596                                             | 386                              | 198                                             |
|                                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 35       | 49                       | 49                                              | 99                               | 214                                             |
|                                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,552    | 2,133                    | 2,132                                           | 1,315                            | 669                                             |
|                                     | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 73                       | 73                                              | 79                               | 83                                              |
|                                     |                                    | Geometric mean (cells per 100 ml)                                       | 357      | 304                      | 304                                             | 189                              | 97                                              |
|                                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 26       | 34                       | 34                                              | 63                               | 131                                             |
|                                     | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.9     | 10.9                     | 10.9                                            | 10.9                             | 10.8                                            |
|                                     |                                    | Median (mg/l)                                                           | 11.2     | 11.2                     | 11.2                                            | 11.2                             | 10.9                                            |
|                                     |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                     | Total Phosphorus                   | Mean (mg/l)                                                             | 0.200    | 0.193                    | 0.193                                           | 0.192                            | 0.141                                           |
|                                     |                                    | Median (mg/l)                                                           | 0.142    | 0.138                    | 0.138                                           | 0.137                            | 0.079                                           |
|                                     |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 33       | 33                       | 33                                              | 33                               | 66                                              |
|                                     | Total Nitrogen                     | Mean (mg/l)                                                             | 1.48     | 1.38                     | 1.38                                            | 1.38                             | 1.38                                            |
|                                     |                                    | Median (mg/l)                                                           | 1.16     | 1.07                     | 1.07                                            | 1.06                             | 1.07                                            |
|                                     | Total Suspended Solids             | Mean (mg/l)                                                             | 14.1     | 10.8                     | 10.8                                            | 11.3                             | 11.3                                            |
|                                     |                                    | Median (mg/l)                                                           | 4.8      | 3.7                      | 3.7                                             | 3.7                              | 3.7                                             |
|                                     | Copper                             | Mean (mg/l)                                                             | 0.0044   | 0.0037                   | 0.0037                                          | 0.0037                           | 0.0037                                          |
|                                     |                                    | Median (mg/l)                                                           | 0.0018   | 0.0016                   | 0.0016                                          | 0.0015                           | 0.0015                                          |

Table N-1 (continued)

|                                              |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |  |
|----------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|--|
| Assessment<br>Point                          | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |  |
| KK-9                                         | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 5,785    | 4,885                    | 4,553                                           | 3,028                            | 1,569                                           |  |
| Kinnickinnic River Downstream of Wilson Park | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 74       | 75                       | 75                                              | 78                               | 82                                              |  |
| Creek                                        |                                 | Geometric mean (cells per 100 ml)                                                      | 654      | 560                      | 556                                             | 363                              | 186                                             |  |
|                                              |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 254      | 266                      | 266                                             | 297                              | 334                                             |  |
|                                              | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,360    | 2,978                    | 2,421                                           | 1,579                            | 851                                             |  |
|                                              | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 87       | 86                       | 86                                              | 89                               | 92                                              |  |
|                                              |                                 | Geometric mean (cells per 100 ml)                                                      | 343      | 295                      | 292                                             | 184                              | 95                                              |  |
|                                              |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 146      | 148                      | 148                                             | 153                              | 153                                             |  |
|                                              | Dissolved Oxygen                | Mean (mg/l)                                                                            | 11.3     | 11.3                     | 11.3                                            | 11.3                             | 11.2                                            |  |
|                                              |                                 | Median (mg/l)                                                                          | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.3                                            |  |
|                                              |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |  |
|                                              | Total Phosphorus                | Mean (mg/l)                                                                            | 0.206    | 0.198                    | 0.196                                           | 0.195                            | 0.112                                           |  |
|                                              |                                 | Median (mg/l)                                                                          | 0.171    | 0.164                    | 0.164                                           | 0.162                            | 0.066                                           |  |
|                                              |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 24       | 25                       | 25                                              | 25                               | 74                                              |  |
|                                              | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.40     | 1.30                     | 1.30                                            | 1.30                             | 1.31                                            |  |
|                                              |                                 | Median (mg/l)                                                                          | 1.22     | 1.13                     | 1.13                                            | 1.13                             | 1.15                                            |  |
|                                              | Total Suspended Solids          | Mean (mg/l)                                                                            | 14.5     | 11.4                     | 11.3                                            | 11.7                             | 11.7                                            |  |
|                                              |                                 | Median (mg/l)                                                                          | 4.8      | 3.8                      | 3.8                                             | 3.8                              | 3.8                                             |  |
|                                              | Copper                          | Mean (mg/l)                                                                            | 0.0047   | 0.0040                   | 0.0040                                          | 0.0040                           | 0.0040                                          |  |
|                                              |                                 | Median (mg/l)                                                                          | 0.0019   | 0.0017                   | 0.0017                                          | 0.0017                           | 0.0017                                          |  |

Table N-1 (continued)

|                                                         |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                                     | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| KK-10                                                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 5,859    | 4,942                    | 4,633                                           | 3,091                            | 1,613                                           |
| Kinnickinnic River<br>near Upstream<br>Limit of Estuary | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 74       | 75                       | 75                                              | 78                               | 82                                              |
| ,                                                       |                                 | Geometric mean (cells per 100 ml)                                                      | 842      | 702                      | 686                                             | 449                              | 230                                             |
|                                                         |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 229      | 250                      | 256                                             | 292                              | 332                                             |
|                                                         | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,401    | 2,999                    | 2,470                                           | 1,634                            | 904                                             |
|                                                         | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 86       | 86                       | 86                                              | 89                               | 92                                              |
|                                                         |                                 | Geometric mean (cells per 100 ml)                                                      | 498      | 416                      | 398                                             | 253                              | 130                                             |
|                                                         |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 131      | 140                      | 145                                             | 152                              | 153                                             |
|                                                         | Dissolved Oxygen                | Mean (mg/l)                                                                            | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.3                                            |
|                                                         |                                 | Median (mg/l)                                                                          | 11.5     | 11.5                     | 11.5                                            | 11.5                             | 11.4                                            |
|                                                         |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                                         | Total Phosphorus                | Mean (mg/l)                                                                            | 0.196    | 0.188                    | 0.187                                           | 0.185                            | 0.108                                           |
|                                                         |                                 | Median (mg/l)                                                                          | 0.165    | 0.157                    | 0.157                                           | 0.155                            | 0.064                                           |
|                                                         |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 27       | 27                       | 28                                              | 28                               | 74                                              |
|                                                         | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.36     | 1.27                     | 1.26                                            | 1.26                             | 1.27                                            |
|                                                         |                                 | Median (mg/l)                                                                          | 1.22     | 1.12                     | 1.12                                            | 1.12                             | 1.14                                            |
|                                                         | Total Suspended Solids          | Mean (mg/l)                                                                            | 13.2     | 10.4                     | 10.4                                            | 10.7                             | 10.7                                            |
|                                                         |                                 | Median (mg/l)                                                                          | 4.7      | 3.8                      | 3.8                                             | 3.9                              | 3.9                                             |
|                                                         | Copper                          | Mean (mg/l)                                                                            | 0.0048   | 0.0040                   | 0.0040                                          | 0.0040                           | 0.0040                                          |
|                                                         |                                 | Median (mg/l)                                                                          | 0.0019   | 0.0017                   | 0.0017                                          | 0.0017                           | 0.0017                                          |

#### **Table N-1 Footnotes**

<sup>a</sup>In certain limited cases, relatively minor anomalies in concentrations or percents compliance may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a slight decrease in water quality under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in water quality occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters in the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively insignificant anomalies in the comparative results.

<sup>b</sup>Five-Year LOP refers to a five-year recurrence interval level of protection against sanitary sewer overflows.

<sup>C</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

<sup>d</sup>Variance Standard in Chapter NR 104 of the Wisconsin Administrative Code.

Source: Tetra Tech, Inc., and SEWRPC.

Table N-2

WATER QUALITY SUMMARY STATISTICS FOR THE RECOMMENDED PLAN: MENOMONEE RIVER WATERSHED<sup>a</sup>

|                                    |                                 |                                                                         |          | Condition                |                                                 |                                  |                                                 |  |  |
|------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|--|--|
| Assessment<br>Point                | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |  |  |
| MN-1                               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 701      | 955                      | 955                                             | 726                              | 692                                             |  |  |
| North Branch<br>Menomonee<br>River | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 81       | 78                       | 78                                              | 80                               | 80                                              |  |  |
|                                    |                                 | Geometric mean (cells per 100 ml)                                       | 116      | 138                      | 138                                             | 68                               | 69                                              |  |  |
|                                    |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 287      | 263                      | 263                                             | 309                              | 311                                             |  |  |
|                                    | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 672      | 906                      | 906                                             | 700                              | 670                                             |  |  |
|                                    | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 89       | 86                       | 86                                              | 87                               | 88                                              |  |  |
|                                    |                                 | Geometric mean (cells per 100 ml)                                       | 90       | 104                      | 104                                             | 44                               | 44                                              |  |  |
|                                    |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 147      | 138                      | 138                                             | 152                              | 152                                             |  |  |
|                                    | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.6      | 9.6                      | 9.6                                             | 9.5                              | 9.5                                             |  |  |
|                                    |                                 | Median (mg/l)                                                           | 9.5      | 9.5                      | 9.5                                             | 9.5                              | 9.5                                             |  |  |
|                                    |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 90       | 90                       | 90                                              | 90                               | 90                                              |  |  |
|                                    | Total Phosphorus                | Mean (mg/l)                                                             | 0.061    | 0.061                    | 0.061                                           | 0.059                            | 0.058                                           |  |  |
|                                    |                                 | Median (mg/l)                                                           | 0.046    | 0.046                    | 0.046                                           | 0.045                            | 0.045                                           |  |  |
|                                    |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 92       | 91                       | 91                                              | 92                               | 92                                              |  |  |
|                                    | Total Nitrogen                  | Mean (mg/l)                                                             | 2.10     | 1.96                     | 1.96                                            | 1.57                             | 1.48                                            |  |  |
|                                    |                                 | Median (mg/l)                                                           | 1.87     | 1.75                     | 1.75                                            | 1.42                             | 1.34                                            |  |  |
|                                    | Total Suspended Solids          | Mean (mg/l)                                                             | 8.2      | 7.9                      | 7.9                                             | 7.1                              | 7.1                                             |  |  |
|                                    |                                 | Median (mg/l)                                                           | 6.9      | 6.7                      | 6.7                                             | 5.8                              | 5.9                                             |  |  |
|                                    | Copper                          | Mean (mg/l)                                                             | 0.0023   | 0.0022                   | 0.0022                                          | 0.0022                           | 0.0022                                          |  |  |
|                                    |                                 | Median (mg/l)                                                           | 0.0013   | 0.0013                   | 0.0013                                          | 0.0012                           | 0.0012                                          |  |  |

Table N-2 (continued)

|                             |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|-----------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point         | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-2                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 797      | 1,031                    | 1,031                                           | 832                              | 787                                             |
| Upper<br>Menomonee<br>River | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 75       | 71                       | 71                                              | 73                               | 74                                              |
|                             |                                 | Geometric mean (cells per 100 ml)                                       | 124      | 152                      | 152                                             | 100                              | 96                                              |
|                             |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 262      | 238                      | 238                                             | 269                              | 271                                             |
|                             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 602      | 741                      | 741                                             | 502                              | 477                                             |
|                             | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 86       | 82                       | 82                                              | 85                               | 85                                              |
|                             |                                 | Geometric mean (cells per 100 ml)                                       | 79       | 93                       | 93                                              | 53                               | 51                                              |
|                             |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 144      | 137                      | 137                                             | 147                              | 148                                             |
|                             | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.3      | 9.4                      | 9.4                                             | 9.3                              | 9.2                                             |
|                             |                                 | Median (mg/l)                                                           | 9.1      | 9.1                      | 9.1                                             | 9.1                              | 9.0                                             |
|                             |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 99                                              |
|                             | Total Phosphorus                | Mean (mg/l)                                                             | 0.143    | 0.147                    | 0.147                                           | 0.146                            | 0.058                                           |
|                             |                                 | Median (mg/l)                                                           | 0.111    | 0.113                    | 0.113                                           | 0.111                            | 0.046                                           |
|                             |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 46       | 45                       | 45                                              | 46                               | 91                                              |
|                             | Total Nitrogen                  | Mean (mg/l)                                                             | 1.47     | 1.36                     | 1.36                                            | 1.16                             | 1.11                                            |
|                             |                                 | Median (mg/l)                                                           | 1.35     | 1.27                     | 1.27                                            | 1.10                             | 1.06                                            |
|                             | Total Suspended Solids          | Mean (mg/l)                                                             | 7.9      | 7.8                      | 7.8                                             | 7.4                              | 7.4                                             |
|                             |                                 | Median (mg/l)                                                           | 5.7      | 5.6                      | 5.6                                             | 5.1                              | 5.1                                             |
|                             | Copper                          | Mean (mg/l)                                                             | 0.0024   | 0.0024                   | 0.0024                                          | 0.0024                           | 0.0024                                          |
|                             |                                 | Median (mg/l)                                                           | 0.0012   | 0.0011                   | 0.0011                                          | 0.0011                           | 0.0011                                          |

Table N-2 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-3                | West Branch (annual)            | Mean (cells per 100 ml)                                                 | 1,167    | 1,526                    | 1,526                                           | 1,161                            | 1,096                                           |
| Menomonee           |                                 | Percent compliance with single sample standard (<400 cells per 100 ml)  | 77       | 74                       | 74                                              | 76                               | 76                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 159      | 185                      | 185                                             | 127                              | 119                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 250      | 231                      | 231                                             | 262                              | 266                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 712      | 1,021                    | 1,021                                           | 612                              | 580                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 90       | 86                       | 86                                              | 87                               | 87                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 101      | 117                      | 117                                             | 70                               | 66                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 144      | 133                      | 133                                             | 147                              | 148                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.4      | 9.4                      | 9.4                                             | 9.4                              | 9.4                                             |
|                     |                                 | Median (mg/l)                                                           | 9.5      | 9.4                      | 9.4                                             | 9.4                              | 9.4                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 91       | 91                       | 91                                              | 91                               | 91                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.073    | 0.075                    | 0.075                                           | 0.072                            | 0.070                                           |
|                     |                                 | Median (mg/l)                                                           | 0.048    | 0.048                    | 0.048                                           | 0.047                            | 0.046                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 87       | 86                       | 86                                              | 87                               | 87                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.77     | 1.51                     | 1.51                                            | 1.29                             | 1.20                                            |
|                     |                                 | Median (mg/l)                                                           | 1.59     | 1.36                     | 1.36                                            | 1.17                             | 1.09                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 10.6     | 10.0                     | 10.0                                            | 10.0                             | 10.0                                            |
|                     |                                 | Median (mg/l)                                                           | 8.1      | 7.8                      | 7.8                                             | 7.2                              | 7.2                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0035   | 0.0036                   | 0.0036                                          | 0.0036                           | 0.0036                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0013   | 0.0012                   | 0.0012                                          | 0.0012                           | 0.0012                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-4                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,244    | 1,415                    | 1,415                                           | 1,196                            | 1,180                                           |
| Willow Creek        | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 76       | 74                       | 74                                              | 75                               | 75                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 183      | 200                      | 200                                             | 161                              | 160                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 218      | 206                      | 206                                             | 233                              | 234                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 794      | 872                      | 872                                             | 607                              | 601                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 87       | 86                       | 86                                              | 86                               | 86                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 125      | 134                      | 134                                             | 99                               | 98                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 125      | 121                      | 121                                             | 136                              | 136                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 8.9      | 8.9                      | 8.9                                             | 8.9                              | 8.9                                             |
|                     |                                 | Median (mg/l)                                                           | 9.1      | 9.1                      | 9.1                                             | 9.1                              | 9.1                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 94                       | 94                                              | 94                               | 94                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.052    | 0.056                    | 0.056                                           | 0.055                            | 0.054                                           |
|                     |                                 | Median (mg/l)                                                           | 0.032    | 0.032                    | 0.032                                           | 0.032                            | 0.031                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 90       | 88                       | 88                                              | 88                               | 89                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.30     | 1.12                     | 1.12                                            | 1.02                             | 0.99                                            |
|                     |                                 | Median (mg/l)                                                           | 1.18     | 1.03                     | 1.03                                            | 0.92                             | 0.90                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 9.1      | 8.7                      | 8.7                                             | 8.8                              | 8.8                                             |
|                     |                                 | Median (mg/l)                                                           | 7.3      | 7.0                      | 7.0                                             | 6.7                              | 6.7                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0030   | 0.0030                   | 0.0030                                          | 0.0030                           | 0.0030                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0012   | 0.0012                   | 0.0012                                          | 0.0012                           | 0.0012                                          |

Table N-2 (continued)

|                                      |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                  | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-5                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,417    | 1,649                    | 1,649                                           | 1,362                            | 1,314                                           |
| Menomonee<br>River at<br>Washington- | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 68       | 65                       | 65                                              | 67                               | 67                                              |
| Waukesha                             |                                 | Geometric mean (cells per 100 ml)                                       | 205      | 234                      | 234                                             | 180                              | 174                                             |
| County Line                          |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 202      | 185                      | 185                                             | 214                              | 217                                             |
|                                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 890      | 995                      | 995                                             | 657                              | 635                                             |
|                                      | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 82       | 79                       | 79                                              | 81                               | 82                                              |
|                                      |                                 | Geometric mean (cells per 100 ml)                                       | 105      | 117                      | 117                                             | 79                               | 77                                              |
|                                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 125      | 116                      | 116                                             | 134                              | 135                                             |
|                                      | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.5     | 10.5                     | 10.5                                            | 10.5                             | 10.4                                            |
|                                      |                                 | Median (mg/l)                                                           | 10.7     | 10.7                     | 10.7                                            | 10.7                             | 10.6                                            |
|                                      |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                              | 99                               | 99                                              |
|                                      | Total Phosphorus                | Mean (mg/l)                                                             | 0.097    | 0.105                    | 0.105                                           | 0.102                            | 0.064                                           |
|                                      |                                 | Median (mg/l)                                                           | 0.063    | 0.066                    | 0.066                                           | 0.065                            | 0.033                                           |
|                                      |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 70       | 68                       | 68                                              | 69                               | 84                                              |
|                                      | Total Nitrogen                  | Mean (mg/l)                                                             | 1.23     | 1.09                     | 1.09                                            | 0.97                             | 0.96                                            |
|                                      |                                 | Median (mg/l)                                                           | 1.11     | 0.98                     | 0.98                                            | 0.87                             | 0.87                                            |
|                                      | Total Suspended Solids          | Mean (mg/l)                                                             | 10.2     | 9.9                      | 9.9                                             | 9.7                              | 9.7                                             |
|                                      |                                 | Median (mg/l)                                                           | 6        | 5.8                      | 5.8                                             | 5.5                              | 5.5                                             |
|                                      | Copper                          | Mean (mg/l)                                                             | 0.0041   | 0.0043                   | 0.0043                                          | 0.0042                           | 0.0042                                          |
|                                      |                                 | Median (mg/l)                                                           | 0.0016   | 0.0016                   | 0.0016                                          | 0.0016                           | 0.0016                                          |

Table N-2 (continued)

|                     |                                                                  |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|---------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator                                       | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-6                | MN-6<br>Nor-X-Way<br>Channel Fecal Coliform Bacteria<br>(annual) | Mean (cells per 100 ml)                                                 | 3,261    | 3,510                    | 3,510                                                       | 2,124                            | 1,075                                           |
|                     |                                                                  | Percent compliance with single sample standard (<400 cells per 100 ml)  | 72       | 70                       | 70                                                          | 72                               | 75                                              |
|                     |                                                                  | Geometric mean (cells per 100 ml)                                       | 208      | 187                      | 187                                                         | 118                              | 69                                              |
|                     |                                                                  | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 200      | 212                      | 212                                                         | 250                              | 284                                             |
|                     | Fecal Coliform Bacteria                                          | Mean (cells per 100 ml)                                                 | 1,962    | 1,893                    | 1,893                                                       | 875                              | 444                                             |
|                     | (May-September: 153 days total)                                  | Percent compliance with single sample standard (<400 cells per 100 ml)  | 83       | 81                       | 81                                                          | 83                               | 86                                              |
|                     |                                                                  | Geometric mean (cells per 100 ml)                                       | 113      | 92                       | 92                                                          | 54                               | 32                                              |
|                     |                                                                  | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 114      | 122                      | 122                                                         | 141                              | 149                                             |
|                     | Dissolved Oxygen                                                 | Mean (mg/l)                                                             | 10.0     | 9.9                      | 9.9                                                         | 9.9                              | 9.7                                             |
|                     |                                                                  | Median (mg/l)                                                           | 9.9      | 9.7                      | 9.7                                                         | 9.7                              | 9.4                                             |
|                     |                                                                  | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                     | Total Phosphorus                                                 | Mean (mg/l)                                                             | 0.172    | 0.190                    | 0.190                                                       | 0.188                            | 0.071                                           |
|                     |                                                                  | Median (mg/l)                                                           | 0.125    | 0.136                    | 0.136                                                       | 0.134                            | 0.037                                           |
|                     |                                                                  | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 43       | 38                       | 38                                                          | 39                               | 84                                              |
|                     | Total Nitrogen                                                   | Mean (mg/l)                                                             | 1.34     | 0.91                     | 0.91                                                        | 0.88                             | 0.88                                            |
|                     |                                                                  | Median (mg/l)                                                           | 1.17     | 0.77                     | 0.77                                                        | 0.74                             | 0.75                                            |
|                     | Total Suspended Solids                                           | Mean (mg/l)                                                             | 16.0     | 10.8                     | 10.8                                                        | 10.6                             | 10.6                                            |
|                     |                                                                  | Median (mg/l)                                                           | 4.3      | 3.2                      | 3.2                                                         | 3.1                              | 3.1                                             |
|                     | Copper                                                           | Mean (mg/l)                                                             | 0.0037   | 0.0036                   | 0.0036                                                      | 0.0035                           | 0.0035                                          |
|                     |                                                                  | Median (mg/l)                                                           | 0.0011   | 0.0008                   | 0.0008                                                      | 0.0008                           | 0.0008                                          |

Table N-2 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-7                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,427    | 2,045                    | 2,045                                           | 1,211                            | 617                                             |
| Lilly Creek         | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 69       | 69                       | 69                                              | 72                               | 76                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 359      | 290                      | 290                                             | 190                              | 103                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 89       | 122                      | 122                                             | 210                              | 285                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,416    | 1,179                    | 1,179                                           | 547                              | 282                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 81       | 80                       | 80                                              | 84                               | 87                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 265      | 212                      | 212                                             | 132                              | 72                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 38       | 53                       | 53                                              | 115                              | 151                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.3      | 9.2                      | 9.2                                             | 9.2                              | 9.2                                             |
|                     |                                 | Median (mg/l)                                                           | 9.3      | 9.2                      | 9.2                                             | 9.2                              | 9.2                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 92       | 92                       | 92                                              | 92                               | 92                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.092    | 0.080                    | 0.080                                           | 0.079                            | 0.078                                           |
|                     |                                 | Median (mg/l)                                                           | 0.048    | 0.043                    | 0.043                                           | 0.043                            | 0.043                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 80       | 81                       | 81                                              | 81                               | 82                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.34     | 0.97                     | 0.97                                            | 0.97                             | 0.97                                            |
|                     |                                 | Median (mg/l)                                                           | 1.20     | 0.86                     | 0.86                                            | 0.86                             | 0.86                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 19.0     | 12.7                     | 12.7                                            | 12.9                             | 12.9                                            |
|                     |                                 | Median (mg/l)                                                           | 7.9      | 5.1                      | 5.1                                             | 5.2                              | 5.2                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0051   | 0.0038                   | 0.0038                                          | 0.0038                           | 0.0038                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0013   | 0.0009                   | 0.0009                                          | 0.0009                           | 0.0009                                          |

Table N-2 (continued)

|                     |                                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|----------------------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator                         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-8                | MN-8 Butler Ditch Fecal Coliform Bacteria (annual) | Mean (cells per 100 ml)                                                 | 2,425    | 2,022                    | 2,022                                           | 1,297                            | 677                                             |
| Butler Ditch        |                                                    | Percent compliance with single sample standard (<400 cells per 100 ml)  | 64       | 65                       | 65                                              | 68                               | 74                                              |
|                     |                                                    | Geometric mean (cells per 100 ml)                                       | 424      | 345                      | 345                                             | 228                              | 119                                             |
|                     |                                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 82       | 109                      | 109                                             | 178                              | 269                                             |
|                     | Fecal Coliform Bacteria                            | Mean (cells per 100 ml)                                                 | 1,325    | 1,126                    | 1,126                                           | 700                              | 390                                             |
|                     | (May-September: 153 days total)                    | Percent compliance with single sample standard (<400 cells per 100 ml)  | 79       | 79                       | 79                                              | 82                               | 86                                              |
|                     |                                                    | Geometric mean (cells per 100 ml)                                       | 286      | 233                      | 233                                             | 152                              | 80                                              |
|                     |                                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 31       | 46                       | 46                                              | 98                               | 150                                             |
|                     | Dissolved Oxygen                                   | Mean (mg/l)                                                             | 9.6      | 9.6                      | 9.6                                             | 9.6                              | 9.6                                             |
|                     |                                                    | Median (mg/l)                                                           | 9.3      | 9.3                      | 9.3                                             | 9.3                              | 9.3                                             |
|                     |                                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 93       | 93                       | 93                                              | 93                               | 93                                              |
|                     | Total Phosphorus                                   | Mean (mg/l)                                                             | 0.094    | 0.081                    | 0.081                                           | 0.080                            | 0.077                                           |
|                     |                                                    | Median (mg/l)                                                           | 0.051    | 0.045                    | 0.045                                           | 0.046                            | 0.045                                           |
|                     |                                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 79       | 81                       | 81                                              | 81                               | 82                                              |
|                     | Total Nitrogen                                     | Mean (mg/l)                                                             | 1.18     | 1.01                     | 1.01                                            | 1.02                             | 1.02                                            |
|                     |                                                    | Median (mg/l)                                                           | 1.10     | 0.95                     | 0.95                                            | 0.96                             | 0.96                                            |
|                     | Total Suspended Solids                             | Mean (mg/l)                                                             | 17.5     | 12.3                     | 12.3                                            | 12.6                             | 12.6                                            |
|                     |                                                    | Median (mg/l)                                                           | 7.9      | 5.5                      | 5.5                                             | 5.6                              | 5.6                                             |
|                     | Copper                                             | Mean (mg/l)                                                             | 0.0046   | 0.0035                   | 0.0035                                          | 0.0035                           | 0.0035                                          |
|                     |                                                    | Median (mg/l)                                                           | 0.0014   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

Table N-2 (continued)

|                                              |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|----------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                          | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-9                                         | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,828    | 2,739                    | 2,739                                                       | 1,865                            | 1,262                                           |
| Menomonee<br>River Down-<br>stream of Butler | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 57       | 56                       | 56                                                          | 59                               | 62                                              |
| Ditch                                        |                                 | Geometric mean (cells per 100 ml)                                       | 489      | 477                      | 477                                                         | 329                              | 231                                             |
|                                              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 72       | 83                       | 83                                                          | 149                              | 191                                             |
|                                              | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,571    | 1,451                    | 1,451                                                       | 783                              | 497                                             |
|                                              | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 76       | 74                       | 74                                                          | 78                               | 80                                              |
|                                              |                                 | Geometric mean (cells per 100 ml)                                       | 229      | 212                      | 212                                                         | 131                              | 88                                              |
|                                              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 51       | 61                       | 61                                                          | 113                              | 136                                             |
|                                              | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.8     | 10.8                     | 10.8                                                        | 10.8                             | 10.8                                            |
|                                              |                                 | Median (mg/l)                                                           | 11       | 11.0                     | 11.0                                                        | 11.0                             | 10.9                                            |
|                                              |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                                          | 99                               | 99                                              |
|                                              | Total Phosphorus                | Mean (mg/l)                                                             | 0.101    | 0.101                    | 0.101                                                       | 0.098                            | 0.067                                           |
|                                              |                                 | Median (mg/l)                                                           | 0.061    | 0.064                    | 0.064                                                       | 0.063                            | 0.029                                           |
|                                              |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 69       | 67                       | 67                                                          | 68                               | 80                                              |
|                                              | Total Nitrogen                  | Mean (mg/l)                                                             | 1.10     | 0.93                     | 0.93                                                        | 0.86                             | 0.88                                            |
|                                              |                                 | Median (mg/l)                                                           | 1.01     | 0.87                     | 0.87                                                        | 0.80                             | 0.82                                            |
|                                              | Total Suspended Solids          | Mean (mg/l)                                                             | 15.7     | 12.9                     | 12.9                                                        | 12.9                             | 12.9                                            |
|                                              |                                 | Median (mg/l)                                                           | 6        | 5.1                      | 5.1                                                         | 5.0                              | 5.0                                             |
|                                              | Copper                          | Mean (mg/l)                                                             | 0.0052   | 0.0048                   | 0.0048                                                      | 0.0047                           | 0.0047                                          |
|                                              |                                 | Median (mg/l)                                                           | 0.0019   | 0.0019                   | 0.0019                                                      | 0.0019                           | 0.0019                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-10               | Little (annual)                 | Mean (cells per 100 ml)                                                 | 4,970    | 4,101                    | 4,101                                           | 4,075                            | 4,091                                           |
| Menomonee           |                                 | Percent compliance with single sample standard (<400 cells per 100 ml)  | 57       | 58                       | 58                                              | 59                               | 59                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 438      | 379                      | 379                                             | 278                              | 287                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 91       | 117                      | 117                                             | 163                              | 158                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,710    | 3,000                    | 3,000                                           | 2,998                            | 3,022                                           |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 74                       | 74                                              | 74                               | 74                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 201      | 173                      | 173                                             | 110                              | 115                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 62       | 80                       | 80                                              | 108                              | 106                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.2      | 9.2                      | 9.2                                             | 9.2                              | 9.2                                             |
|                     |                                 | Median (mg/l)                                                           | 9.2      | 9.2                      | 9.2                                             | 9.2                              | 9.2                                             |
|                     |                                 | Percent compliance with recommended dissolved oxygen standard (>5 mg/l) | 97       | 98                       | 98                                              | 98                               | 98                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.082    | 0.075                    | 0.075                                           | 0.072                            | 0.071                                           |
|                     |                                 | Median (mg/l)                                                           | 0.055    | 0.053                    | 0.053                                           | 0.052                            | 0.051                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 81       | 84                       | 84                                              | 84                               | 85                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.79     | 1.56                     | 1.56                                            | 1.32                             | 1.28                                            |
|                     |                                 | Median (mg/l)                                                           | 1.59     | 1.39                     | 1.39                                            | 1.19                             | 1.15                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 24.6     | 19.6                     | 19.6                                            | 18.1                             | 17.8                                            |
|                     |                                 | Median (mg/l)                                                           | 10.8     | 9.9                      | 9.9                                             | 9.0                              | 9.0                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0031   | 0.0026                   | 0.0026                                          | 0.0026                           | 0.0025                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0014   | 0.0012                   | 0.0012                                          | 0.0012                           | 0.0012                                          |

Table N-2 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-11               | Little (annual)                 | Mean (cells per 100 ml)                                                 | 7,777    | 6,485                    | 6,485                                                       | 6,053                            | 6,045                                           |
| Menomonee           |                                 | Percent compliance with single sample standard (<400 cells per 100 ml)  | 53       | 54                       | 54                                                          | 54                               | 54                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 700      | 591                      | 591                                                         | 520                              | 521                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 68       | 83                       | 83                                                          | 96                               | 96                                              |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,477    | 3,677                    | 3,677                                                       | 2,704                            | 2,705                                           |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 70       | 70                       | 70                                                          | 71                               | 71                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 261      | 216                      | 216                                                         | 171                              | 172                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 48       | 60                       | 60                                                          | 69                               | 69                                              |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.4     | 10.4                     | 10.4                                                        | 10.4                             | 10.3                                            |
|                     |                                 | Median (mg/l)                                                           | 10.5     | 10.6                     | 10.6                                                        | 10.6                             | 10.4                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                       | 98                                                          | 98                               | 97                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.111    | 0.104                    | 0.104                                                       | 0.103                            | 0.072                                           |
|                     |                                 | Median (mg/l)                                                           | 0.072    | 0.069                    | 0.069                                                       | 0.068                            | 0.045                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 68       | 70                       | 70                                                          | 70                               | 80                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.24     | 1.01                     | 1.01                                                        | 0.95                             | 0.99                                            |
|                     |                                 | Median (mg/l)                                                           | 1.15     | 0.93                     | 0.93                                                        | 0.88                             | 0.91                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 13.2     | 9.8                      | 9.8                                                         | 9.7                              | 9.7                                             |
|                     |                                 | Median (mg/l)                                                           | 4.6      | 3.4                      | 3.4                                                         | 3.3                              | 3.4                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.005    | 0.0041                   | 0.0041                                                      | 0.0040                           | 0.0040                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0017   | 0.0014                   | 0.0014                                                      | 0.0014                           | 0.0014                                          |

|                                              |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|----------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                          | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-12                                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,366    | 3,947                    | 3,947                                           | 3,237                            | 2,836                                           |
| Menomonee<br>River Down-<br>stream of Little | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 50       | 50                       | 50                                              | 52                               | 53                                              |
| Menomonee                                    | Menomonee                       | Geometric mean (cells per 100 ml)                                       | 795      | 731                      | 731                                             | 554                              | 448                                             |
| River                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 31       | 39                       | 39                                              | 80                               | 115                                             |
|                                              | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,175    | 1,928                    | 1,928                                           | 1,220                            | 1,052                                           |
|                                              | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 69       | 69                       | 69                                              | 72                               | 73                                              |
|                                              |                                 | Geometric mean (cells per 100 ml)                                       | 348      | 308                      | 308                                             | 205                              | 157                                             |
|                                              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 21       | 27                       | 27                                              | 60                               | 88                                              |
|                                              | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.7     | 10.7                     | 10.7                                            | 10.7                             | 10.6                                            |
|                                              |                                 | Median (mg/l)                                                           | 10.9     | 10.9                     | 10.9                                            | 10.9                             | 10.8                                            |
|                                              |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                              | 99                               | 99                                              |
|                                              | Total Phosphorus                | Mean (mg/l)                                                             | 0.1      | 0.098                    | 0.098                                           | 0.096                            | 0.067                                           |
|                                              |                                 | Median (mg/l)                                                           | 0.061    | 0.063                    | 0.063                                           | 0.062                            | 0.034                                           |
|                                              |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 69       | 69                       | 69                                              | 69                               | 80                                              |
|                                              | Total Nitrogen                  | Mean (mg/l)                                                             | 1.09     | 0.91                     | 0.91                                            | 0.85                             | 0.88                                            |
|                                              |                                 | Median (mg/l)                                                           | 1.02     | 0.86                     | 0.86                                            | 0.80                             | 0.83                                            |
|                                              | Total Suspended Solids          | Mean (mg/l)                                                             | 13.4     | 10.9                     | 10.9                                            | 10.8                             | 10.8                                            |
|                                              |                                 | Median (mg/l)                                                           | 5.2      | 4.4                      | 4.4                                             | 4.2                              | 4.3                                             |
|                                              | Copper                          | Mean (mg/l)                                                             | 0.0054   | 0.0048                   | 0.0048                                          | 0.0048                           | 0.0048                                          |
|                                              |                                 | Median (mg/l)                                                           | 0.0021   | 0.0020                   | 0.0020                                          | 0.0020                           | 0.0020                                          |

Table N-2 (continued)

|                     |                                                              |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator                                   | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-13               | MN-13<br>Underwood<br>Creek Fecal Coliform Bacteria (annual) | Mean (cells per 100 ml)                                                 | 9,075    | 7,347                    | 7,347                                           | 4,845                            | 2,467                                           |
|                     |                                                              | Percent compliance with single sample standard (<400 cells per 100 ml)  | 61       | 62                       | 62                                              | 64                               | 67                                              |
|                     |                                                              | Geometric mean (cells per 100 ml)                                       | 789      | 627                      | 627                                             | 422                              | 225                                             |
|                     |                                                              | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 44       | 69                       | 69                                              | 119                              | 194                                             |
|                     | Fecal Coliform Bacteria                                      | Mean (cells per 100 ml)                                                 | 4,377    | 3,545                    | 3,545                                           | 2,210                            | 1,134                                           |
|                     | (May-September: 153 days total)                              | Percent compliance with single sample standard (<400 cells per 100 ml)  | 77       | 78                       | 78                                              | 80                               | 83                                              |
|                     |                                                              | Geometric mean (cells per 100 ml)                                       | 404      | 322                      | 322                                             | 212                              | 114                                             |
|                     |                                                              | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 30                       | 30                                              | 66                               | 116                                             |
|                     | Dissolved Oxygen                                             | Mean (mg/l)                                                             | 10.1     | 10.1                     | 10.1                                            | 10.1                             | 10.0                                            |
|                     |                                                              | Median (mg/l)                                                           | 9.8      | 9.8                      | 9.8                                             | 9.8                              | 9.8                                             |
|                     |                                                              | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                       | 96                                              | 96                               | 96                                              |
|                     | Total Phosphorus                                             | Mean (mg/l)                                                             | 0.095    | 0.083                    | 0.083                                           | 0.082                            | 0.079                                           |
|                     |                                                              | Median (mg/l)                                                           | 0.063    | 0.056                    | 0.056                                           | 0.056                            | 0.054                                           |
|                     |                                                              | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 75       | 79                       | 79                                              | 79                               | 81                                              |
|                     | Total Nitrogen                                               | Mean (mg/l)                                                             | 1.19     | 1.02                     | 1.02                                            | 1.02                             | 1.02                                            |
|                     |                                                              | Median (mg/l)                                                           | 1.14     | 0.97                     | 0.97                                            | 0.97                             | 0.97                                            |
|                     | Total Suspended Solids                                       | Mean (mg/l)                                                             | 17.2     | 12.6                     | 12.6                                            | 12.8                             | 12.8                                            |
|                     |                                                              | Median (mg/l)                                                           | 7.6      | 5.5                      | 5.5                                             | 5.6                              | 5.6                                             |
|                     | Copper                                                       | Mean (mg/l)                                                             | 0.0048   | 0.0038                   | 0.0038                                          | 0.0038                           | 0.0038                                          |
|                     |                                                              | Median (mg/l)                                                           | 0.0013   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

Table N-2 (continued)

|                     |                                        |                                                                                        |          |                          | Condition                                                   |                                  |                                                 |
|---------------------|----------------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator             | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-14               | MN-14 Fecal Coliform Bacteria (annual) | Mean (cells per 100 ml)                                                                | 8,133    | 6,588                    | 6,588                                                       | 4,250                            | 2,166                                           |
|                     |                                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 71       | 71                       | 71                                                          | 74                               | 79                                              |
|                     |                                        | Geometric mean (cells per 100 ml)                                                      | 691      | 552                      | 552                                                         | 369                              | 195                                             |
|                     |                                        | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 247      | 261                      | 261                                                         | 282                              | 309                                             |
|                     | Fecal Coliform Bacteria                | Mean (cells per 100 ml)                                                                | 2,964    | 2,460                    | 2,460                                                       | 1,332                            | 692                                             |
|                     | (May-September: 153 days total)        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 86       | 86                       | 86                                                          | 89                               | 92                                              |
|                     |                                        | Geometric mean (cells per 100 ml)                                                      | 351      | 279                      | 279                                                         | 180                              | 96                                              |
|                     |                                        | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 147      | 151                      | 151                                                         | 153                              | 153                                             |
|                     | Dissolved Oxygen                       | Mean (mg/l)                                                                            | 11.0     | 11.1                     | 11.1                                                        | 11.1                             | 11.1                                            |
|                     |                                        | Median (mg/l)                                                                          | 11.1     | 11.2                     | 11.2                                                        | 11.2                             | 11.2                                            |
|                     |                                        | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                     | Total Phosphorus                       | Mean (mg/l)                                                                            | 0.096    | 0.083                    | 0.083                                                       | 0.082                            | 0.076                                           |
|                     |                                        | Median (mg/l)                                                                          | 0.061    | 0.055                    | 0.055                                                       | 0.055                            | 0.050                                           |
|                     |                                        | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 77       | 80                       | 80                                                          | 80                               | 82                                              |
|                     | Total Nitrogen                         | Mean (mg/l)                                                                            | 1.17     | 1.00                     | 1.00                                                        | 1.00                             | 1.00                                            |
|                     |                                        | Median (mg/l)                                                                          | 1.11     | 0.95                     | 0.95                                                        | 0.95                             | 0.95                                            |
|                     | Total Suspended Solids                 | Mean (mg/l)                                                                            | 16.8     | 12.4                     | 12.4                                                        | 12.7                             | 12.7                                            |
|                     |                                        | Median (mg/l)                                                                          | 7.9      | 5.8                      | 5.8                                                         | 5.8                              | 5.8                                             |
|                     | Copper                                 | Mean (mg/l)                                                                            | 0.0048   | 0.0037                   | 0.0037                                                      | 0.0037                           | 0.0037                                          |
|                     |                                        | Median (mg/l)                                                                          | 0.0013   | 0.0010                   | 0.0010                                                      | 0.0010                           | 0.0010                                          |

Table N-2 (continued)

|                       |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|-----------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point   | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-15                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6,137    | 5,198                    | 5,198                                           | 3,820                            | 2,583                                           |
| Menomonee<br>Mainstem | Menomonee (annual)<br>Mainstem  | Percent compliance with single sample standard (<400 cells per 100 ml)  | 47       | 47                       | 47                                              | 50                               | 52                                              |
|                       |                                 | Geometric mean (cells per 100 ml)                                       | 1,063    | 930                      | 930                                             | 677                              | 469                                             |
|                       |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 12       | 21                       | 21                                              | 53                               | 107                                             |
|                       | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,064    | 2,531                    | 2,531                                           | 1,538                            | 946                                             |
|                       | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 67       | 67                       | 67                                              | 70                               | 73                                              |
|                       |                                 | Geometric mean (cells per 100 ml)                                       | 476      | 399                      | 399                                             | 263                              | 172                                             |
|                       |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 12                       | 12                                              | 36                               | 80                                              |
|                       | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.0     | 10.9                     | 10.9                                            | 10.9                             | 10.8                                            |
|                       |                                 | Median (mg/l)                                                           | 11.1     | 11.0                     | 11.0                                            | 11.0                             | 10.9                                            |
|                       |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                       | Total Phosphorus                | Mean (mg/l)                                                             | 0.102    | 0.098                    | 0.098                                           | 0.096                            | 0.077                                           |
|                       |                                 | Median (mg/l)                                                           | 0.063    | 0.065                    | 0.065                                           | 0.064                            | 0.042                                           |
|                       |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 69       | 69                       | 69                                              | 70                               | 78                                              |
|                       | Total Nitrogen                  | Mean (mg/l)                                                             | 1.12     | 0.95                     | 0.95                                            | 0.91                             | 0.93                                            |
|                       |                                 | Median (mg/l)                                                           | 1.06     | 0.90                     | 0.90                                            | 0.86                             | 0.87                                            |
|                       | Total Suspended Solids          | Mean (mg/l)                                                             | 15.6     | 12.5                     | 12.5                                            | 12.5                             | 12.5                                            |
|                       |                                 | Median (mg/l)                                                           | 5.6      | 4.7                      | 4.7                                             | 4.6                              | 4.6                                             |
|                       | Copper                          | Mean (mg/l)                                                             | 0.0057   | 0.0050                   | 0.0050                                          | 0.0049                           | 0.0049                                          |
|                       |                                 | Median (mg/l)                                                           | 0.0023   | 0.0022                   | 0.0022                                          | 0.0022                           | 0.0022                                          |

Table N-2 (continued)

|                     |                                        |                                                                                        |          |                          | Condition                                                   |                                  |                                                 |
|---------------------|----------------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator             | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-16               | MN-16 Fecal Coliform Bacteria (annual) | Mean (cells per 100 ml)                                                                | 9,286    | 7,761                    | 7,761                                                       | 4,864                            | 2,156                                           |
| Honey Creek         |                                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 72       | 73                       | 73                                                          | 75                               | 81                                              |
|                     |                                        | Geometric mean (cells per 100 ml)                                                      | 612      | 512                      | 512                                                         | 338                              | 162                                             |
|                     |                                        | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 259      | 270                      | 270                                                         | 294                              | 325                                             |
|                     | Fecal Coliform Bacteria                | Mean (cells per 100 ml)                                                                | 4,073    | 3,413                    | 3,413                                                       | 1,882                            | 801                                             |
|                     | (May-September: 153 days total)        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 86       | 87                       | 87                                                          | 88                               | 92                                              |
|                     |                                        | Geometric mean (cells per 100 ml)                                                      | 325      | 273                      | 273                                                         | 178                              | 86                                              |
|                     |                                        | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 148      | 152                      | 152                                                         | 153                              | 153                                             |
|                     | Dissolved Oxygen                       | Mean (mg/l)                                                                            | 11.0     | 11.0                     | 11.0                                                        | 11.0                             | 11.0                                            |
|                     |                                        | Median (mg/l)                                                                          | 10.7     | 10.6                     | 10.6                                                        | 10.6                             | 10.6                                            |
|                     |                                        | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 97       | 98                       | 98                                                          | 98                               | 98                                              |
|                     | Total Phosphorus                       | Mean (mg/l)                                                                            | 0.118    | 0.110                    | 0.110                                                       | 0.109                            | 0.106                                           |
|                     |                                        | Median (mg/l)                                                                          | 0.084    | 0.080                    | 0.080                                                       | 0.080                            | 0.079                                           |
|                     |                                        | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 64       | 67                       | 67                                                          | 67                               | 68                                              |
|                     | Total Nitrogen                         | Mean (mg/l)                                                                            | 1.28     | 1.17                     | 1.17                                                        | 1.18                             | 1.18                                            |
|                     |                                        | Median (mg/l)                                                                          | 1.22     | 1.11                     | 1.11                                                        | 1.12                             | 1.12                                            |
|                     | Total Suspended Solids                 | Mean (mg/l)                                                                            | 14.4     | 11.2                     | 11.2                                                        | 11.5                             | 11.5                                            |
|                     |                                        | Median (mg/l)                                                                          | 7.2      | 5.7                      | 5.7                                                         | 5.7                              | 5.7                                             |
|                     | Copper                                 | Mean (mg/l)                                                                            | 0.0046   | 0.0038                   | 0.0038                                                      | 0.0038                           | 0.0038                                          |
|                     |                                        | Median (mg/l)                                                                          | 0.0016   | 0.0014                   | 0.0014                                                      | 0.0014                           | 0.0014                                          |

Table N-2 (continued)

|                                             |                                 |                                                                                        |          |                          | Condition                                                   |                                  |                                                 |
|---------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                         | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-17                                       | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 6,926    | 5,903                    | 5,863                                                       | 4,198                            | 2,657                                           |
| Menomonee<br>River Down-<br>stream of Honey | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 63       | 63                       | 63                                                          | 66                               | 70                                              |
| Creek                                       |                                 | Geometric mean (cells per 100 ml)                                                      | 1,124    | 981                      | 978                                                         | 704                              | 471                                             |
|                                             |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 196      | 207                      | 207                                                         | 230                              | 252                                             |
|                                             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,622    | 3,064                    | 2,985                                                       | 1,833                            | 1,100                                           |
|                                             | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 81       | 81                       | 81                                                          | 84                               | 87                                              |
|                                             |                                 | Geometric mean (cells per 100 ml)                                                      | 496      | 415                      | 412                                                         | 271                              | 173                                             |
|                                             |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 130      | 138                      | 138                                                         | 147                              | 151                                             |
|                                             | Dissolved Oxygen                | Mean (mg/l)                                                                            | 11.1     | 10.9                     | 10.9                                                        | 10.9                             | 10.9                                            |
|                                             |                                 | Median (mg/l)                                                                          | 11.1     | 11.0                     | 11.0                                                        | 11.0                             | 10.9                                            |
|                                             |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                             | Total Phosphorus                | Mean (mg/l)                                                                            | 0.111    | 0.107                    | 0.106                                                       | 0.105                            | 0.082                                           |
|                                             |                                 | Median (mg/l)                                                                          | 0.074    | 0.076                    | 0.076                                                       | 0.075                            | 0.048                                           |
|                                             |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 66       | 66                       | 66                                                          | 67                               | 77                                              |
|                                             | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.14     | 0.98                     | 0.98                                                        | 0.94                             | 0.96                                            |
|                                             |                                 | Median (mg/l)                                                                          | 1.08     | 0.93                     | 0.93                                                        | 0.90                             | 0.91                                            |
|                                             | Total Suspended Solids          | Mean (mg/l)                                                                            | 16.3     | 13.2                     | 13.2                                                        | 13.2                             | 13.2                                            |
|                                             |                                 | Median (mg/l)                                                                          | 6.0      | 4.9                      | 4.9                                                         | 4.9                              | 4.9                                             |
|                                             | Copper                          | Mean (mg/l)                                                                            | 0.0057   | 0.0050                   | 0.0050                                                      | 0.0049                           | 0.0049                                          |
|                                             |                                 | Median (mg/l)                                                                          | 0.0024   | 0.0022                   | 0.0022                                                      | 0.0022                           | 0.0022                                          |

Table N-2 (continued)

|                                           |                                 |                                                                                        |          |                          | Condition                                                   |                                  |                                                 |
|-------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                       | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| MN-18                                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 6,889    | 5,945                    | 5,907                                                       | 4,214                            | 2,552                                           |
| Menomonee<br>River near<br>Upstream Limit | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 64       | 63                       | 63                                                          | 66                               | 70                                              |
| of Estuary                                |                                 | Geometric mean (cells per 100 ml)                                                      | 1,081    | 955                      | 952                                                         | 685                              | 449                                             |
|                                           |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 200      | 209                      | 209                                                         | 232                              | 254                                             |
|                                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,557    | 3,073                    | 2,998                                                       | 1,861                            | 1,052                                           |
|                                           | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 81       | 81                       | 81                                                          | 85                               | 88                                              |
|                                           |                                 | Geometric mean (cells per 100 ml)                                                      | 468      | 399                      | 396                                                         | 261                              | 163                                             |
|                                           |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 133      | 138                      | 138                                                         | 147                              | 151                                             |
|                                           | Dissolved Oxygen                | Mean (mg/l)                                                                            | 11.0     | 10.9                     | 10.9                                                        | 10.9                             | 10.9                                            |
|                                           |                                 | Median (mg/l)                                                                          | 11.0     | 10.9                     | 11.0                                                        | 10.9                             | 10.9                                            |
|                                           |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                           | Total Phosphorus                | Mean (mg/l)                                                                            | 0.133    | 0.129                    | 0.129                                                       | 0.127                            | 0.102                                           |
|                                           |                                 | Median (mg/l)                                                                          | 0.104    | 0.105                    | 0.105                                                       | 0.103                            | 0.076                                           |
|                                           |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 52       | 51                       | 51                                                          | 52                               | 68                                              |
|                                           | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.26     | 1.11                     | 1.11                                                        | 1.07                             | 1.09                                            |
|                                           |                                 | Median (mg/l)                                                                          | 1.20     | 1.07                     | 1.07                                                        | 1.03                             | 1.04                                            |
|                                           | Total Suspended Solids          | Mean (mg/l)                                                                            | 16       | 13.1                     | 13.1                                                        | 13.1                             | 13.1                                            |
|                                           |                                 | Median (mg/l)                                                                          | 5.5      | 4.8                      | 4.8                                                         | 4.7                              | 4.7                                             |
|                                           | Copper                          | Mean (mg/l)                                                                            | 0.0056   | 0.0049                   | 0.0049                                                      | 0.0048                           | 0.0048                                          |
|                                           |                                 | Median (mg/l)                                                                          | 0.0023   | 0.0022                   | 0.0022                                                      | 0.0022                           | 0.0022                                          |

### **Table N-2 Footnotes**

<sup>a</sup>In certain limited cases, relatively minor anomalies in concentrations or percents compliance may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a slight decrease in water quality under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in water quality occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters in the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively insignificant anomalies in the comparative results.

<sup>b</sup>Five-Year LOP refers to a five-year recurrence interval level of protection against sanitary sewer overflows.

<sup>C</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

dVariance Standard in Chapter NR 104 of the Wisconsin Administrative Code.

Source: Tetra Tech, Inc., and SEWRPC.

Table N-3

WATER QUALITY SUMMARY STATISTICS FOR THE RECOMMENDED PLAN: MILWAUKEE RIVER WATERSHED<sup>a</sup>

|                        |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point    | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-1                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,342    | 1,521                    | 1,521                                           | 1,110                            | 1,103                                           |
| Kettle Moraine<br>Lake | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 22       | 21                       | 21                                              | 68                               | 68                                              |
|                        |                                 | Geometric mean (cells per 100 ml)                                       | 742      | 781                      | 781                                             | 164                              | 159                                             |
|                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 5        | 4                        | 4                                               | 206                              | 207                                             |
|                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,036    | 1,231                    | 1,231                                           | 787                              | 785                                             |
|                        | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 30       | 28                       | 28                                              | 86                               | 86                                              |
|                        |                                 | Geometric mean (cells per 100 ml)                                       | 578      | 614                      | 614                                             | 65                               | 62                                              |
|                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 5        | 4                        | 4                                               | 138                              | 138                                             |
|                        | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |
|                        |                                 | Median (mg/l)                                                           | 11.4     | 11.4                     | 11.4                                            | 11.5                             | 11.5                                            |
|                        |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                        | Total Phosphorus                | Mean (mg/l)                                                             | 0.082    | 0.080                    | 0.080                                           | 0.059                            | 0.059                                           |
|                        |                                 | Median (mg/l)                                                           | 0.068    | 0.066                    | 0.066                                           | 0.049                            | 0.050                                           |
|                        |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 83       | 84                       | 84                                              | 91                               | 91                                              |
|                        | Total Nitrogen                  | Mean (mg/l)                                                             | 2.11     | 2.09                     | 2.09                                            | 0.80                             | 0.76                                            |
|                        |                                 | Median (mg/l)                                                           | 2.07     | 2.06                     | 2.06                                            | 0.76                             | 0.73                                            |
|                        | Total Suspended Solids          | Mean (mg/l)                                                             | 9.1      | 8.9                      | 8.9                                             | 6.3                              | 6.4                                             |
|                        |                                 | Median (mg/l)                                                           | 4.3      | 4.2                      | 4.2                                             | 2.7                              | 2.8                                             |
|                        | Copper                          | Mean (mg/l)                                                             | 0.0034   | 0.0034                   | 0.0034                                          | 0.0027                           | 0.0028                                          |
|                        |                                 | Median (mg/l)                                                           | 0.0031   | 0.0031                   | 0.0031                                          | 0.0024                           | 0.0024                                          |

|                      |                                 |                                                                                                    |          |                          | Condition                                       |                                  |                                                 |
|----------------------|---------------------------------|----------------------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point  | Water Quality<br>Indicator      | Statistic                                                                                          | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-2                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                            | 3,963    | 4,558                    | 4,558                                           | 3,855                            | 3,811                                           |
| Auburn Lake<br>Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 6        | 5                        | 5                                               | 58                               | 59                                              |
|                      |                                 | Geometric mean (cells per 100 ml)                                                                  | 1,676    | 1,811                    | 1,811                                           | 472                              | 457                                             |
|                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 78                               | 86                                              |
|                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                            | 3,026    | 3,704                    | 3,704                                           | 2,822                            | 2,798                                           |
|                      | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 4        | 3                        | 3                                               | 74                               | 74                                              |
|                      |                                 | Geometric mean (cells per 100 ml)                                                                  | 1,428    | 1,582                    | 1,582                                           | 286                              | 276                                             |
|                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 42                               | 48                                              |
|                      | Dissolved Oxygen                | Mean (mg/l)                                                                                        | 10.9     | 10.9                     | 10.9                                            | 10.9                             | 11.0                                            |
|                      |                                 | Median (mg/l)                                                                                      | 11.0     | 11.0                     | 11.0                                            | 11.0                             | 11.0                                            |
|                      |                                 | Percent compliance with dissolved oxygen standard (>6 mg/l, >7 mg/l October-December) <sup>d</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                      | Total Phosphorus                | Mean (mg/l)                                                                                        | 0.046    | 0.045                    | 0.045                                           | 0.044                            | 0.043                                           |
|                      |                                 | Median (mg/l)                                                                                      | 0.015    | 0.015                    | 0.015                                           | 0.014                            | 0.014                                           |
|                      |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                                 | 87       | 87                       | 87                                              | 87                               | 87                                              |
|                      | Total Nitrogen                  | Mean (mg/l)                                                                                        | 1.08     | 1.08                     | 1.08                                            | 0.81                             | 0.78                                            |
|                      |                                 | Median (mg/l)                                                                                      | 1.04     | 1.04                     | 1.04                                            | 0.76                             | 0.73                                            |
|                      | Total Suspended Solids          | Mean (mg/l)                                                                                        | 12.2     | 12.1                     | 12.1                                            | 11.2                             | 11.1                                            |
|                      |                                 | Median (mg/l)                                                                                      | 5.4      | 5.4                      | 5.4                                             | 4.6                              | 4.6                                             |
|                      | Copper                          | Mean (mg/l)                                                                                        | 0.0028   | 0.0028                   | 0.0028                                          | 0.0026                           | 0.0027                                          |
|                      |                                 | Median (mg/l)                                                                                      | 0.0016   | 0.0016                   | 0.0016                                          | 0.0014                           | 0.0014                                          |

|                       |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|-----------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point   | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-3                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,334    | 2,367                    | 2,367                                                       | 1,932                            | 1,902                                           |
| Lake Fifteen<br>Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 14       | 14                       | 14                                                          | 65                               | 65                                              |
|                       |                                 | Geometric mean (cells per 100 ml)                                       | 1,021    | 1,035                    | 1,035                                                       | 326                              | 316                                             |
|                       |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 1        | 1                        | 1                                                           | 136                              | 143                                             |
|                       | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,887    | 1,924                    | 1,924                                                       | 1,407                            | 1,390                                           |
|                       | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 15       | 14                       | 14                                                          | 80                               | 80                                              |
|                       |                                 | Geometric mean (cells per 100 ml)                                       | 840      | 859                      | 859                                                         | 184                              | 176                                             |
|                       |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 1        | 1                        | 1                                                           | 97                               | 102                                             |
|                       | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.1     | 11.2                     | 11.2                                                        | 11.2                             | 11.2                                            |
|                       |                                 | Median (mg/l)                                                           | 11.2     | 11.2                     | 11.2                                                        | 11.2                             | 11.2                                            |
|                       |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                       | Total Phosphorus                | Mean (mg/l)                                                             | 0.075    | 0.075                    | 0.075                                                       | 0.071                            | 0.070                                           |
|                       |                                 | Median (mg/l)                                                           | 0.057    | 0.057                    | 0.057                                                       | 0.053                            | 0.053                                           |
|                       |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 86       | 87                       | 87                                                          | 88                               | 88                                              |
|                       | Total Nitrogen                  | Mean (mg/l)                                                             | 1.40     | 1.38                     | 1.38                                                        | 1.09                             | 1.03                                            |
|                       |                                 | Median (mg/l)                                                           | 1.38     | 1.36                     | 1.36                                                        | 1.06                             | 1.00                                            |
|                       | Total Suspended Solids          | Mean (mg/l)                                                             | 6.2      | 6.2                      | 6.2                                                         | 5.8                              | 5.8                                             |
|                       |                                 | Median (mg/l)                                                           | 2.6      | 2.6                      | 2.6                                                         | 2.4                              | 2.3                                             |
|                       | Copper                          | Mean (mg/l)                                                             | 0.0036   | 0.0036                   | 0.0036                                                      | 0.0035                           | 0.0036                                          |
|                       |                                 | Median (mg/l)                                                           | 0.0027   | 0.0027                   | 0.0027                                                      | 0.0026                           | 0.0026                                          |

|                                          |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                      | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-4                                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,808    | 3,375                    | 3,375                                           | 2,128                            | 2,095                                           |
| West Branch of<br>the Milwaukee<br>River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 1        | 1                        | 1                                               | 54                               | 54                                              |
|                                          |                                    | Geometric mean (cells per 100 ml)                                       | 1,770    | 1,997                    | 1,997                                           | 582                              | 562                                             |
|                                          |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 0                        | 0                                               | 28                               | 33                                              |
|                                          | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,003    | 2,500                    | 2,500                                           | 1,488                            | 1,468                                           |
|                                          | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 3        | 3                        | 3                                               | 72                               | 72                                              |
|                                          |                                    | Geometric mean (cells per 100 ml)                                       | 1,302    | 1,492                    | 1,492                                           | 332                              | 319                                             |
|                                          |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 0                        | 0                                               | 24                               | 28                                              |
|                                          | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |
|                                          |                                    | Median (mg/l)                                                           | 11.5     | 11.5                     | 11.5                                            | 11.5                             | 11.5                                            |
|                                          |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                          | Total Phosphorus                   | Mean (mg/l)                                                             | 0.060    | 0.058                    | 0.058                                           | 0.054                            | 0.052                                           |
|                                          |                                    | Median (mg/l)                                                           | 0.024    | 0.023                    | 0.023                                           | 0.022                            | 0.021                                           |
|                                          |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 82       | 82                       | 82                                              | 84                               | 84                                              |
|                                          | Total Nitrogen                     | Mean (mg/l)                                                             | 2.59     | 2.57                     | 2.57                                            | 2.30                             | 2.15                                            |
|                                          |                                    | Median (mg/l)                                                           | 2.53     | 2.52                     | 2.52                                            | 2.26                             | 2.11                                            |
|                                          | Total Suspended Solids             | Mean (mg/l)                                                             | 17.7     | 17.3                     | 17.3                                            | 16.3                             | 16.0                                            |
|                                          |                                    | Median (mg/l)                                                           | 8.4      | 8.3                      | 8.3                                             | 7.7                              | 7.6                                             |
|                                          | Copper                             | Mean (mg/l)                                                             | 0.0030   | 0.0030                   | 0.0030                                          | 0.0029                           | 0.0030                                          |
|                                          |                                    | Median (mg/l)                                                           | 0.0020   | 0.0020                   | 0.0020                                          | 0.0019                           | 0.0019                                          |

|                                        |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                    | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-5                                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,761    | 2,051                    | 2,051                                           | 1,245                            | 1,215                                           |
| Kewaskum,<br>USGS Sampling<br>Location | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 11       | 10                       | 10                                              | 52                               | 52                                              |
| (4086149)                              |                                 | Geometric mean (cells per 100 ml)                                       | 1,116    | 1,225                    | 1,225                                           | 409                              | 393                                             |
|                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 3                        | 3                                               | 102                              | 108                                             |
|                                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,088    | 1,341                    | 1,341                                           | 744                              | 728                                             |
|                                        | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 24       | 22                       | 22                                              | 74                               | 74                                              |
|                                        |                                 | Geometric mean (cells per 100 ml)                                       | 702      | 783                      | 783                                             | 189                              | 180                                             |
|                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 3                        | 3                                               | 90                               | 94                                              |
|                                        | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.2     | 11.2                     | 11.2                                            | 11.2                             | 11.2                                            |
|                                        |                                 | Median (mg/l)                                                           | 11.2     | 11.2                     | 11.2                                            | 11.2                             | 11.2                                            |
|                                        |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                        | Total Phosphorus                | Mean (mg/l)                                                             | 0.068    | 0.068                    | 0.068                                           | 0.058                            | 0.057                                           |
|                                        |                                 | Median (mg/l)                                                           | 0.047    | 0.047                    | 0.047                                           | 0.041                            | 0.041                                           |
|                                        |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 84       | 84                       | 84                                              | 88                               | 88                                              |
|                                        | Total Nitrogen                  | Mean (mg/l)                                                             | 2.33     | 2.31                     | 2.31                                            | 1.67                             | 1.56                                            |
|                                        |                                 | Median (mg/l)                                                           | 2.29     | 2.27                     | 2.27                                            | 1.64                             | 1.54                                            |
|                                        | Total Suspended Solids          | Mean (mg/l)                                                             | 14.1     | 13.9                     | 13.9                                            | 14.6                             | 14.5                                            |
|                                        |                                 | Median (mg/l)                                                           | 8.5      | 8.5                      | 8.5                                             | 9.7                              | 9.7                                             |
|                                        | Copper                          | Mean (mg/l)                                                             | 0.0032   | 0.0032                   | 0.0032                                          | 0.0029                           | 0.0030                                          |
|                                        |                                 | Median (mg/l)                                                           | 0.0027   | 0.0027                   | 0.0027                                          | 0.0025                           | 0.0025                                          |

|                          |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point      | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-7                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,950    | 2,046                    | 2,046                                           | 1,030                            | 1,003                                           |
| Upper Milwaukee<br>River | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 19       | 19                       | 19                                              | 52                               | 53                                              |
|                          |                                 | Geometric mean (cells per 100 ml)                                       | 1,069    | 1,092                    | 1,092                                           | 377                              | 361                                             |
|                          |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 7                        | 7                                               | 109                              | 115                                             |
|                          | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,128    | 1,222                    | 1,222                                           | 564                              | 548                                             |
|                          | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 39       | 39                       | 39                                              | 74                               | 74                                              |
|                          |                                 | Geometric mean (cells per 100 ml)                                       | 600      | 617                      | 617                                             | 171                              | 162                                             |
|                          |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 7                        | 7                                               | 96                               | 99                                              |
|                          | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.3     | 11.3                     | 11.3                                            | 11.3                             | 11.3                                            |
|                          |                                 | Median (mg/l)                                                           | 11.3     | 11.4                     | 11.4                                            | 11.3                             | 11.3                                            |
|                          |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                          | Total Phosphorus                | Mean (mg/l)                                                             | 0.080    | 0.085                    | 0.085                                           | 0.077                            | 0.076                                           |
|                          |                                 | Median (mg/l)                                                           | 0.061    | 0.066                    | 0.066                                           | 0.061                            | 0.061                                           |
|                          |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 75                       | 75                                              | 80                               | 80                                              |
|                          | Total Nitrogen                  | Mean (mg/l)                                                             | 2.20     | 2.15                     | 2.15                                            | 1.60                             | 1.49                                            |
|                          |                                 | Median (mg/l)                                                           | 2.15     | 2.11                     | 2.11                                            | 1.57                             | 1.47                                            |
|                          | Total Suspended Solids          | Mean (mg/l)                                                             | 10.8     | 10.6                     | 10.6                                            | 9.8                              | 9.7                                             |
|                          |                                 | Median (mg/l)                                                           | 5.7      | 5.6                      | 5.6                                             | 5.0                              | 5.0                                             |
|                          | Copper                          | Mean (mg/l)                                                             | 0.0035   | 0.0037                   | 0.0037                                          | 0.0034                           | 0.0035                                          |
|                          |                                 | Median (mg/l)                                                           | 0.0031   | 0.0032                   | 0.0032                                          | 0.0030                           | 0.0030                                          |

|                     |                                 |                                                                                                    |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                                          | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-8                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                            | 3,280    | 3,733                    | 3,733                                           | 2,627                            | 2,613                                           |
| Vatercress Creek    | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 0        | 0                        | 0                                               | 57                               | 58                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                                  | 1,860    | 1,985                    | 1,985                                           | 500                              | 491                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 38                               | 40                                              |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                            | 2,908    | 3,459                    | 3,459                                           | 1,998                            | 1,998                                           |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 0        | 0                        | 0                                               | 70                               | 70                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                                  | 1,827    | 1,988                    | 1,988                                           | 344                              | 338                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 24                               | 25                                              |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                                        | 11.0     | 11.0                     | 11.0                                            | 11.0                             | 11.0                                            |
|                     |                                 | Median (mg/l)                                                                                      | 11.0     | 11.0                     | 11.0                                            | 11.0                             | 11.0                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>6 mg/l, >7 mg/l October-December) <sup>d</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                                                        | 0.032    | 0.032                    | 0.032                                           | 0.028                            | 0.028                                           |
|                     |                                 | Median (mg/l)                                                                                      | 0.012    | 0.012                    | 0.012                                           | 0.009                            | 0.009                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                                 | 92       | 93                       | 93                                              | 93                               | 93                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                                        | 1.49     | 1.48                     | 1.48                                            | 0.90                             | 0.87                                            |
| Total Susp          |                                 | Median (mg/l)                                                                                      | 1.53     | 1.43                     | 1.43                                            | 0.84                             | 0.80                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                                        | 10.8     | 10.6                     | 10.6                                            | 8.3                              | 8.3                                             |
|                     |                                 | Median (mg/l)                                                                                      | 5.6      | 5.6                      | 5.6                                             | 4.0                              | 4.0                                             |
|                     | Copper                          | Mean (mg/l)                                                                                        | 0.0022   | 0.0022                   | 0.0022                                          | 0.0019                           | 0.0020                                          |
|                     |                                 | Median (mg/l)                                                                                      | 0.0014   | 0.0014                   | 0.0014                                          | 0.0011                           | 0.0011                                          |

|                     |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-9                | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 301      | 313                      | 313                                             | 265                              | 263                                             |
| Watercress Creek    | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 90       | 90                       | 90                                              | 91                               | 91                                              |
|                     |                                    | Geometric mean (cells per 100 ml)                                       | 76       | 77                       | 77                                              | 27                               | 26                                              |
|                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 311      | 311                      | 311                                             | 363                              | 364                                             |
|                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 232      | 255                      | 255                                             | 231                              | 231                                             |
|                     | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 95       | 95                       | 95                                              | 95                               | 95                                              |
|                     |                                    | Geometric mean (cells per 100 ml)                                       | 44       | 44                       | 44                                              | 11                               | 11                                              |
|                     |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 150      | 150                      | 150                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.6     | 11.6                     | 11.6                                            | 11.6                             | 11.6                                            |
|                     |                                    | Median (mg/l)                                                           | 11.7     | 11.7                     | 11.7                                            | 11.7                             | 11.7                                            |
|                     |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                   | Mean (mg/l)                                                             | 0.118    | 0.114                    | 0.114                                           | 0.081                            | 0.079                                           |
|                     |                                    | Median (mg/l)                                                           | 0.117    | 0.114                    | 0.114                                           | 0.080                            | 0.079                                           |
|                     |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 38       | 43                       | 43                                              | 89                               | 92                                              |
|                     | Total Nitrogen                     | Mean (mg/l)                                                             | 1.66     | 1.64                     | 1.64                                            | 0.79                             | 0.75                                            |
|                     |                                    | Median (mg/l)                                                           | 1.67     | 1.64                     | 1.64                                            | 0.78                             | 0.75                                            |
|                     | Total Suspended Solids             | Mean (mg/l)                                                             | 3.4      | 3.4                      | 3.4                                             | 3.0                              | 3.0                                             |
|                     |                                    | Median (mg/l)                                                           | 3.0      | 3.0                      | 3.0                                             | 2.5                              | 2.6                                             |
|                     | Copper                             | Mean (mg/l)                                                             | 0.0034   | 0.0034                   | 0.0034                                          | 0.0026                           | 0.0027                                          |
|                     |                                    | Median (mg/l)                                                           | 0.0033   | 0.0033                   | 0.0033                                          | 0.0025                           | 0.0026                                          |

|                                                  |                                     |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                              | Water Quality<br>Indicator          | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-10                                            | Fecal Coliform Bacteria<br>(annual) | Mean (cells per 100 ml)                                                 | 948      | 991                      | 991                                             | 884                              | 871                                             |
| East Branch<br>Milwaukee River,<br>USGS Sampling |                                     | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 48                       | 48                                              | 57                               | 58                                              |
| Location                                         |                                     | Geometric mean (cells per 100 ml)                                       | 472      | 478                      | 478                                             | 310                              | 304                                             |
| (4086200)                                        |                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 45       | 44                       | 44                                              | 119                              | 121                                             |
|                                                  | Fecal Coliform Bacteria             | Mean (cells per 100 ml)                                                 | 667      | 736                      | 736                                             | 631                              | 626                                             |
|                                                  | (May-September: 153<br>days total)  | Percent compliance with single sample standard (<400 cells per 100 ml)  | 80       | 80                       | 80                                              | 85                               | 85                                              |
|                                                  |                                     | Geometric mean (cells per 100 ml)                                       | 268      | 274                      | 274                                             | 134                              | 131                                             |
|                                                  |                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 41       | 40                       | 40                                              | 104                              | 105                                             |
|                                                  | Dissolved Oxygen                    | Mean (mg/l)                                                             | 11.5     | 11.5                     | 11.5                                            | 11.5                             | 11.5                                            |
|                                                  |                                     | Median (mg/l)                                                           | 11.6     | 11.6                     | 11.6                                            | 11.6                             | 11.6                                            |
|                                                  |                                     | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                                  | Total Phosphorus                    | Mean (mg/l)                                                             | 0.084    | 0.083                    | 0.083                                           | 0.067                            | 0.066                                           |
|                                                  |                                     | Median (mg/l)                                                           | 0.079    | 0.078                    | 0.078                                           | 0.062                            | 0.061                                           |
|                                                  |                                     | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 82       | 83                       | 83                                              | 94                               | 94                                              |
|                                                  | Total Nitrogen                      | Mean (mg/l)                                                             | 1.37     | 1.35                     | 1.35                                            | 0.75                             | 0.71                                            |
|                                                  |                                     | Median (mg/l)                                                           | 1.36     | 1.35                     | 1.35                                            | 0.73                             | 0.70                                            |
|                                                  | Total Suspended Solids              | Mean (mg/l)                                                             | 3.5      | 3.4                      | 3.4                                             | 3.2                              | 3.2                                             |
|                                                  |                                     | Median (mg/l)                                                           | 2.2      | 2.1                      | 2.1                                             | 2.0                              | 2.0                                             |
|                                                  | Copper                              | Mean (mg/l)                                                             | 0.0032   | 0.0032                   | 0.0032                                          | 0.0028                           | 0.0028                                          |
|                                                  |                                     | Median (mg/l)                                                           | 0.0030   | 0.0030                   | 0.0030                                          | 0.0026                           | 0.0026                                          |

|                                          |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                      | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-11                                    | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,030    | 1,087                    | 1,087                                           | 707                              | 695                                             |
| East Branch of<br>the Milwaukee<br>River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 51       | 51                       | 51                                              | 60                               | 60                                              |
|                                          |                                    | Geometric mean (cells per 100 ml)                                       | 452      | 452                      | 452                                             | 246                              | 241                                             |
|                                          |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 62       | 64                       | 64                                              | 148                              | 149                                             |
|                                          | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 680      | 729                      | 729                                             | 393                              | 388                                             |
|                                          | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 81       | 81                       | 81                                              | 84                               | 85                                              |
|                                          |                                    | Geometric mean (cells per 100 ml)                                       | 231      | 228                      | 228                                             | 91                               | 89                                              |
|                                          |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 57       | 59                       | 59                                              | 126                              | 127                                             |
|                                          | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |
|                                          |                                    | Median (mg/l)                                                           | 11.5     | 11.5                     | 11.5                                            | 11.5                             | 11.5                                            |
|                                          |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                          | Total Phosphorus                   | Mean (mg/l)                                                             | 0.080    | 0.079                    | 0.079                                           | 0.065                            | 0.064                                           |
|                                          |                                    | Median (mg/l)                                                           | 0.073    | 0.072                    | 0.072                                           | 0.057                            | 0.057                                           |
|                                          |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 83       | 84                       | 84                                              | 92                               | 93                                              |
|                                          | Total Nitrogen                     | Mean (mg/l)                                                             | 1.32     | 1.31                     | 1.31                                            | 0.76                             | 0.72                                            |
|                                          |                                    | Median (mg/l)                                                           | 1.31     | 1.30                     | 1.30                                            | 0.74                             | 0.70                                            |
|                                          | Total Suspended Solids             | Mean (mg/l)                                                             | 2.7      | 2.7                      | 2.7                                             | 2.6                              | 2.6                                             |
|                                          |                                    | Median (mg/l)                                                           | 1.8      | 1.8                      | 1.8                                             | 1.6                              | 1.6                                             |
|                                          | Copper                             | Mean (mg/l)                                                             | 0.0032   | 0.0032                   | 0.0032                                          | 0.0028                           | 0.0029                                          |
|                                          |                                    | Median (mg/l)                                                           | 0.0029   | 0.0029                   | 0.0029                                          | 0.0025                           | 0.0025                                          |

|                           |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point       | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-14                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,493    | 1,123                    | 1,123                                           | 647                              | 603                                             |
| Middle Milwaukee<br>River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 39       | 40                       | 40                                              | 52                               | 53                                              |
|                           |                                    | Geometric mean (cells per 100 ml)                                       | 601      | 510                      | 510                                             | 212                              | 194                                             |
|                           |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 80       | 85                       | 85                                              | 153                              | 157                                             |
|                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 533      | 458                      | 458                                             | 318                              | 298                                             |
|                           | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 72       | 74                       | 74                                              | 79                               | 80                                              |
|                           |                                    | Geometric mean (cells per 100 ml)                                       | 207      | 187                      | 187                                             | 58                               | 52                                              |
|                           |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 72       | 76                       | 76                                              | 128                              | 130                                             |
|                           | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |
|                           |                                    | Median (mg/l)                                                           | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |
|                           |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                              | 100                              | 100                                             |
|                           | Total Phosphorus                   | Mean (mg/l)                                                             | 0.110    | 0.120                    | 0.120                                           | 0.113                            | 0.112                                           |
|                           |                                    | Median (mg/l)                                                           | 0.095    | 0.107                    | 0.107                                           | 0.102                            | 0.102                                           |
|                           |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 55       | 48                       | 48                                              | 53                               | 53                                              |
|                           | Total Nitrogen                     | Mean (mg/l)                                                             | 1.71     | 1.62                     | 1.62                                            | 1.20                             | 1.12                                            |
|                           |                                    | Median (mg/l)                                                           | 1.64     | 1.56                     | 1.56                                            | 1.15                             | 1.08                                            |
|                           | Total Suspended Solids             | Mean (mg/l)                                                             | 11.8     | 11.6                     | 11.6                                            | 10.9                             | 10.8                                            |
|                           |                                    | Median (mg/l)                                                           | 7.4      | 7.3                      | 7.3                                             | 6.9                              | 6.8                                             |
|                           | Copper                             | Mean (mg/l)                                                             | 0.0054   | 0.0059                   | 0.0059                                          | 0.0056                           | 0.0057                                          |
|                           |                                    | Median (mg/l)                                                           | 0.0052   | 0.0057                   | 0.0057                                          | 0.0054                           | 0.0055                                          |

|                                           |                                    |                                                                                                    |          |                          | Condition                                       |                                  |                                                 |
|-------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                       | Water Quality<br>Indicator         | Statistic                                                                                          | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-15                                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                            | 4,252    | 4,260                    | 4,260                                           | 3,213                            | 3,167                                           |
| North Branch of<br>the Milwaukee<br>River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 0        | 0                        | 0                                               | 50                               | 50                                              |
|                                           |                                    | Geometric mean (cells per 100 ml)                                                                  | 2,313    | 2,325                    | 2,325                                           | 626                              | 616                                             |
|                                           |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 60                               | 64                                              |
|                                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                                            | 3,530    | 3,501                    | 3,501                                           | 2,249                            | 2,224                                           |
|                                           | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 0        | 1                        | 1                                               | 81                               | 81                                              |
|                                           |                                    | Geometric mean (cells per 100 ml)                                                                  | 1,867    | 1,845                    | 1,845                                           | 253                              | 247                                             |
|                                           |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 55                               | 58                                              |
|                                           | Dissolved Oxygen                   | Mean (mg/l)                                                                                        | 10.8     | 10.8                     | 10.8                                            | 10.8                             | 10.8                                            |
|                                           |                                    | Median (mg/l)                                                                                      | 10.9     | 10.9                     | 10.9                                            | 10.9                             | 10.9                                            |
|                                           |                                    | Percent compliance with dissolved oxygen standard (>6 mg/l, >7 mg/l October-December) <sup>d</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                           | Total Phosphorus                   | Mean (mg/l)                                                                                        | 0.785    | 0.881                    | 0.881                                           | 0.898                            | 0.921                                           |
|                                           |                                    | Median (mg/l)                                                                                      | 0.748    | 0.844                    | 0.844                                           | 0.862                            | 0.887                                           |
|                                           |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)                                 | 2        | 1                        | 1                                               | 1                                | 1                                               |
|                                           | Total Nitrogen                     | Mean (mg/l)                                                                                        | 2.27     | 2.30                     | 2.30                                            | 1.34                             | 1.29                                            |
|                                           |                                    | Median (mg/l)                                                                                      | 2.24     | 2.27                     | 2.27                                            | 1.29                             | 1.24                                            |
|                                           | Total Suspended Solids             | Mean (mg/l)                                                                                        | 7.1      | 7.0                      | 7.0                                             | 5.7                              | 5.7                                             |
|                                           |                                    | Median (mg/l)                                                                                      | 4.4      | 4.4                      | 4.4                                             | 3.4                              | 3.4                                             |
|                                           | Copper                             | Mean (mg/l)                                                                                        | 0.0037   | 0.0038                   | 0.0038                                          | 0.0035                           | 0.0036                                          |
|                                           |                                    | Median (mg/l)                                                                                      | 0.0025   | 0.0026                   | 0.0026                                          | 0.0023                           | 0.0023                                          |

|                     |                                     |                                                                                                    |          |                          | Condition                                       |                                  |                                                 |
|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator          | Statistic                                                                                          | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-16               | Fecal Coliform Bacteria<br>(annual) | Mean (cells per 100 ml)                                                                            | 3,613    | 4,229                    | 4,229                                           | 2,664                            | 2,625                                           |
| Chambers Creek      |                                     | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 0        | 0                        | 0                                               | 75                               | 75                                              |
|                     |                                     | Geometric mean (cells per 100 ml)                                                                  | 2,095    | 2,277                    | 2,277                                           | 285                              | 272                                             |
|                     |                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 127                              | 141                                             |
|                     | Fecal Coliform Bacteria             | Mean (cells per 100 ml)                                                                            | 3,982    | 4,863                    | 4,863                                           | 2,694                            | 2,677                                           |
|                     | (May-September: 153<br>days total)  | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 0        | 0                        | 0                                               | 85                               | 85                                              |
|                     |                                     | Geometric mean (cells per 100 ml)                                                                  | 2,418    | 2,684                    | 2,684                                           | 250                              | 240                                             |
|                     |                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 62                               | 71                                              |
|                     | Dissolved Oxygen                    | Mean (mg/l)                                                                                        | 10.7     | 10.7                     | 10.7                                            | 10.7                             | 10.6                                            |
|                     |                                     | Median (mg/l)                                                                                      | 10.7     | 10.7                     | 10.7                                            | 10.7                             | 10.7                                            |
|                     |                                     | Percent compliance with dissolved oxygen standard (>6 mg/l, >7 mg/l October-December) <sup>d</sup> | 86       | 86                       | 86                                              | 85                               | 85                                              |
|                     | Total Phosphorus                    | Mean (mg/l)                                                                                        | 0.038    | 0.037                    | 0.037                                           | 0.031                            | 0.031                                           |
|                     |                                     | Median (mg/l)                                                                                      | 0.012    | 0.012                    | 0.012                                           | 0.009                            | 0.009                                           |
|                     |                                     | Percent compliance with recommended phosphorus standard (0.1 mg/l)                                 | 92       | 92                       | 92                                              | 93                               | 93                                              |
|                     | Total Nitrogen                      | Mean (mg/l)                                                                                        | 2.36     | 2.35                     | 2.35                                            | 1.43                             | 1.35                                            |
|                     |                                     | Median (mg/l)                                                                                      | 2.29     | 2.29                     | 2.29                                            | 1.37                             | 1.29                                            |
|                     | Total Suspended Solids              | Mean (mg/l)                                                                                        | 19.7     | 19.5                     | 19.5                                            | 15.5                             | 15.3                                            |
|                     |                                     | Median (mg/l)                                                                                      | 14.9     | 14.9                     | 14.9                                            | 12.0                             | 12.0                                            |
|                     | Copper                              | Mean (mg/l)                                                                                        | 0.0023   | 0.0023                   | 0.0023                                          | 0.0020                           | 0.0020                                          |
|                     |                                     | Median (mg/l)                                                                                      | 0.0013   | 0.0013                   | 0.0013                                          | 0.0010                           | 0.0010                                          |

|                     |                                                               |                                                                                                    |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator                                    | Statistic                                                                                          | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-17               | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                                            | 3,637    | 4,129                    | 4,129                                           | 2,798                            | 2,749                                           |
| Melius Creek        | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 0        | 0                        | 0                                               | 75                               | 75                                              |
|                     |                                                               | Geometric mean (cells per 100 ml)                                                                  | 1,937    | 2,063                    | 2,063                                           | 260                              | 248                                             |
|                     |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 157                              | 169                                             |
|                     | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                                            | 3,328    | 4,021                    | 4,021                                           | 2,248                            | 2,219                                           |
|                     |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)                             | 1        | 1                        | 1                                               | 87                               | 87                                              |
|                     |                                                               | Geometric mean (cells per 100 ml)                                                                  | 1,985    | 2,170                    | 2,170                                           | 190                              | 180                                             |
|                     |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml)                            | 0        | 0                        | 0                                               | 89                               | 97                                              |
|                     | Dissolved Oxygen                                              | Mean (mg/l)                                                                                        | 11.1     | 11.1                     | 11.1                                            | 11.1                             | 11.1                                            |
|                     |                                                               | Median (mg/l)                                                                                      | 11.1     | 11.1                     | 11.1                                            | 11.1                             | 11.1                                            |
|                     |                                                               | Percent compliance with dissolved oxygen standard (>6 mg/l, >7 mg/l October-December) <sup>d</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                                              | Mean (mg/l)                                                                                        | 0.037    | 0.037                    | 0.037                                           | 0.032                            | 0.032                                           |
|                     |                                                               | Median (mg/l)                                                                                      | 0.011    | 0.011                    | 0.011                                           | 0.009                            | 0.009                                           |
|                     |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)                                 | 91       | 91                       | 91                                              | 92                               | 92                                              |
|                     | Total Nitrogen                                                | Mean (mg/l)                                                                                        | 1.97     | 1.97                     | 1.97                                            | 1.17                             | 1.12                                            |
|                     |                                                               | Median (mg/l)                                                                                      | 1.93     | 1.93                     | 1.93                                            | 1.12                             | 1.06                                            |
|                     | Total Suspended Solids                                        | Mean (mg/l)                                                                                        | 10.8     | 10.7                     | 10.7                                            | 8.3                              | 8.2                                             |
|                     |                                                               | Median (mg/l)                                                                                      | 6.4      | 6.4                      | 6.4                                             | 4.6                              | 4.7                                             |
|                     | Copper                                                        | Mean (mg/l)                                                                                        | 0.0025   | 0.0025                   | 0.0025                                          | 0.0022                           | 0.0023                                          |
|                     |                                                               | Median (mg/l)                                                                                      | 0.0014   | 0.0014                   | 0.0014                                          | 0.0010                           | 0.0011                                          |

|                     |                                 |                                                                         | Condition |                          |                                                 |                                  |                                                 |  |
|---------------------|---------------------------------|-------------------------------------------------------------------------|-----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|--|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing  | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |  |
| ML-18               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,460     | 4,105                    | 4,105                                           | 2,649                            | 2,611                                           |  |
| Batavia Creek       | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 1         | 0                        | 0                                               | 71                               | 72                                              |  |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 2,091     | 2,296                    | 2,296                                           | 302                              | 289                                             |  |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0         | 0                        | 0                                               | 121                              | 135                                             |  |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,302     | 4,133                    | 4,133                                           | 2,336                            | 2,314                                           |  |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 1         | 1                        | 1                                               | 85                               | 85                                              |  |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 2,037     | 2,294                    | 2,294                                           | 215                              | 205                                             |  |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0         | 0                        | 0                                               | 67                               | 79                                              |  |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.0      | 11.0                     | 11.0                                            | 11.0                             | 11.0                                            |  |
|                     |                                 | Median (mg/l)                                                           | 11.0      | 11.0                     | 11.0                                            | 11.0                             | 11.1                                            |  |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100       | 100                      | 100                                             | 100                              | 100                                             |  |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.040     | 0.040                    | 0.040                                           | 0.034                            | 0.034                                           |  |
|                     |                                 | Median (mg/l)                                                           | 0.012     | 0.012                    | 0.012                                           | 0.009                            | 0.009                                           |  |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 90        | 90                       | 90                                              | 91                               | 92                                              |  |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 2.31      | 2.30                     | 2.30                                            | 1.37                             | 1.29                                            |  |
|                     |                                 | Median (mg/l)                                                           | 2.27      | 2.26                     | 2.26                                            | 1.31                             | 1.24                                            |  |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 13.4      | 13.2                     | 13.2                                            | 9.9                              | 9.9                                             |  |
|                     |                                 | Median (mg/l)                                                           | 7.4       | 7.4                      | 7.4                                             | 5.2                              | 5.3                                             |  |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0025    | 0.0025                   | 0.0025                                          | 0.0021                           | 0.0021                                          |  |
|                     |                                 | Median (mg/l)                                                           | 0.0014    | 0.0014                   | 0.0014                                          | 0.0010                           | 0.0010                                          |  |

|                                       |                                    |                                                                          |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------------|------------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                   | Water Quality<br>Indicator         | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-20                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 2,944    | 3,369                    | 3,369                                           | 1,487                            | 1,450                                           |
| Silver Creek<br>(Sheboygan<br>County) | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)   | 3        | 3                        | 3                                               | 73                               | 73                                              |
| ,,                                    |                                    | Geometric mean (cells per 100 ml)                                        | 1,341    | 1,347                    | 1,347                                           | 348                              | 330                                             |
|                                       |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 0        | 0                        | 0                                               | 44                               | 60                                              |
|                                       | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 2,287    | 2,744                    | 2,744                                           | 1,113                            | 1,086                                           |
|                                       | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 6        | 7                        | 7                                               | 87                               | 87                                              |
|                                       |                                    | Geometric mean (cells per 100 ml)                                        | 1,125    | 1,149                    | 1,149                                           | 278                              | 264                                             |
|                                       |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 0        | 0                        | 0                                               | 15                               | 25                                              |
|                                       | Dissolved Oxygen                   | Mean (mg/l)                                                              | 11.3     | 11.3                     | 11.3                                            | 11.3                             | 11.3                                            |
|                                       |                                    | Median (mg/l)                                                            | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |
|                                       |                                    | Percent compliance with dissolved oxygen standard (>3 mg/l) <sup>e</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                       | Total Phosphorus                   | Mean (mg/l)                                                              | 0.111    | 0.120                    | 0.120                                           | 0.116                            | 0.116                                           |
|                                       |                                    | Median (mg/l)                                                            | 0.091    | 0.102                    | 0.102                                           | 0.099                            | 0.099                                           |
|                                       |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 64       | 57                       | 57                                              | 59                               | 59                                              |
|                                       | Total Nitrogen                     | Mean (mg/l)                                                              | 1.50     | 1.43                     | 1.43                                            | 1.31                             | 1.21                                            |
|                                       |                                    | Median (mg/l)                                                            | 1.46     | 1.39                     | 1.39                                            | 1.27                             | 1.17                                            |
|                                       | Total Suspended Solids             | Mean (mg/l)                                                              | 8.8      | 8.9                      | 8.9                                             | 8.7                              | 8.4                                             |
|                                       |                                    | Median (mg/l)                                                            | 4.3      | 4.5                      | 4.5                                             | 4.4                              | 4.3                                             |
|                                       | Copper                             | Mean (mg/l)                                                              | 0.0056   | 0.0060                   | 0.0060                                          | 0.0056                           | 0.0057                                          |
|                                       |                                    | Median (mg/l)                                                            | 0.0047   | 0.0052                   | 0.0052                                          | 0.0048                           | 0.0049                                          |

|                                       |                                    |                                                                         | Condition |                          |                                                 |                                  |                                                 |  |
|---------------------------------------|------------------------------------|-------------------------------------------------------------------------|-----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|--|
| Assessment<br>Point                   | Water Quality<br>Indicator         | Statistic                                                               | Existing  | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |  |
| ML-21                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,909     | 3,321                    | 3,321                                           | 1,622                            | 1,585                                           |  |
| Silver Creek<br>(Sheboygan<br>County) | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 3         | 3                        | 3                                               | 70                               | 70                                              |  |
| ,,                                    |                                    | Geometric mean (cells per 100 ml)                                       | 1,439     | 1,466                    | 1,466                                           | 369                              | 351                                             |  |
|                                       |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0         | 0                        | 0                                               | 54                               | 68                                              |  |
|                                       | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,277     | 2,667                    | 2,667                                           | 1,190                            | 1,165                                           |  |
|                                       | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 6         | 7                        | 7                                               | 84                               | 84                                              |  |
|                                       |                                    | Geometric mean (cells per 100 ml)                                       | 1,169     | 1,195                    | 1,195                                           | 265                              | 252                                             |  |
|                                       |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0         | 0                        | 0                                               | 30                               | 37                                              |  |
|                                       | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.3      | 11.3                     | 11.3                                            | 11.3                             | 11.3                                            |  |
|                                       |                                    | Median (mg/l)                                                           | 11.4      | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |  |
|                                       |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100       | 100                      | 100                                             | 100                              | 100                                             |  |
|                                       | Total Phosphorus                   | Mean (mg/l)                                                             | 0.101     | 0.109                    | 0.109                                           | 0.106                            | 0.106                                           |  |
|                                       |                                    | Median (mg/l)                                                           | 0.078     | 0.087                    | 0.087                                           | 0.085                            | 0.086                                           |  |
|                                       |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 70        | 65                       | 65                                              | 66                               | 66                                              |  |
|                                       | Total Nitrogen                     | Mean (mg/l)                                                             | 1.66      | 1.59                     | 1.59                                            | 1.46                             | 1.35                                            |  |
|                                       |                                    | Median (mg/l)                                                           | 1.61      | 1.55                     | 1.55                                            | 1.42                             | 1.31                                            |  |
|                                       | Total Suspended Solids             | Mean (mg/l)                                                             | 8.8       | 8.5                      | 8.5                                             | 8.4                              | 8.1                                             |  |
|                                       |                                    | Median (mg/l)                                                           | 4.3       | 4.3                      | 4.3                                             | 4.2                              | 4.1                                             |  |
|                                       | Copper                             | Mean (mg/l)                                                             | 0.0053    | 0.0057                   | 0.0057                                          | 0.0053                           | 0.0054                                          |  |
|                                       |                                    | Median (mg/l)                                                           | 0.0043    | 0.0047                   | 0.0047                                          | 0.0044                           | 0.0045                                          |  |

|                     |                                                               |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator                                    | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-22               | Fecal Coliform Bacteria                                       | Mean (cells per 100 ml)                                                 | 3,751    | 4,536                    | 4,536                                           | 3,458                            | 3,407                                           |
| Stony Creek         | (annual)                                                      | Percent compliance with single sample standard (<400 cells per 100 ml)  | 0        | 0                        | 0                                               | 43                               | 43                                              |
|                     |                                                               | Geometric mean (cells per 100 ml)                                       | 2,124    | 2,392                    | 2,392                                           | 805                              | 788                                             |
|                     |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 0                        | 0                                               | 10                               | 11                                              |
|                     | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 3,240    | 4,241                    | 4,241                                           | 2,964                            | 2,936                                           |
|                     |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 1        | 1                        | 1                                               | 53                               | 53                                              |
|                     |                                                               | Geometric mean (cells per 100 ml)                                       | 1,856    | 2,163                    | 2,163                                           | 554                              | 545                                             |
|                     |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 0                        | 0                                               | 4                                | 5                                               |
|                     | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 11.4     | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |
|                     |                                                               | Median (mg/l)                                                           | 11.5     | 11.5                     | 11.5                                            | 11.5                             | 11.5                                            |
|                     |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.044    | 0.044                    | 0.044                                           | 0.041                            | 0.040                                           |
|                     |                                                               | Median (mg/l)                                                           | 0.015    | 0.015                    | 0.015                                           | 0.013                            | 0.013                                           |
|                     |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 88       | 89                       | 89                                              | 89                               | 90                                              |
|                     | Total Nitrogen                                                | Mean (mg/l)                                                             | 2.02     | 2.02                     | 2.02                                            | 1.50                             | 1.41                                            |
|                     |                                                               | Median (mg/l)                                                           | 2.00     | 1.99                     | 1.99                                            | 1.46                             | 1.37                                            |
|                     | Total Suspended Solids                                        | Mean (mg/l)                                                             | 16.1     | 16.0                     | 16.0                                            | 13.9                             | 13.7                                            |
|                     |                                                               | Median (mg/l)                                                           | 10.0     | 10.0                     | 10.0                                            | 8.4                              | 8.3                                             |
|                     | Copper                                                        | Mean (mg/l)                                                             | 0.0028   | 0.0028                   | 0.0028                                          | 0.0026                           | 0.0027                                          |
|                     |                                                               | Median (mg/l)                                                           | 0.0016   | 0.0016                   | 0.0016                                          | 0.0014                           | 0.0014                                          |

|                                           |                                    |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|-------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                       | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-23                                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 2,707    | 2,773                    | 2,773                                                       | 1,886                            | 1,858                                           |
| North Branch of<br>the Milwaukee<br>River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 7        | 7                        | 7                                                           | 53                               | 54                                              |
|                                           |                                    | Geometric mean (cells per 100 ml)                                       | 1,447    | 1,469                    | 1,469                                                       | 508                              | 494                                             |
|                                           |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 3                        | 3                                                           | 73                               | 79                                              |
|                                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,718    | 1,756                    | 1,756                                                       | 1,070                            | 1,057                                           |
|                                           | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 16       | 15                       | 15                                                          | 74                               | 74                                              |
|                                           |                                    | Geometric mean (cells per 100 ml)                                       | 892      | 904                      | 904                                                         | 235                              | 227                                             |
|                                           |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 3                        | 3                                                           | 66                               | 72                                              |
|                                           | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.6     | 11.6                     | 11.6                                                        | 11.6                             | 11.6                                            |
|                                           |                                    | Median (mg/l)                                                           | 11.7     | 11.7                     | 11.7                                                        | 11.7                             | 11.7                                            |
|                                           |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                           | Total Phosphorus                   | Mean (mg/l)                                                             | 0.206    | 0.212                    | 0.212                                                       | 0.217                            | 0.222                                           |
|                                           |                                    | Median (mg/l)                                                           | 0.185    | 0.190                    | 0.190                                                       | 0.197                            | 0.202                                           |
|                                           |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 40       | 39                       | 39                                                          | 38                               | 37                                              |
|                                           | Total Nitrogen                     | Mean (mg/l)                                                             | 1.77     | 1.76                     | 1.76                                                        | 1.36                             | 1.27                                            |
|                                           |                                    | Median (mg/l)                                                           | 1.73     | 1.72                     | 1.72                                                        | 1.32                             | 1.23                                            |
|                                           | Total Suspended Solids             | Mean (mg/l)                                                             | 7.9      | 7.9                      | 7.9                                                         | 7.3                              | 7.2                                             |
|                                           |                                    | Median (mg/l)                                                           | 4.6      | 4.6                      | 4.6                                                         | 4.2                              | 4.1                                             |
|                                           | Copper                             | Mean (mg/l)                                                             | 0.0036   | 0.0035                   | 0.0035                                                      | 0.0033                           | 0.0034                                          |
|                                           |                                    | Median (mg/l)                                                           | 0.0027   | 0.0026                   | 0.0026                                                      | 0.0024                           | 0.0024                                          |

|                                        |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|----------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                    | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-24                                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,678    | 1,497                    | 1,497                                           | 964                              | 926                                             |
| Fredonia,<br>USGS Sampling<br>Location | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 32       | 32                       | 32                                              | 51                               | 52                                              |
| (4086360)                              |                                    | Geometric mean (cells per 100 ml)                                       | 777      | 722                      | 722                                             | 290                              | 274                                             |
|                                        |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 52       | 52                       | 52                                              | 141                              | 145                                             |
|                                        | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 673      | 664                      | 664                                             | 433                              | 417                                             |
|                                        | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 63       | 64                       | 64                                              | 77                               | 77                                              |
|                                        |                                    | Geometric mean (cells per 100 ml)                                       | 311      | 305                      | 305                                             | 90                               | 84                                              |
|                                        |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 49       | 49                       | 49                                              | 118                              | 121                                             |
|                                        | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.5     | 11.5                     | 11.5                                            | 11.5                             | 11.5                                            |
|                                        |                                    | Median (mg/l)                                                           | 11.6     | 11.6                     | 11.6                                            | 11.6                             | 11.5                                            |
|                                        |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                              | 99                               | 99                                              |
|                                        | Total Phosphorus                   | Mean (mg/l)                                                             | 0.129    | 0.136                    | 0.136                                           | 0.132                            | 0.133                                           |
|                                        |                                    | Median (mg/l)                                                           | 0.112    | 0.121                    | 0.121                                           | 0.120                            | 0.121                                           |
|                                        |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 49       | 45                       | 45                                              | 48                               | 48                                              |
|                                        | Total Nitrogen                     | Mean (mg/l)                                                             | 1.73     | 1.67                     | 1.67                                            | 1.25                             | 1.17                                            |
|                                        |                                    | Median (mg/l)                                                           | 1.67     | 1.62                     | 1.62                                            | 1.21                             | 1.13                                            |
|                                        | Total Suspended Solids             | Mean (mg/l)                                                             | 11.9     | 11.7                     | 11.7                                            | 11.1                             | 10.9                                            |
|                                        |                                    | Median (mg/l)                                                           | 7.5      | 7.4                      | 7.4                                             | 7.0                              | 6.9                                             |
|                                        | Copper                             | Mean (mg/l)                                                             | 0.0048   | 0.0051                   | 0.0051                                          | 0.0048                           | 0.0049                                          |
|                                        |                                    | Median (mg/l)                                                           | 0.0045   | 0.0048                   | 0.0048                                          | 0.0046                           | 0.0046                                          |

|                                |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point            | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-25                          | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,154    | 1,066                    | 1,066                                           | 512                              | 486                                             |
| Upper Lower<br>Milwaukee River | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 42       | 42                       | 42                                              | 60                               | 61                                              |
|                                |                                    | Geometric mean (cells per 100 ml)                                       | 382      | 364                      | 364                                             | 138                              | 129                                             |
|                                |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 128      | 130                      | 130                                             | 180                              | 183                                             |
|                                | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 370      | 360                      | 360                                             | 204                              | 193                                             |
|                                | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 75       | 75                       | 75                                              | 83                               | 84                                              |
|                                |                                    | Geometric mean (cells per 100 ml)                                       | 107      | 105                      | 105                                             | 38                               | 35                                              |
|                                |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 102      | 102                      | 102                                             | 128                              | 130                                             |
|                                | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.1     | 11.0                     | 11.0                                            | 10.9                             | 10.9                                            |
|                                |                                    | Median (mg/l)                                                           | 11.1     | 11.1                     | 11.1                                            | 10.9                             | 10.9                                            |
|                                |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                       | 98                                              | 98                               | 98                                              |
|                                | Total Phosphorus                   | Mean (mg/l)                                                             | 0.134    | 0.145                    | 0.145                                           | 0.141                            | 0.141                                           |
|                                |                                    | Median (mg/l)                                                           | 0.120    | 0.132                    | 0.132                                           | 0.131                            | 0.133                                           |
|                                |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 43       | 38                       | 38                                              | 39                               | 39                                              |
|                                | Total Nitrogen                     | Mean (mg/l)                                                             | 1.74     | 1.67                     | 1.67                                            | 1.29                             | 1.20                                            |
|                                |                                    | Median (mg/l)                                                           | 1.67     | 1.61                     | 1.61                                            | 1.24                             | 1.16                                            |
|                                | Total Suspended Solids             | Mean (mg/l)                                                             | 16.7     | 16.5                     | 16.5                                            | 15.7                             | 15.5                                            |
|                                |                                    | Median (mg/l)                                                           | 12.4     | 12.3                     | 12.3                                            | 11.7                             | 11.6                                            |
|                                | Copper                             | Mean (mg/l)                                                             | 0.0049   | 0.0053                   | 0.0053                                          | 0.0049                           | 0.0050                                          |
|                                |                                    | Median (mg/l)                                                           | 0.0048   | 0.0051                   | 0.0051                                          | 0.0048                           | 0.0049                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-27               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,887    | 1,793                    | 1,793                                           | 771                              | 744                                             |
| Cedar Creek         | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 17       | 19                       | 19                                              | 67                               | 68                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 938      | 909                      | 909                                             | 226                              | 214                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 1        | 2                        | 2                                               | 176                              | 183                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,143    | 1,090                    | 1,090                                           | 458                              | 443                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 31       | 32                       | 32                                              | 83                               | 83                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 626      | 612                      | 612                                             | 119                              | 112                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 1        | 1                        | 1                                               | 127                              | 129                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.7     | 10.8                     | 10.8                                            | 10.8                             | 10.8                                            |
|                     |                                 | Median (mg/l)                                                           | 10.8     | 10.8                     | 10.8                                            | 10.8                             | 10.8                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.149    | 0.160                    | 0.160                                           | 0.143                            | 0.140                                           |
|                     |                                 | Median (mg/l)                                                           | 0.129    | 0.142                    | 0.142                                           | 0.130                            | 0.128                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 35       | 29                       | 29                                              | 37                               | 38                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.74     | 1.68                     | 1.68                                            | 1.01                             | 0.94                                            |
|                     |                                 | Median (mg/l)                                                           | 1.66     | 1.60                     | 1.60                                            | 0.96                             | 0.89                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 11.7     | 11.4                     | 11.4                                            | 9.9                              | 9.7                                             |
|                     |                                 | Median (mg/l)                                                           | 9.1      | 8.9                      | 8.9                                             | 7.8                              | 7.6                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0043   | 0.0046                   | 0.0046                                          | 0.0040                           | 0.0040                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0037   | 0.0040                   | 0.0040                                          | 0.0035                           | 0.0035                                          |

|                                                        |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                                    | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-29                                                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,107    | 964                      | 964                                             | 448                              | 415                                             |
| Milwaukee River<br>at the Milwaukee-<br>Ozaukee County | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 42       | 43                       | 43                                              | 62                               | 64                                              |
| Line                                                   |                                 | Geometric mean (cells per 100 ml)                                       | 385      | 339                      | 339                                             | 129                              | 117                                             |
|                                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 127      | 136                      | 136                                             | 184                              | 194                                             |
|                                                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 358      | 319                      | 319                                             | 178                              | 163                                             |
|                                                        | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 76                       | 76                                              | 84                               | 85                                              |
|                                                        |                                 | Geometric mean (cells per 100 ml)                                       | 112      | 99                       | 99                                              | 36                               | 33                                              |
|                                                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 103      | 106                      | 106                                             | 131                              | 134                                             |
|                                                        | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.0     | 11.0                     | 11.0                                            | 10.9                             | 10.8                                            |
|                                                        |                                 | Median (mg/l)                                                           | 11.1     | 11.0                     | 11.0                                            | 10.9                             | 10.8                                            |
|                                                        |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                       | 98                                              | 98                               | 98                                              |
|                                                        | Total Phosphorus                | Mean (mg/l)                                                             | 0.132    | 0.142                    | 0.142                                           | 0.136                            | 0.136                                           |
|                                                        |                                 | Median (mg/l)                                                           | 0.119    | 0.131                    | 0.131                                           | 0.128                            | 0.129                                           |
|                                                        |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 41       | 34                       | 34                                              | 37                               | 38                                              |
|                                                        | Total Nitrogen                  | Mean (mg/l)                                                             | 1.69     | 1.62                     | 1.62                                            | 1.19                             | 1.11                                            |
|                                                        |                                 | Median (mg/l)                                                           | 1.62     | 1.56                     | 1.56                                            | 1.15                             | 1.07                                            |
|                                                        | Total Suspended Solids          | Mean (mg/l)                                                             | 17.8     | 17.5                     | 17.5                                            | 16.4                             | 16.2                                            |
|                                                        |                                 | Median (mg/l)                                                           | 13.9     | 13.6                     | 13.6                                            | 12.9                             | 12.8                                            |
|                                                        | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0053                   | 0.0053                                          | 0.0049                           | 0.0050                                          |
|                                                        |                                 | Median (mg/l)                                                           | 0.0048   | 0.0052                   | 0.0052                                          | 0.0048                           | 0.0049                                          |

|                                            |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                        | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-30                                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,359    | 1,211                    | 1,211                                           | 647                              | 532                                             |
| Milwaukee River Downstream of Beaver Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 42       | 43                       | 43                                              | 54                               | 56                                              |
|                                            |                                 | Geometric mean (cells per 100 ml)                                       | 442      | 393                      | 393                                             | 167                              | 133                                             |
|                                            |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 120      | 130                      | 130                                             | 177                              | 188                                             |
|                                            | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 543      | 532                      | 532                                             | 423                              | 354                                             |
|                                            | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 73                       | 73                                              | 78                               | 79                                              |
|                                            |                                 | Geometric mean (cells per 100 ml)                                       | 143      | 130                      | 130                                             | 54                               | 40                                              |
|                                            |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 94       | 99                       | 99                                              | 128                              | 131                                             |
|                                            | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.0     | 10.9                     | 10.9                                            | 10.9                             | 10.8                                            |
|                                            |                                 | Median (mg/l)                                                           | 11.0     | 11.0                     | 11.0                                            | 10.8                             | 10.8                                            |
|                                            |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 99                       | 99                                              | 98                               | 98                                              |
|                                            | Total Phosphorus                | Mean (mg/l)                                                             | 0.134    | 0.143                    | 0.143                                           | 0.134                            | 0.133                                           |
|                                            |                                 | Median (mg/l)                                                           | 0.122    | 0.132                    | 0.132                                           | 0.126                            | 0.126                                           |
|                                            |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 39       | 34                       | 34                                              | 37                               | 38                                              |
|                                            | Total Nitrogen                  | Mean (mg/l)                                                             | 1.67     | 1.58                     | 1.58                                            | 1.16                             | 1.09                                            |
|                                            |                                 | Median (mg/l)                                                           | 1.60     | 1.52                     | 1.52                                            | 1.12                             | 1.05                                            |
|                                            | Total Suspended Solids          | Mean (mg/l)                                                             | 20.7     | 19.9                     | 19.9                                            | 18.9                             | 18.6                                            |
|                                            |                                 | Median (mg/l)                                                           | 16.1     | 15.6                     | 15.6                                            | 14.9                             | 14.6                                            |
|                                            | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0052                   | 0.0052                                          | 0.0047                           | 0.0048                                          |
|                                            |                                 | Median (mg/l)                                                           | 0.0048   | 0.0051                   | 0.0051                                          | 0.0046                           | 0.0047                                          |

|                     |                                 |                                                                                       |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|---------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                             | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-31               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                               | 7,135    | 6,898                    | 6,898                                           | 2,956                            | 1,814                                           |
| Indian Creek        | (annual)                        | Percent compliance with single sample standard (<2000 cells per 100 ml) <sup>f</sup>  | 57       | 56                       | 56                                              | 65                               | 73                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                     | 614      | 649                      | 649                                             | 307                              | 180                                             |
|                     |                                 | Days of compliance with geometric mean standard (<1000 cells per 100 ml) <sup>b</sup> | 214      | 215                      | 215                                             | 267                              | 315                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                               | 2,587    | 3,275                    | 3,275                                           | 2,615                            | 2,071                                           |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2000 cells per 100 ml) <sup>f</sup>  | 78       | 75                       | 75                                              | 77                               | 79                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                     | 130      | 159                      | 159                                             | 103                              | 70                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1000 cells per 100 ml) <sup>f</sup> | 138      | 137                      | 137                                             | 146                              | 150                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                           | 8.0      | 8.1                      | 8.1                                             | 7.8                              | 7.7                                             |
|                     |                                 | Median (mg/l)                                                                         | 7.8      | 8.0                      | 8.0                                             | 7.7                              | 7.6                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) f                         | 95       | 95                       | 95                                              | 95                               | 95                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                                           | 0.128    | 0.106                    | 0.106                                           | 0.075                            | 0.071                                           |
|                     |                                 | Median (mg/l)                                                                         | 0.092    | 0.075                    | 0.075                                           | 0.051                            | 0.048                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                    | 55       | 60                       | 60                                              | 73                               | 75                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                           | 1.07     | 0.99                     | 0.99                                            | 0.85                             | 0.86                                            |
|                     |                                 | Median (mg/l)                                                                         | 0.98     | 0.93                     | 0.93                                            | 0.82                             | 0.83                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                           | 41.5     | 34.0                     | 34.0                                            | 37.1                             | 37.1                                            |
|                     |                                 | Median (mg/l)                                                                         | 32.2     | 28.0                     | 28.0                                            | 29.1                             | 29.1                                            |
|                     | Copper                          | Mean (mg/l)                                                                           | 0.0073   | 0.0057                   | 0.0057                                          | 0.0041                           | 0.0041                                          |
|                     |                                 | Median (mg/l)                                                                         | 0.0056   | 0.0045                   | 0.0045                                          | 0.0031                           | 0.0031                                          |

|                     |                                 |                                                                                       |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|---------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                             | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-32               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                               | 3,770    | 4,405                    | 4,400                                           | 1,913                            | 1,168                                           |
| Lincoln Creek       | (annual)                        | Percent compliance with single sample standard (<2000 cells per 100 ml) <sup>f</sup>  | 55       | 51                       | 51                                              | 65                               | 80                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                     | 561      | 742                      | 741                                             | 403                              | 206                                             |
|                     |                                 | Days of compliance with geometric mean standard (<1000 cells per 100 ml) <sup>f</sup> | 200      | 184                      | 184                                             | 225                              | 297                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                               | 1,223    | 1,866                    | 1,860                                           | 1,505                            | 1,213                                           |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2000 cells per 100 ml) <sup>f</sup>  | 82       | 77                       | 77                                              | 79                               | 82                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                     | 106      | 162                      | 162                                             | 130                              | 69                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1000 cells per 100 ml) <sup>f</sup> | 135      | 129                      | 129                                             | 138                              | 150                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                           | 6.4      | 7.1                      | 7.1                                             | 6.5                              | 6.5                                             |
|                     |                                 | Median (mg/l)                                                                         | 6.3      | 7.0                      | 7.0                                             | 6.5                              | 6.5                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>f</sup>              | 90       | 95                       | 95                                              | 93                               | 93                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                                           | 0.260    | 0.231                    | 0.231                                           | 0.191                            | 0.185                                           |
|                     |                                 | Median (mg/l)                                                                         | 0.256    | 0.228                    | 0.228                                           | 0.188                            | 0.183                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                    | 5        | 7                        | 7                                               | 9                                | 11                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                           | 1.10     | 0.98                     | 0.98                                            | 0.82                             | 0.82                                            |
|                     |                                 | Median (mg/l)                                                                         | 1.09     | 0.98                     | 0.98                                            | 0.81                             | 0.81                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                           | 55.2     | 44.1                     | 44.1                                            | 48.7                             | 48.7                                            |
|                     |                                 | Median (mg/l)                                                                         | 49.8     | 39.9                     | 39.9                                            | 44.3                             | 44.3                                            |
|                     | Copper                          | Mean (mg/l)                                                                           | 0.0093   | 0.0075                   | 0.0075                                          | 0.0054                           | 0.0054                                          |
|                     |                                 | Median (mg/l)                                                                         | 0.0091   | 0.0074                   | 0.0074                                          | 0.0053                           | 0.0053                                          |

|                                                   |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                               | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-33                                             | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 1,559    | 1,483                    | 1,472                                           | 736                              | 553                                             |
| Milwaukee River<br>at Lincoln/<br>Estabrook Parks | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 43       | 43                       | 43                                              | 53                               | 56                                              |
|                                                   |                                    | Geometric mean (cells per 100 ml)                                       | 354      | 333                      | 333                                             | 185                              | 141                                             |
|                                                   |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 140      | 143                      | 143                                             | 173                              | 187                                             |
|                                                   | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 596      | 674                      | 653                                             | 515                              | 417                                             |
|                                                   | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 72                       | 72                                              | 76                               | 78                                              |
|                                                   |                                    | Geometric mean (cells per 100 ml)                                       | 84       | 83                       | 83                                              | 61                               | 45                                              |
|                                                   |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 107      | 107                      | 108                                             | 125                              | 130                                             |
|                                                   | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.8     | 10.8                     | 10.8                                            | 10.7                             | 10.7                                            |
|                                                   |                                    | Median (mg/l)                                                           | 10.9     | 10.9                     | 10.9                                            | 10.8                             | 10.8                                            |
|                                                   |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                       | 98                                              | 98                               | 98                                              |
|                                                   | Total Phosphorus                   | Mean (mg/l)                                                             | 0.139    | 0.145                    | 0.145                                           | 0.134                            | 0.132                                           |
|                                                   |                                    | Median (mg/l)                                                           | 0.128    | 0.135                    | 0.135                                           | 0.127                            | 0.126                                           |
|                                                   |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 35       | 32                       | 32                                              | 35                               | 37                                              |
|                                                   | Total Nitrogen                     | Mean (mg/l)                                                             | 1.63     | 1.54                     | 1.54                                            | 1.14                             | 1.07                                            |
|                                                   |                                    | Median (mg/l)                                                           | 1.57     | 1.49                     | 1.49                                            | 1.10                             | 1.04                                            |
|                                                   | Total Suspended Solids             | Mean (mg/l)                                                             | 24.2     | 22.4                     | 22.4                                            | 21.9                             | 21.7                                            |
|                                                   |                                    | Median (mg/l)                                                           | 18.7     | 17.6                     | 17.6                                            | 17.1                             | 16.9                                            |
|                                                   | Copper                             | Mean (mg/l)                                                             | 0.0052   | 0.0053                   | 0.0053                                          | 0.0047                           | 0.0048                                          |
|                                                   |                                    | Median (mg/l)                                                           | 0.0051   | 0.0052                   | 0.0052                                          | 0.0047                           | 0.0047                                          |

|                                                  |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                              | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| ML-34                                            | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 1,380    | 1,275                    | 1,263                                           | 628                              | 471                                             |
| Milwaukee River<br>at the Former<br>North Avenue | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 76                       | 76                                              | 94                               | 98                                              |
| Dam                                              |                                 | Geometric mean (cells per 100 ml)                                       | 311      | 293                      | 292                                             | 155                              | 103                                             |
|                                                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 236      | 242                      | 242                                             | 342                              | 365                                             |
|                                                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 515      | 557                      | 533                                             | 426                              | 353                                             |
|                                                  | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 92       | 92                       | 92                                              | 94                               | 96                                              |
|                                                  |                                 | Geometric mean (cells per 100 ml)                                       | 73       | 73                       | 73                                              | 48                               | 28                                              |
|                                                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 145      | 147                      | 147                                             | 153                              | 153                                             |
|                                                  | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.6     | 10.6                     | 10.6                                            | 10.4                             | 10.4                                            |
|                                                  |                                 | Median (mg/l)                                                           | 10.6     | 10.6                     | 10.6                                            | 10.5                             | 10.4                                            |
|                                                  |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                                  | Total Phosphorus                | Mean (mg/l)                                                             | 0.169    | 0.173                    | 0.173                                           | 0.163                            | 0.161                                           |
|                                                  |                                 | Median (mg/l)                                                           | 0.160    | 0.165                    | 0.165                                           | 0.158                            | 0.157                                           |
|                                                  |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 24       | 22                       | 22                                              | 22                               | 22                                              |
|                                                  | Total Nitrogen                  | Mean (mg/l)                                                             | 1.60     | 1.52                     | 1.52                                            | 1.13                             | 1.06                                            |
|                                                  |                                 | Median (mg/l)                                                           | 1.53     | 1.46                     | 1.46                                            | 1.09                             | 1.03                                            |
|                                                  | Total Suspended Solids          | Mean (mg/l)                                                             | 24.8     | 22.6                     | 22.6                                            | 22.2                             | 22.0                                            |
|                                                  |                                 | Median (mg/l)                                                           | 19.3     | 17.8                     | 17.8                                            | 17.4                             | 17.3                                            |
|                                                  | Copper                          | Mean (mg/l)                                                             | 0.0051   | 0.0051                   | 0.0051                                          | 0.0046                           | 0.0046                                          |
|                                                  |                                 | Median (mg/l)                                                           | 0.0052   | 0.0053                   | 0.0053                                          | 0.0045                           | 0.0046                                          |

### **Table N-3 Footnotes**

<sup>a</sup>In certain limited cases, relatively minor anomalies in concentrations or percents compliance may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a slight decrease in water quality under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in water quality occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters in the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively insignificant anomalies in the comparative results.

<sup>b</sup>Five-Year LOP refers to a five-year recurrence interval level of protection against sanitary sewer overflows.

<sup>C</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

<sup>Q</sup>Under Chapter NR 102 of the Wisconsin Administrative Code and Wisconsin Trout Streams (1980), this assessment point is in a stream reach classified as capable of supporting a coldwater biological community.

<sup>e</sup>Under Chapter NR 104 of the Wisconsin Administrative Code, this assessment point is in a stream reach classified as capable of supporting limited forage fish.

<sup>f</sup>Variance Standard in Chapter NR 104 of the Wisconsin Administrative Code.

Source: Tetra Tech, Inc., and SEWRPC.

Table N-4

WATER QUALITY SUMMARY STATISTICS FOR THE RECOMMENDED PLAN: OAK CREEK WATERSHED<sup>a</sup>

|                     |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,905    | 3,983                    | 3,983                                                       | 2,603                            | 1,321                                           |
| Upper Oak Creek     | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 64                       | 64                                                          | 67                               | 72                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 541      | 508                      | 508                                                         | 346                              | 192                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 65       | 65                       | 65                                                          | 123                              | 231                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,012    | 1,713                    | 1,713                                                       | 1,079                            | 552                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 84       | 82                       | 82                                                          | 84                               | 87                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 256      | 264                      | 264                                                         | 181                              | 103                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 47       | 46                       | 46                                                          | 82                               | 141                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 8.4      | 8.2                      | 8.2                                                         | 8.2                              | 8.2                                             |
|                     |                                 | Median (mg/l)                                                           | 8.7      | 8.6                      | 8.6                                                         | 8.6                              | 8.6                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 77       | 73                       | 73                                                          | 73                               | 73                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.075    | 0.066                    | 0.066                                                       | 0.064                            | 0.063                                           |
|                     |                                 | Median (mg/l)                                                           | 0.031    | 0.025                    | 0.025                                                       | 0.025                            | 0.025                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 83       | 83                       | 83                                                          | 83                               | 84                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.52     | 0.89                     | 0.89                                                        | 0.88                             | 0.87                                            |
|                     |                                 | Median (mg/l)                                                           | 1.38     | 0.84                     | 0.84                                                        | 0.82                             | 0.82                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 13.7     | 7.4                      | 7.4                                                         | 7.9                              | 7.9                                             |
|                     |                                 | Median (mg/l)                                                           | 7.8      | 4.6                      | 4.6                                                         | 4.6                              | 4.6                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0038   | 0.0030                   | 0.0030                                                      | 0.0030                           | 0.0029                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0012   | 0.0008                   | 0.0008                                                      | 0.0008                           | 0.0008                                          |

|                              |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point          | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-2                         | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,987    | 4,199                    | 4,199                                           | 2,722                            | 1,385                                           |
| North Branch<br>of Oak Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 57       | 56                       | 56                                              | 60                               | 65                                              |
|                              |                                 | Geometric mean (cells per 100 ml)                                       | 611      | 568                      | 568                                             | 385                              | 213                                             |
|                              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 60       | 63                       | 63                                              | 108                              | 210                                             |
|                              | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,561    | 2,113                    | 2,113                                           | 1,289                            | 658                                             |
|                              | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 73                       | 73                                              | 76                               | 80                                              |
|                              |                                 | Geometric mean (cells per 100 ml)                                       | 289      | 281                      | 281                                             | 192                              | 109                                             |
|                              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 44       | 45                       | 45                                              | 71                               | 131                                             |
|                              | Dissolved Oxygen                | Mean (mg/l)                                                             | 8.8      | 8.6                      | 8.6                                             | 8.6                              | 8.6                                             |
|                              |                                 | Median (mg/l)                                                           | 8.6      | 8.3                      | 8.3                                             | 8.3                              | 8.3                                             |
|                              |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 82       | 80                       | 80                                              | 80                               | 80                                              |
|                              | Total Phosphorus                | Mean (mg/l)                                                             | 0.084    | 0.074                    | 0.074                                           | 0.072                            | 0.071                                           |
|                              |                                 | Median (mg/l)                                                           | 0.032    | 0.030                    | 0.030                                           | 0.030                            | 0.030                                           |
|                              |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 79                       | 79                                              | 80                               | 80                                              |
|                              | Total Nitrogen                  | Mean (mg/l)                                                             | 1.32     | 0.91                     | 0.91                                            | 0.91                             | 0.90                                            |
|                              |                                 | Median (mg/l)                                                           | 1.18     | 0.81                     | 0.81                                            | 0.80                             | 0.80                                            |
|                              | Total Suspended Solids          | Mean (mg/l)                                                             | 22.9     | 15.1                     | 15.1                                            | 15.7                             | 15.7                                            |
|                              |                                 | Median (mg/l)                                                           | 9        | 6.4                      | 6.4                                             | 6.4                              | 6.4                                             |
|                              | Copper                          | Mean (mg/l)                                                             | 0.0052   | 0.0040                   | 0.0040                                          | 0.0040                           | 0.0040                                          |
|                              |                                 | Median (mg/l)                                                           | 0.0014   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

|                                      |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                  | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-3                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 10,233   | 8,341                    | 8,341                                           | 5,436                            | 2,760                                           |
| Oak Creek Downstream of North Branch | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 55       | 55                       | 55                                              | 58                               | 63                                              |
| of Oak Creek                         |                                 | Geometric mean (cells per 100 ml)                                       | 1,191    | 1,070                    | 1,070                                           | 729                              | 402                                             |
|                                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 19                       | 19                                              | 36                               | 99                                              |
|                                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,750    | 3,834                    | 3,834                                           | 2,382                            | 1,216                                           |
|                                      | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 72       | 72                       | 72                                              | 76                               | 80                                              |
|                                      |                                 | Geometric mean (cells per 100 ml)                                       | 555      | 518                      | 518                                             | 355                              | 203                                             |
|                                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 15       | 16                       | 16                                              | 30                               | 69                                              |
|                                      | Dissolved Oxygen                | Mean (mg/l)                                                             | 10       | 9.7                      | 9.7                                             | 9.7                              | 9.7                                             |
|                                      |                                 | Median (mg/l)                                                           | 10.5     | 10.4                     | 10.4                                            | 10.4                             | 10.4                                            |
|                                      |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 83       | 81                       | 81                                              | 81                               | 81                                              |
|                                      | Total Phosphorus                | Mean (mg/l)                                                             | 0.086    | 0.076                    | 0.076                                           | 0.074                            | 0.073                                           |
|                                      |                                 | Median (mg/l)                                                           | 0.032    | 0.029                    | 0.029                                           | 0.029                            | 0.029                                           |
|                                      |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 79       | 79                       | 79                                              | 80                               | 80                                              |
|                                      | Total Nitrogen                  | Mean (mg/l)                                                             | 1.37     | 0.89                     | 0.89                                            | 0.88                             | 0.88                                            |
|                                      |                                 | Median (mg/l)                                                           | 1.24     | 0.81                     | 0.81                                            | 0.80                             | 0.80                                            |
|                                      | Total Suspended Solids          | Mean (mg/l)                                                             | 20.9     | 13.2                     | 13.2                                            | 13.7                             | 13.7                                            |
|                                      |                                 | Median (mg/l)                                                           | 8.5      | 5.9                      | 5.9                                             | 5.9                              | 5.9                                             |
|                                      | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0038                   | 0.0038                                          | 0.0037                           | 0.0037                                          |
|                                      |                                 | Median (mg/l)                                                           | 0.0013   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

|                     |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-4                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,953    | 6,856                    | 6,856                                                       | 4,447                            | 2,259                                           |
| Middle Oak Creek    | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 51       | 52                       | 52                                                          | 56                               | 62                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 1,041    | 956                      | 956                                                         | 648                              | 357                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 20       | 21                       | 21                                                          | 46                               | 125                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,103    | 2,780                    | 2,780                                                       | 1,672                            | 855                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 69       | 70                       | 70                                                          | 75                               | 79                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 463      | 453                      | 453                                                         | 308                              | 175                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 17                       | 17                                                          | 35                               | 87                                              |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.4      | 9.2                      | 9.2                                                         | 9.2                              | 9.2                                             |
|                     |                                 | Median (mg/l)                                                           | 9.6      | 9.5                      | 9.5                                                         | 9.5                              | 9.5                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 85       | 82                       | 82                                                          | 82                               | 82                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.081    | 0.073                    | 0.073                                                       | 0.071                            | 0.071                                           |
|                     |                                 | Median (mg/l)                                                           | 0.032    | 0.030                    | 0.030                                                       | 0.029                            | 0.029                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 79       | 80                       | 80                                                          | 81                               | 81                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.34     | 0.87                     | 0.87                                                        | 0.86                             | 0.86                                            |
|                     |                                 | Median (mg/l)                                                           | 1.17     | 0.76                     | 0.76                                                        | 0.76                             | 0.76                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 14.9     | 9.6                      | 9.6                                                         | 9.9                              | 9.9                                             |
|                     |                                 | Median (mg/l)                                                           | 7.9      | 5.3                      | 5.3                                                         | 5.3                              | 5.3                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0039                   | 0.0039                                                      | 0.0038                           | 0.0038                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0013   | 0.0010                   | 0.0010                                                      | 0.0010                           | 0.0010                                          |

Table N-4 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-5                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,666    | 6,634                    | 6,634                                           | 4,289                            | 2,178                                           |
| Middle<br>Oak Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 49       | 50                       | 50                                              | 55                               | 62                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 1,105    | 995                      | 995                                             | 664                              | 360                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 18       | 20                       | 20                                              | 40                               | 115                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,019    | 2,700                    | 2,700                                           | 1,595                            | 814                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 67                       | 67                                              | 73                               | 79                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 497      | 466                      | 466                                             | 309                              | 172                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 15       | 17                       | 17                                              | 32                               | 81                                              |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.5      | 9.3                      | 9.3                                             | 9.3                              | 9.3                                             |
|                     |                                 | Median (mg/l)                                                           | 9.6      | 9.7                      | 9.7                                             | 9.7                              | 9.7                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 93       | 90                       | 90                                              | 90                               | 90                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.083    | 0.078                    | 0.078                                           | 0.076                            | 0.075                                           |
|                     |                                 | Median (mg/l)                                                           | 0.033    | 0.032                    | 0.032                                           | 0.032                            | 0.032                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 79       | 78                       | 78                                              | 78                               | 78                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.32     | 0.89                     | 0.89                                            | 0.89                             | 0.88                                            |
|                     |                                 | Median (mg/l)                                                           | 1.15     | 0.78                     | 0.78                                            | 0.78                             | 0.77                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 14.1     | 9.1                      | 9.1                                             | 9.4                              | 9.4                                             |
|                     |                                 | Median (mg/l)                                                           | 7.2      | 4.6                      | 4.6                                             | 4.7                              | 4.7                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0051   | 0.0040                   | 0.0040                                          | 0.0039                           | 0.0039                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0014   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

|                                  |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|----------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point              | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-6                             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6,917    | 6,257                    | 6,257                                                       | 3,966                            | 2,035                                           |
| Mitchell Field<br>Drainage Ditch | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 31       | 56                       | 56                                                          | 62                               | 68                                              |
|                                  |                                 | Geometric mean (cells per 100 ml)                                       | 1,442    | 1,179                    | 1,179                                                       | 775                              | 457                                             |
|                                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 2                        | 2                                                           | 13                               | 66                                              |
|                                  | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,906    | 2,761                    | 2,761                                                       | 1,590                            | 836                                             |
|                                  | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 27       | 75                       | 75                                                          | 80                               | 84                                              |
|                                  |                                 | Geometric mean (cells per 100 ml)                                       | 806      | 644                      | 644                                                         | 411                              | 256                                             |
|                                  |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 0        | 0                        | 0                                                           | 5                                | 33                                              |
|                                  | Dissolved Oxygen                | Mean (mg/l)                                                             | 9        | 8.9                      | 8.9                                                         | 8.8                              | 8.9                                             |
|                                  |                                 | Median (mg/l)                                                           | 8.7      | 8.5                      | 8.5                                                         | 8.4                              | 8.5                                             |
|                                  |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 81       | 79                       | 79                                                          | 78                               | 79                                              |
|                                  | Total Phosphorus                | Mean (mg/l)                                                             | 0.076    | 0.073                    | 0.073                                                       | 0.070                            | 0.070                                           |
|                                  |                                 | Median (mg/l)                                                           | 0.046    | 0.048                    | 0.048                                                       | 0.046                            | 0.046                                           |
|                                  |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 84       | 81                       | 81                                                          | 82                               | 82                                              |
|                                  | Total Nitrogen                  | Mean (mg/l)                                                             | 1.57     | 1.08                     | 1.08                                                        | 1.00                             | 1.00                                            |
|                                  |                                 | Median (mg/l)                                                           | 1.41     | 1.00                     | 1.00                                                        | 0.94                             | 0.94                                            |
|                                  | Total Suspended Solids          | Mean (mg/l)                                                             | 11       | 6.9                      | 6.9                                                         | 7.1                              | 7.1                                             |
|                                  |                                 | Median (mg/l)                                                           | 7        | 4.2                      | 4.2                                                         | 4.2                              | 4.2                                             |
|                                  | Copper                          | Mean (mg/l)                                                             | 0.0041   | 0.0032                   | 0.0032                                                      | 0.0031                           | 0.0031                                          |
|                                  |                                 | Median (mg/l)                                                           | 0.0012   | 0.0008                   | 0.0008                                                      | 0.0008                           | 0.0008                                          |

Table N-4 (continued)

|                                              |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|----------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                          | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-7                                         | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,729    | 6,765                    | 6,765                                           | 4,358                            | 2,216                                           |
| Oak Creek<br>Downstream of<br>Mitchell Field | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 49       | 51                       | 51                                              | 56                               | 62                                              |
| Drainage Ditch                               |                                 | Geometric mean (cells per 100 ml)                                       | 1,190    | 1,039                    | 1,039                                           | 696                              | 384                                             |
|                                              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 13       | 18                       | 18                                              | 35                               | 101                                             |
|                                              | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,136    | 2,818                    | 2,818                                           | 1,657                            | 848                                             |
|                                              | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 69                       | 69                                              | 74                               | 79                                              |
|                                              |                                 | Geometric mean (cells per 100 ml)                                       | 543      | 481                      | 481                                             | 320                              | 183                                             |
|                                              |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 11       | 16                       | 16                                              | 28                               | 70                                              |
|                                              | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.3      | 9.1                      | 9.1                                             | 9.1                              | 9.1                                             |
|                                              |                                 | Median (mg/l)                                                           | 9.2      | 9.3                      | 9.3                                             | 9.3                              | 9.3                                             |
|                                              |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 81       | 79                       | 79                                              | 80                               | 80                                              |
|                                              | Total Phosphorus                | Mean (mg/l)                                                             | 0.091    | 0.090                    | 0.090                                           | 0.088                            | 0.087                                           |
|                                              |                                 | Median (mg/l)                                                           | 0.056    | 0.060                    | 0.060                                           | 0.058                            | 0.058                                           |
|                                              |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 76       | 74                       | 74                                              | 75                               | 75                                              |
|                                              | Total Nitrogen                  | Mean (mg/l)                                                             | 1.38     | 1.00                     | 1.00                                            | 0.98                             | 0.98                                            |
|                                              |                                 | Median (mg/l)                                                           | 1.25     | 0.93                     | 0.93                                            | 0.92                             | 0.91                                            |
|                                              | Total Suspended Solids          | Mean (mg/l)                                                             | 14.9     | 9.6                      | 9.6                                             | 9.9                              | 9.9                                             |
|                                              |                                 | Median (mg/l)                                                           | 7.3      | 4.7                      | 4.7                                             | 4.8                              | 4.8                                             |
|                                              | Copper                          | Mean (mg/l)                                                             | 0.0051   | 0.0040                   | 0.0040                                          | 0.0039                           | 0.0039                                          |
|                                              |                                 | Median (mg/l)                                                           | 0.0013   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-8                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 15,506   | 13,491                   | 13,491                                          | 8,662                            | 4,405                                           |
| Lower Oak Creek     | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 17       | 23                       | 23                                              | 39                               | 53                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 2,700    | 2,363                    | 2,363                                           | 1,550                            | 834                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 11                       | 11                                              | 13                               | 27                                              |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6,370    | 5,619                    | 5,619                                           | 3,218                            | 1,649                                           |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 31       | 40                       | 40                                              | 61                               | 74                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 1,079    | 919                      | 919                                             | 593                              | 331                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 11                       | 11                                              | 12                               | 22                                              |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.2     | 10.2                     | 10.2                                            | 10.2                             | 10.2                                            |
|                     |                                 | Median (mg/l)                                                           | 10       | 10.1                     | 10.1                                            | 10.2                             | 10.2                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 93       | 92                       | 92                                              | 92                               | 92                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.091    | 0.091                    | 0.091                                           | 0.088                            | 0.087                                           |
|                     |                                 | Median (mg/l)                                                           | 0.058    | 0.062                    | 0.062                                           | 0.060                            | 0.059                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 76       | 73                       | 73                                              | 74                               | 75                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.30     | 0.97                     | 0.97                                            | 0.96                             | 0.95                                            |
|                     |                                 | Median (mg/l)                                                           | 1.18     | 0.91                     | 0.91                                            | 0.90                             | 0.89                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 15.9     | 10.4                     | 10.4                                            | 10.7                             | 10.7                                            |
|                     |                                 | Median (mg/l)                                                           | 7.3      | 4.7                      | 4.7                                             | 4.8                              | 4.8                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0052   | 0.0041                   | 0.0041                                          | 0.0040                           | 0.0040                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0014   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

Table N-4 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-9                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,401    | 6,384                    | 6,384                                           | 4,091                            | 2,079                                           |
| Lower Oak Creek     | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 51       | 54                       | 54                                              | 57                               | 62                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 993      | 790                      | 790                                             | 526                              | 289                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 26       | 40                       | 40                                              | 68                               | 150                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,061    | 2,661                    | 2,661                                           | 1,502                            | 768                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 71       | 73                       | 73                                              | 76                               | 80                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 388      | 288                      | 288                                             | 189                              | 107                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 21       | 31                       | 31                                              | 50                               | 104                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.5     | 10.5                     | 10.5                                            | 10.5                             | 10.5                                            |
|                     |                                 | Median (mg/l)                                                           | 10.3     | 10.3                     | 10.3                                            | 10.3                             | 10.4                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                       | 96                                              | 96                               | 96                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.092    | 0.087                    | 0.087                                           | 0.085                            | 0.084                                           |
|                     |                                 | Median (mg/l)                                                           | 0.062    | 0.065                    | 0.065                                           | 0.063                            | 0.063                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 75       | 75                       | 75                                              | 76                               | 76                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.26     | 0.96                     | 0.96                                            | 0.95                             | 0.95                                            |
|                     |                                 | Median (mg/l)                                                           | 1.14     | 0.92                     | 0.92                                            | 0.91                             | 0.91                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 16       | 10.4                     | 10.4                                            | 10.4                             | 10.4                                            |
|                     |                                 | Median (mg/l)                                                           | 6.7      | 4.3                      | 4.3                                             | 4.3                              | 4.3                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0052   | 0.0040                   | 0.0040                                          | 0.0040                           | 0.0040                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0013   | 0.0010                   | 0.0010                                          | 0.0010                           | 0.0010                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| OK-10               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6,643    | 5,733                    | 5,733                                           | 3,696                            | 1,878                                           |
| Lower Oak Creek     | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 49                       | 49                                              | 52                               | 58                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 752      | 607                      | 607                                             | 404                              | 220                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 70       | 86                       | 86                                              | 118                              | 178                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,504    | 2,189                    | 2,189                                           | 1,262                            | 644                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 71       | 71                       | 71                                              | 74                               | 78                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 179      | 134                      | 134                                             | 89                               | 51                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 59       | 70                       | 70                                              | 93                               | 131                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.2     | 11.2                     | 11.2                                            | 11.2                             | 11.2                                            |
|                     |                                 | Median (mg/l)                                                           | 11.2     | 11.2                     | 11.2                                            | 11.2                             | 11.2                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.078    | 0.071                    | 0.071                                           | 0.070                            | 0.069                                           |
|                     |                                 | Median (mg/l)                                                           | 0.046    | 0.045                    | 0.045                                           | 0.044                            | 0.043                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 80                       | 80                                              | 80                               | 80                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.07     | 0.82                     | 0.82                                            | 0.81                             | 0.81                                            |
|                     |                                 | Median (mg/l)                                                           | 0.98     | 0.71                     | 0.71                                            | 0.71                             | 0.70                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 19.6     | 12.8                     | 12.8                                            | 13.2                             | 13.2                                            |
|                     |                                 | Median (mg/l)                                                           | 7.4      | 5.1                      | 5.1                                             | 5.1                              | 5.1                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.006    | 0.0047                   | 0.0047                                          | 0.0047                           | 0.0047                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0025   | 0.0021                   | 0.0021                                          | 0.0021                           | 0.0021                                          |

### **Table N-4 Footnotes**

<sup>a</sup>In certain limited cases, relatively minor anomalies in concentrations or percents compliance may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a slight decrease in water quality under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in water quality occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters in the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively insignificant anomalies in the comparative results.

<sup>b</sup>Five-Year LOP refers to a five-year recurrence interval level of protection against sanitary sewer overflows.

<sup>C</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

Source: Tetra Tech, Inc., and SEWRPC.

Table N-5

WATER QUALITY SUMMARY STATISTICS FOR THE RECOMMENDED PLAN: ROOT RIVER WATERSHED<sup>a</sup>

|                                         |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|-----------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                     | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-1                                    | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 5,644    | 4,728                    | 4,728                                           | 2,979                            | 1,545                                           |
| Root River<br>Upstream of<br>Hale Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 70       | 71                       | 71                                              | 73                               | 77                                              |
|                                         |                                    | Geometric mean (cells per 100 ml)                                       | 525      | 413                      | 413                                             | 272                              | 141                                             |
|                                         |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 33       | 60                       | 60                                              | 136                              | 260                                             |
|                                         | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,385    | 2,929                    | 2,929                                           | 1,572                            | 868                                             |
|                                         | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 80       | 81                       | 81                                              | 84                               | 87                                              |
|                                         |                                    | Geometric mean (cells per 100 ml)                                       | 393      | 308                      | 308                                             | 195                              | 101                                             |
|                                         |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 13       | 27                       | 27                                              | 71                               | 139                                             |
|                                         | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.8     | 10.8                     | 10.8                                            | 10.8                             | 10.8                                            |
|                                         |                                    | Median (mg/l)                                                           | 10.8     | 10.8                     | 10.8                                            | 10.8                             | 10.8                                            |
|                                         |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                       | 96                                              | 96                               | 96                                              |
|                                         | Total Phosphorus                   | Mean (mg/l)                                                             | 0.062    | 0.053                    | 0.053                                           | 0.053                            | 0.053                                           |
|                                         |                                    | Median (mg/l)                                                           | 0.025    | 0.022                    | 0.022                                           | 0.022                            | 0.022                                           |
|                                         |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 87       | 88                       | 88                                              | 88                               | 88                                              |
|                                         | Total Nitrogen                     | Mean (mg/l)                                                             | 0.98     | 0.85                     | 0.85                                            | 0.85                             | 0.85                                            |
|                                         |                                    | Median (mg/l)                                                           | 1.01     | 0.87                     | 0.87                                            | 0.87                             | 0.87                                            |
|                                         | Total Suspended Solids             | Mean (mg/l)                                                             | 6.9      | 5.0                      | 5.0                                             | 5.1                              | 5.1                                             |
|                                         |                                    | Median (mg/l)                                                           | 4.8      | 3.3                      | 3.3                                             | 3.4                              | 3.4                                             |
|                                         | Copper                             | Mean (mg/l)                                                             | 0.0033   | 0.0026                   | 0.0026                                          | 0.0026                           | 0.0026                                          |
|                                         |                                    | Median (mg/l)                                                           | 0.0013   | 0.0009                   | 0.0009                                          | 0.0009                           | 0.0009                                          |

Table N-5 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-2                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,040    | 5,898                    | 5,898                                           | 3,765                            | 1,929                                           |
| Root River          | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 66                       | 66                                              | 69                               | 72                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 630      | 504                      | 504                                             | 333                              | 172                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 27       | 45                       | 45                                              | 98                               | 228                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,968    | 3,478                    | 3,478                                           | 1,927                            | 1,019                                           |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 77       | 76                       | 76                                              | 79                               | 82                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 464      | 374                      | 374                                             | 240                              | 124                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 10       | 17                       | 17                                              | 46                               | 121                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 8.4      | 8.4                      | 8.4                                             | 8.4                              | 8.4                                             |
|                     |                                 | Median (mg/l)                                                           | 8.4      | 8.4                      | 8.4                                             | 8.4                              | 8.4                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 96       | 96                       | 96                                              | 96                               | 96                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.079    | 0.067                    | 0.067                                           | 0.067                            | 0.066                                           |
|                     |                                 | Median (mg/l)                                                           | 0.025    | 0.02                     | 0.02                                            | 0.020                            | 0.020                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 82       | 83                       | 83                                              | 84                               | 84                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.13     | 0.97                     | 0.97                                            | 0.97                             | 0.97                                            |
|                     |                                 | Median (mg/l)                                                           | 1.07     | 0.91                     | 0.91                                            | 0.91                             | 0.91                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 6.3      | 4.6                      | 4.6                                             | 4.9                              | 4.9                                             |
|                     |                                 | Median (mg/l)                                                           | 4.9      | 3.4                      | 3.4                                             | 3.4                              | 3.4                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0047   | 0.0036                   | 0.0036                                          | 0.0036                           | 0.0036                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0013   | 0.0009                   | 0.0009                                          | 0.0009                           | 0.0009                                          |

|                                |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|--------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point            | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-3                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,328    | 6,087                    | 6,087                                           | 3,800                            | 1,933                                           |
| Root River at<br>Wildcat Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 64       | 64                       | 64                                              | 66                               | 70                                              |
|                                |                                 | Geometric mean (cells per 100 ml)                                       | 645      | 521                      | 521                                             | 342                              | 177                                             |
|                                |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 27       | 42                       | 42                                              | 96                               | 222                                             |
|                                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,228    | 3,563                    | 3,563                                           | 1,799                            | 926                                             |
|                                | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 74                       | 74                                              | 76                               | 80                                              |
|                                |                                 | Geometric mean (cells per 100 ml)                                       | 477      | 386                      | 386                                             | 244                              | 126                                             |
|                                |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 10       | 16                       | 16                                              | 46                               | 117                                             |
|                                | Dissolved Oxygen                | Mean (mg/l)                                                             | 8.9      | 8.9                      | 8.9                                             | 8.9                              | 8.9                                             |
|                                |                                 | Median (mg/l)                                                           | 8.7      | 8.7                      | 8.7                                             | 8.7                              | 8.7                                             |
|                                |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 87       | 88                       | 88                                              | 88                               | 88                                              |
|                                | Total Phosphorus                | Mean (mg/l)                                                             | 0.078    | 0.066                    | 0.066                                           | 0.066                            | 0.066                                           |
|                                |                                 | Median (mg/l)                                                           | 0.022    | 0.018                    | 0.018                                           | 0.018                            | 0.018                                           |
|                                |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 81       | 82                       | 82                                              | 82                               | 82                                              |
|                                | Total Nitrogen                  | Mean (mg/l)                                                             | 1.08     | 0.93                     | 0.93                                            | 0.93                             | 0.93                                            |
|                                |                                 | Median (mg/l)                                                           | 0.98     | 0.83                     | 0.83                                            | 0.84                             | 0.83                                            |
|                                | Total Suspended Solids          | Mean (mg/l)                                                             | 9.2      | 6.8                      | 6.8                                             | 6.9                              | 6.9                                             |
|                                |                                 | Median (mg/l)                                                           | 4.8      | 3.3                      | 3.3                                             | 3.3                              | 3.3                                             |
|                                | Copper                          | Mean (mg/l)                                                             | 0.0049   | 0.0038                   | 0.0038                                          | 0.0038                           | 0.0038                                          |
|                                |                                 | Median (mg/l)                                                           | 0.0013   | 0.0009                   | 0.0009                                          | 0.0009                           | 0.0009                                          |

Table N-5 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-4                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 7,101    | 5,944                    | 5,944                                           | 3,707                            | 1,883                                           |
| Root River          | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 56       | 58                       | 58                                              | 61                               | 66                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 865      | 701                      | 701                                             | 450                              | 234                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 19       | 28                       | 28                                              | 64                               | 167                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,018    | 3,393                    | 3,393                                           | 1,681                            | 859                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 66       | 68                       | 68                                              | 71                               | 76                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 603      | 495                      | 495                                             | 297                              | 154                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 7        | 11                       | 11                                              | 33                               | 88                                              |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 9.6      | 9.6                      | 9.6                                             | 9.6                              | 9.6                                             |
|                     |                                 | Median (mg/l)                                                           | 9.4      | 9.4                      | 9.4                                             | 9.4                              | 9.4                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 95       | 95                       | 95                                              | 95                               | 95                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.08     | 0.068                    | 0.068                                           | 0.068                            | 0.067                                           |
|                     |                                 | Median (mg/l)                                                           | 0.022    | 0.019                    | 0.019                                           | 0.019                            | 0.019                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 80                       | 80                                              | 80                               | 80                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.12     | 0.89                     | 0.89                                            | 0.90                             | 0.89                                            |
|                     |                                 | Median (mg/l)                                                           | 1.00     | 0.77                     | 0.77                                            | 0.77                             | 0.77                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 10.3     | 7.2                      | 7.2                                             | 7.3                              | 7.3                                             |
|                     |                                 | Median (mg/l)                                                           | 4.7      | 3.2                      | 3.2                                             | 3.3                              | 3.3                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0054   | 0.0042                   | 0.0042                                          | 0.0042                           | 0.0042                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0014   | 0.0011                   | 0.0011                                          | 0.0011                           | 0.0011                                          |

|                        |                                 |                                                                          |          |                          | Condition                                                   |                                  |                                                 |
|------------------------|---------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point    | Water Quality<br>Indicator      | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-5                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                  | 8,198    | 6,734                    | 6,734                                                       | 4,213                            | 2,139                                           |
| Whitnall Park<br>Creek | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)   | 55       | 57                       | 57                                                          | 59                               | 63                                              |
|                        |                                 | Geometric mean (cells per 100 ml)                                        | 896      | 715                      | 715                                                         | 461                              | 239                                             |
|                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 18       | 28                       | 28                                                          | 66                               | 165                                             |
|                        | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                  | 5,142    | 4,201                    | 4,201                                                       | 2,141                            | 1,091                                           |
|                        | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 66       | 67                       | 67                                                          | 70                               | 74                                              |
|                        |                                 | Geometric mean (cells per 100 ml)                                        | 628      | 497                      | 497                                                         | 301                              | 156                                             |
|                        |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 7        | 13                       | 13                                                          | 34                               | 90                                              |
|                        | Dissolved Oxygen                | Mean (mg/l)                                                              | 8.5      | 8.5                      | 8.5                                                         | 8.5                              | 8.5                                             |
|                        |                                 | Median (mg/l)                                                            | 8.4      | 8.4                      | 8.4                                                         | 8.4                              | 8.4                                             |
|                        |                                 | Percent compliance with dissolved oxygen standard (>3 mg/l) <sup>d</sup> | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                        | Total Phosphorus                | Mean (mg/l)                                                              | 0.089    | 0.076                    | 0.076                                                       | 0.076                            | 0.075                                           |
|                        |                                 | Median (mg/l)                                                            | 0.027    | 0.024                    | 0.024                                                       | 0.023                            | 0.023                                           |
|                        |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 76       | 78                       | 78                                                          | 78                               | 78                                              |
|                        | Total Nitrogen                  | Mean (mg/l)                                                              | 1.12     | 0.96                     | 0.96                                                        | 0.97                             | 0.97                                            |
|                        |                                 | Median (mg/l)                                                            | 0.98     | 0.83                     | 0.83                                                        | 0.84                             | 0.83                                            |
|                        | Total Suspended Solids          | Mean (mg/l)                                                              | 15.3     | 11.3                     | 11.3                                                        | 11.5                             | 11.5                                            |
|                        |                                 | Median (mg/l)                                                            | 5.0      | 3.5                      | 3.5                                                         | 3.5                              | 3.5                                             |
|                        | Copper                          | Mean (mg/l)                                                              | 0.0056   | 0.0044                   | 0.0044                                                      | 0.0045                           | 0.0045                                          |
|                        |                                 | Median (mg/l)                                                            | 0.0016   | 0.0012                   | 0.0012                                                      | 0.0012                           | 0.0012                                          |

Table N-5 (continued)

|                       |                                    |                                                                          |          |                          | Condition                                       |                                  |                                                 |
|-----------------------|------------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point   | Water Quality<br>Indicator         | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-6                  | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 5,811    | 5,007                    | 5,007                                           | 3,094                            | 1,574                                           |
| Tess Corners<br>Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)   | 64       | 64                       | 64                                              | 66                               | 69                                              |
|                       |                                    | Geometric mean (cells per 100 ml)                                        | 502      | 477                      | 477                                             | 314                              | 167                                             |
|                       |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 43       | 48                       | 48                                              | 105                              | 230                                             |
|                       | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 3,814    | 3,218                    | 3,218                                           | 1,592                            | 816                                             |
|                       | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 75       | 73                       | 73                                              | 76                               | 79                                              |
|                       |                                    | Geometric mean (cells per 100 ml)                                        | 368      | 356                      | 356                                             | 223                              | 117                                             |
|                       |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 19       | 20                       | 20                                              | 54                               | 123                                             |
|                       | Dissolved Oxygen                   | Mean (mg/l)                                                              | 10.3     | 10.3                     | 10.3                                            | 10.3                             | 10.3                                            |
|                       |                                    | Median (mg/l)                                                            | 10.4     | 10.4                     | 10.4                                            | 10.4                             | 10.4                                            |
|                       |                                    | Percent compliance with dissolved oxygen standard (>3 mg/l) <sup>d</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                       | Total Phosphorus                   | Mean (mg/l)                                                              | 0.068    | 0.060                    | 0.060                                           | 0.059                            | 0.059                                           |
|                       |                                    | Median (mg/l)                                                            | 0.021    | 0.018                    | 0.018                                           | 0.018                            | 0.018                                           |
|                       |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 83       | 83                       | 83                                              | 83                               | 83                                              |
|                       | Total Nitrogen                     | Mean (mg/l)                                                              | 1.28     | 0.81                     | 0.81                                            | 0.82                             | 0.81                                            |
|                       |                                    | Median (mg/l)                                                            | 1.17     | 0.72                     | 0.72                                            | 0.72                             | 0.72                                            |
|                       | Total Suspended Solids             | Mean (mg/l)                                                              | 16.4     | 9.4                      | 9.4                                             | 9.9                              | 9.9                                             |
|                       |                                    | Median (mg/l)                                                            | 5.0      | 3.5                      | 3.5                                             | 3.5                              | 3.5                                             |
|                       | Copper                             | Mean (mg/l)                                                              | 0.0042   | 0.0033                   | 0.0033                                          | 0.0033                           | 0.0033                                          |
|                       |                                    | Median (mg/l)                                                            | 0.0012   | 0.0009                   | 0.0009                                          | 0.0009                           | 0.0009                                          |

|                                          |                                    |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                      | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-7                                     | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 6,947    | 5,721                    | 5,721                                                       | 3,573                            | 1,815                                           |
| Whitnall Park Creek Down- stream of Tess | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 57       | 58                       | 58                                                          | 61                               | 65                                              |
| Corners Creek                            |                                    | Geometric mean (cells per 100 ml)                                       | 725      | 617                      | 617                                                         | 401                              | 211                                             |
|                                          |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 25       | 35                       | 35                                                          | 77                               | 187                                             |
|                                          | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 4,307    | 3,536                    | 3,536                                                       | 1,787                            | 913                                             |
|                                          | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 68       | 68                       | 68                                                          | 71                               | 75                                              |
|                                          |                                    | Geometric mean (cells per 100 ml)                                       | 496      | 428                      | 428                                                         | 263                              | 138                                             |
|                                          |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 12       | 16                       | 16                                                          | 41                               | 103                                             |
|                                          | Dissolved Oxygen                   | Mean (mg/l)                                                             | 10.1     | 10.1                     | 10.1                                                        | 10.1                             | 10.1                                            |
|                                          |                                    | Median (mg/l)                                                           | 10.0     | 9.9                      | 9.9                                                         | 9.9                              | 9.9                                             |
|                                          |                                    | Percent compliance with dissolved oxygen standard (>3 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                          | Total Phosphorus                   | Mean (mg/l)                                                             | 0.078    | 0.067                    | 0.067                                                       | 0.066                            | 0.065                                           |
|                                          |                                    | Median (mg/l)                                                           | 0.023    | 0.020                    | 0.020                                                       | 0.020                            | 0.020                                           |
|                                          |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 78       | 80                       | 80                                                          | 80                               | 80                                              |
|                                          | Total Nitrogen                     | Mean (mg/l)                                                             | 1.17     | 0.86                     | 0.86                                                        | 0.87                             | 0.87                                            |
|                                          |                                    | Median (mg/l)                                                           | 1.09     | 0.74                     | 0.74                                                        | 0.74                             | 0.74                                            |
|                                          | Total Suspended Solids             | Mean (mg/l)                                                             | 14.9     | 9.8                      | 9.8                                                         | 10.1                             | 10.1                                            |
|                                          |                                    | Median (mg/l)                                                           | 5.0      | 3.4                      | 3.4                                                         | 3.5                              | 3.5                                             |
|                                          | Copper                             | Mean (mg/l)                                                             | 0.0051   | 0.0040                   | 0.0040                                                      | 0.0040                           | 0.0040                                          |
|                                          |                                    | Median (mg/l)                                                           | 0.0015   | 0.0011                   | 0.0011                                                      | 0.0011                           | 0.0011                                          |

Table N-5 (continued)

|                      |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|----------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point  | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-8                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6,584    | 5,569                    | 5,569                                                       | 3,674                            | 2,134                                           |
| Middle<br>Root River | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 46       | 48                       | 48                                                          | 52                               | 56                                              |
|                      |                                 | Geometric mean (cells per 100 ml)                                       | 1,262    | 1,069                    | 1,069                                                       | 714                              | 418                                             |
|                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 6        | 10                       | 10                                                          | 27                               | 79                                              |
|                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,951    | 3,257                    | 3,257                                                       | 1,788                            | 1,090                                           |
|                      | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 58       | 60                       | 60                                                          | 65                               | 70                                              |
|                      |                                 | Geometric mean (cells per 100 ml)                                       | 770      | 643                      | 643                                                         | 394                              | 226                                             |
|                      |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 3        | 5                        | 5                                                           | 18                               | 53                                              |
|                      | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.5     | 11.5                     | 11.5                                                        | 11.5                             | 11.5                                            |
|                      |                                 | Median (mg/l)                                                           | 11.7     | 11.7                     | 11.7                                                        | 11.7                             | 11.7                                            |
|                      |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                      | Total Phosphorus                | Mean (mg/l)                                                             | 0.092    | 0.082                    | 0.082                                                       | 0.080                            | 0.078                                           |
|                      |                                 | Median (mg/l)                                                           | 0.061    | 0.058                    | 0.058                                                       | 0.056                            | 0.055                                           |
|                      |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 73       | 76                       | 76                                                          | 76                               | 77                                              |
|                      | Total Nitrogen                  | Mean (mg/l)                                                             | 1.27     | 0.99                     | 0.99                                                        | 0.96                             | 0.94                                            |
|                      |                                 | Median (mg/l)                                                           | 1.22     | 0.97                     | 0.97                                                        | 0.95                             | 0.93                                            |
|                      | Total Suspended Solids          | Mean (mg/l)                                                             | 19.4     | 11.6                     | 11.6                                                        | 11.3                             | 11.1                                            |
|                      |                                 | Median (mg/l)                                                           | 5.1      | 3.5                      | 3.5                                                         | 3.5                              | 3.5                                             |
|                      | Copper                          | Mean (mg/l)                                                             | 0.0007   | 0.0007                   | 0.0007                                                      | 0.0007                           | 0.0007                                          |
|                      |                                 | Median (mg/l)                                                           | 0.0002   | 0.0002                   | 0.0002                                                      | 0.0002                           | 0.0002                                          |

|                           |                                 |                                                                          |          |                          | Condition                                                   |                                  |                                                 |
|---------------------------|---------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point       | Water Quality<br>Indicator      | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-9                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                  | 6,332    | 5,369                    | 5,369                                                       | 3,443                            | 1,746                                           |
| East Branch<br>Root River | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)   | 65       | 64                       | 64                                                          | 67                               | 70                                              |
|                           |                                 | Geometric mean (cells per 100 ml)                                        | 594      | 523                      | 523                                                         | 349                              | 183                                             |
|                           |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 35       | 49                       | 49                                                          | 104                              | 226                                             |
|                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                  | 3,348    | 2,866                    | 2,866                                                       | 1,590                            | 807                                             |
|                           | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 79       | 77                       | 77                                                          | 79                               | 83                                              |
|                           |                                 | Geometric mean (cells per 100 ml)                                        | 365      | 326                      | 326                                                         | 213                              | 111                                             |
|                           |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 21       | 27                       | 27                                                          | 59                               | 130                                             |
|                           | Dissolved Oxygen                | Mean (mg/l)                                                              | 8.2      | 8.2                      | 8.2                                                         | 8.2                              | 8.2                                             |
|                           |                                 | Median (mg/l)                                                            | 7.8      | 7.8                      | 7.8                                                         | 7.8                              | 7.8                                             |
|                           |                                 | Percent compliance with dissolved oxygen standard (>1 mg/l) <sup>e</sup> | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                           | Total Phosphorus                | Mean (mg/l)                                                              | 0.072    | 0.063                    | 0.063                                                       | 0.063                            | 0.062                                           |
|                           |                                 | Median (mg/l)                                                            | 0.029    | 0.024                    | 0.024                                                       | 0.024                            | 0.024                                           |
|                           |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 82       | 83                       | 83                                                          | 83                               | 83                                              |
|                           | Total Nitrogen                  | Mean (mg/l)                                                              | 1.27     | 0.91                     | 0.91                                                        | 0.91                             | 0.91                                            |
|                           |                                 | Median (mg/l)                                                            | 1.22     | 0.89                     | 0.89                                                        | 0.89                             | 0.89                                            |
|                           | Total Suspended Solids          | Mean (mg/l)                                                              | 10.8     | 6.6                      | 6.6                                                         | 6.9                              | 6.9                                             |
|                           |                                 | Median (mg/l)                                                            | 5.0      | 3.3                      | 3.3                                                         | 3.3                              | 3.3                                             |
|                           | Copper                          | Mean (mg/l)                                                              | 0.0042   | 0.0033                   | 0.0033                                                      | 0.0033                           | 0.0033                                          |
|                           |                                 | Median (mg/l)                                                            | 0.0012   | 0.0009                   | 0.0009                                                      | 0.0009                           | 0.0009                                          |

Table N-5 (continued)

|                                         |                                    |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|-----------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                     | Water Quality<br>Indicator         | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-10                                   | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 6,995    | 5,982                    | 5,982                                           | 3,770                            | 1,913                                           |
| Root River<br>Upstream of<br>Ryan Creek | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 51                       | 51                                              | 55                               | 61                                              |
| ,                                       |                                    | Geometric mean (cells per 100 ml)                                       | 1,189    | 985                      | 985                                             | 628                              | 324                                             |
|                                         |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 9        | 17                       | 17                                              | 39                               | 116                                             |
|                                         | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                 | 3,768    | 3,229                    | 3,229                                           | 1,655                            | 842                                             |
|                                         | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 59       | 62                       | 62                                              | 68                               | 74                                              |
|                                         |                                    | Geometric mean (cells per 100 ml)                                       | 717      | 594                      | 594                                             | 353                              | 182                                             |
|                                         |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 4        | 9                        | 9                                               | 26                               | 71                                              |
|                                         | Dissolved Oxygen                   | Mean (mg/l)                                                             | 11.3     | 11.3                     | 11.3                                            | 11.3                             | 11.3                                            |
|                                         |                                    | Median (mg/l)                                                           | 11.6     | 11.6                     | 11.6                                            | 11.6                             | 11.6                                            |
|                                         |                                    | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 98       | 98                       | 98                                              | 98                               | 98                                              |
|                                         | Total Phosphorus                   | Mean (mg/l)                                                             | 0.087    | 0.076                    | 0.076                                           | 0.075                            | 0.075                                           |
|                                         |                                    | Median (mg/l)                                                           | 0.057    | 0.052                    | 0.052                                           | 0.051                            | 0.051                                           |
|                                         |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 73       | 76                       | 76                                              | 76                               | 77                                              |
|                                         | Total Nitrogen                     | Mean (mg/l)                                                             | 1.15     | 0.91                     | 0.91                                            | 0.90                             | 0.90                                            |
|                                         |                                    | Median (mg/l)                                                           | 1.13     | 0.88                     | 0.88                                            | 0.88                             | 0.87                                            |
|                                         | Total Suspended Solids             | Mean (mg/l)                                                             | 12.9     | 8.7                      | 8.7                                             | 8.8                              | 8.8                                             |
|                                         |                                    | Median (mg/l)                                                           | 4.8      | 3.3                      | 3.3                                             | 3.3                              | 3.3                                             |
|                                         | Copper                             | Mean (mg/l)                                                             | 0.002    | 0.0017                   | 0.0017                                          | 0.0017                           | 0.0017                                          |
|                                         |                                    | Median (mg/l)                                                           | 0.0006   | 0.0005                   | 0.0005                                          | 0.0005                           | 0.0005                                          |

|                                 |                                    |                                                                          |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|------------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator         | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-11                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 2,428    | 2,336                    | 2,336                                           | 2,152                            | 2,059                                           |
| West Branch<br>Root River Canal | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)   | 72       | 71                       | 71                                              | 71                               | 72                                              |
|                                 |                                    | Geometric mean (cells per 100 ml)                                        | 262      | 267                      | 267                                             | 209                              | 199                                             |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 129      | 125                      | 125                                             | 172                              | 180                                             |
|                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 1,995    | 1,877                    | 1,877                                           | 1,579                            | 1,500                                           |
|                                 | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 81       | 79                       | 79                                              | 80                               | 80                                              |
|                                 |                                    | Geometric mean (cells per 100 ml)                                        | 164      | 174                      | 174                                             | 137                              | 129                                             |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 67       | 64                       | 64                                              | 85                               | 89                                              |
|                                 | Dissolved Oxygen                   | Mean (mg/l)                                                              | 12.2     | 12.6                     | 12.6                                            | 12.6                             | 12.6                                            |
|                                 |                                    | Median (mg/l)                                                            | 12.9     | 13.3                     | 13.3                                            | 13.3                             | 13.3                                            |
|                                 |                                    | Percent compliance with dissolved oxygen standard (>1 mg/l) <sup>e</sup> | 92       | 95                       | 95                                              | 95                               | 95                                              |
|                                 | Total Phosphorus                   | Mean (mg/l)                                                              | 0.266    | 0.239                    | 0.239                                           | 0.231                            | 0.226                                           |
|                                 |                                    | Median (mg/l)                                                            | 0.179    | 0.150                    | 0.150                                           | 0.147                            | 0.146                                           |
|                                 |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 32       | 40                       | 40                                              | 41                               | 42                                              |
|                                 | Total Nitrogen                     | Mean (mg/l)                                                              | 3.72     | 3.43                     | 3.43                                            | 3.06                             | 2.94                                            |
|                                 |                                    | Median (mg/l)                                                            | 3.12     | 2.79                     | 2.79                                            | 2.41                             | 2.29                                            |
|                                 | Total Suspended Solids             | Mean (mg/l)                                                              | 31.2     | 26.7                     | 26.7                                            | 20.6                             | 18.9                                            |
|                                 |                                    | Median (mg/l)                                                            | 3.6      | 3.7                      | 3.7                                             | 3.4                              | 3.4                                             |
|                                 | Copper                             | Mean (mg/l)                                                              | 0.0062   | 0.0055                   | 0.0055                                          | 0.0054                           | 0.0054                                          |
|                                 |                                    | Median (mg/l)                                                            | 0.0046   | 0.0040                   | 0.0040                                          | 0.0039                           | 0.0039                                          |

Table N-5 (continued)

|                                 |                                    |                                                                          |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|------------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator         | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-12                           | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 2,573    | 2,429                    | 2,429                                           | 2,240                            | 2,139                                           |
| West Branch<br>Root River Canal | (annual)                           | Percent compliance with single sample standard (<400 cells per 100 ml)   | 71       | 70                       | 70                                              | 71                               | 72                                              |
|                                 |                                    | Geometric mean (cells per 100 ml)                                        | 250      | 254                      | 254                                             | 190                              | 183                                             |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 139      | 133                      | 133                                             | 187                              | 195                                             |
|                                 | Fecal Coliform Bacteria            | Mean (cells per 100 ml)                                                  | 2,270    | 2,104                    | 2,104                                           | 1,830                            | 1,736                                           |
|                                 | (May-September: 153<br>days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 81       | 79                       | 79                                              | 80                               | 80                                              |
|                                 |                                    | Geometric mean (cells per 100 ml)                                        | 160      | 170                      | 170                                             | 129                              | 123                                             |
|                                 |                                    | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 70       | 66                       | 66                                              | 92                               | 98                                              |
|                                 | Dissolved Oxygen                   | Mean (mg/l)                                                              | 12.2     | 12.4                     | 12.4                                            | 12.3                             | 12.3                                            |
|                                 |                                    | Median (mg/l)                                                            | 12.7     | 12.8                     | 12.8                                            | 12.7                             | 12.7                                            |
|                                 |                                    | Percent compliance with dissolved oxygen standard (>3 mg/l) <sup>e</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Phosphorus                   | Mean (mg/l)                                                              | 0.242    | 0.217                    | 0.217                                           | 0.208                            | 0.203                                           |
|                                 |                                    | Median (mg/l)                                                            | 0.135    | 0.117                    | 0.117                                           | 0.114                            | 0.112                                           |
|                                 |                                    | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 40       | 46                       | 46                                              | 47                               | 47                                              |
|                                 | Total Nitrogen                     | Mean (mg/l)                                                              | 3.57     | 3.32                     | 3.32                                            | 2.91                             | 2.77                                            |
|                                 |                                    | Median (mg/l)                                                            | 2.84     | 2.63                     | 2.63                                            | 2.21                             | 2.09                                            |
|                                 | Total Suspended Solids             | Mean (mg/l)                                                              | 39.1     | 34.2                     | 34.2                                            | 26.1                             | 23.8                                            |
|                                 |                                    | Median (mg/l)                                                            | 4.1      | 4.1                      | 4.1                                             | 3.7                              | 3.8                                             |
|                                 | Copper                             | Mean (mg/l)                                                              | 0.0057   | 0.0050                   | 0.0050                                          | 0.0050                           | 0.0049                                          |
|                                 |                                    | Median (mg/l)                                                            | 0.0039   | 0.0034                   | 0.0034                                          | 0.0033                           | 0.0032                                          |

Table N-5 (continued)

|                                 |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-13                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,372    | 2,234                    | 2,234                                           | 2,105                            | 2,015                                           |
| West Branch<br>Root River Canal | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 64       | 65                       | 65                                              | 68                               | 68                                              |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 412      | 396                      | 396                                             | 313                              | 297                                             |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 59       | 61                       | 61                                              | 101                              | 110                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,099    | 1,968                    | 1,968                                           | 1,801                            | 1,710                                           |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 74       | 74                       | 74                                              | 77                               | 77                                              |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 256      | 252                      | 252                                             | 198                              | 188                                             |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 41       | 42                       | 42                                              | 62                               | 66                                              |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.8     | 11.8                     | 11.8                                            | 11.7                             | 11.7                                            |
|                                 |                                 | Median (mg/l)                                                           | 12.3     | 12.2                     | 12.2                                            | 12.2                             | 12.2                                            |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                              | 99                               | 99                                              |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.164    | 0.151                    | 0.151                                           | 0.143                            | 0.138                                           |
|                                 |                                 | Median (mg/l)                                                           | 0.076    | 0.069                    | 0.069                                           | 0.067                            | 0.066                                           |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 63       | 66                       | 66                                              | 67                               | 67                                              |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 2.75     | 2.61                     | 2.61                                            | 2.21                             | 2.08                                            |
|                                 |                                 | Median (mg/l)                                                           | 2.00     | 1.95                     | 1.95                                            | 1.58                             | 1.47                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 28.1     | 25.3                     | 25.3                                            | 19.5                             | 17.9                                            |
|                                 |                                 | Median (mg/l)                                                           | 4.0      | 4.0                      | 4.0                                             | 3.6                              | 3.7                                             |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.0006   | 0.0006                   | 0.0006                                          | 0.0006                           | 0.0006                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0002   | 0.0002                   | 0.0002                                          | 0.0002                           | 0.0002                                          |

Table N-5 (continued)

|                                 |                                 |                                                                          |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|---------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-14                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                  | 2,582    | 2,417                    | 2,417                                           | 2,234                            | 2,124                                           |
| East Branch<br>Root River Canal | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)   | 75       | 75                       | 75                                              | 76                               | 76                                              |
|                                 |                                 | Geometric mean (cells per 100 ml)                                        | 227      | 221                      | 221                                             | 136                              | 136                                             |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 160      | 168                      | 168                                             | 258                              | 260                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                  | 2,456    | 2,275                    | 2,275                                           | 2,133                            | 2,023                                           |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 83       | 83                       | 83                                              | 84                               | 84                                              |
|                                 |                                 | Geometric mean (cells per 100 ml)                                        | 178      | 172                      | 172                                             | 112                              | 110                                             |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 82       | 86                       | 86                                              | 126                              | 127                                             |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                              | 12.1     | 12.1                     | 12.1                                            | 12.0                             | 12.0                                            |
|                                 |                                 | Median (mg/l)                                                            | 12.3     | 12.3                     | 12.3                                            | 12.3                             | 12.3                                            |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>1 mg/l) <sup>e</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Phosphorus                | Mean (mg/l)                                                              | 0.183    | 0.181                    | 0.181                                           | 0.168                            | 0.162                                           |
|                                 |                                 | Median (mg/l)                                                            | 0.074    | 0.074                    | 0.074                                           | 0.070                            | 0.068                                           |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 65       | 65                       | 65                                              | 67                               | 68                                              |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                              | 3.14     | 3.10                     | 3.10                                            | 2.55                             | 2.37                                            |
|                                 |                                 | Median (mg/l)                                                            | 2.43     | 2.40                     | 2.40                                            | 1.92                             | 1.76                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                              | 59.6     | 53.7                     | 53.7                                            | 40.4                             | 36.6                                            |
|                                 |                                 | Median (mg/l)                                                            | 5.0      | 4.9                      | 4.9                                             | 4.3                              | 4.4                                             |
|                                 | Copper                          | Mean (mg/l)                                                              | 0.0028   | 0.0028                   | 0.0028                                          | 0.0027                           | 0.0026                                          |
|                                 |                                 | Median (mg/l)                                                            | 0.0014   | 0.0014                   | 0.0014                                          | 0.0013                           | 0.0013                                          |

|                                 |                                                                     |                                                                          |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator                                          | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-15                           | Fecal Coliform Bacteria                                             | Mean (cells per 100 ml)                                                  | 3,272    | 3,025                    | 3,025                                           | 2,698                            | 2,570                                           |
| East Branch<br>Root River Canal | Percent compliance with single sam standard (<400 cells per 100 ml) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 71       | 71                       | 71                                              | 72                               | 72                                              |
|                                 |                                                                     | Geometric mean (cells per 100 ml)                                        | 288      | 280                      | 280                                             | 189                              | 185                                             |
|                                 |                                                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 121      | 127                      | 127                                             | 209                              | 213                                             |
|                                 | Fecal Coliform Bacteria                                             | Mean (cells per 100 ml)                                                  | 2,853    | 2,572                    | 2,572                                           | 2,109                            | 2,003                                           |
|                                 | (May-September: 153 days total)                                     | Percent compliance with single sample standard (<400 cells per 100 ml)   | 80       | 80                       | 80                                              | 80                               | 81                                              |
|                                 |                                                                     | Geometric mean (cells per 100 ml)                                        | 213      | 207                      | 207                                             | 142                              | 137                                             |
|                                 |                                                                     | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 64       | 67                       | 67                                              | 109                              | 112                                             |
|                                 | Dissolved Oxygen                                                    | Mean (mg/l)                                                              | 11.3     | 11.3                     | 11.3                                            | 11.3                             | 11.3                                            |
|                                 |                                                                     | Median (mg/l)                                                            | 11.5     | 11.5                     | 11.5                                            | 11.5                             | 11.5                                            |
|                                 |                                                                     | Percent compliance with dissolved oxygen standard (>3 mg/l) <sup>d</sup> | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Phosphorus                                                    | Mean (mg/l)                                                              | 0.143    | 0.141                    | 0.141                                           | 0.131                            | 0.126                                           |
|                                 |                                                                     | Median (mg/l)                                                            | 0.065    | 0.066                    | 0.066                                           | 0.063                            | 0.062                                           |
|                                 |                                                                     | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 72       | 71                       | 71                                              | 73                               | 74                                              |
|                                 | Total Nitrogen                                                      | Mean (mg/l)                                                              | 2.64     | 2.58                     | 2.58                                            | 2.11                             | 1.96                                            |
|                                 |                                                                     | Median (mg/l)                                                            | 2.05     | 2.02                     | 2.02                                            | 1.64                             | 1.52                                            |
|                                 | Total Suspended Solids                                              | Mean (mg/l)                                                              | 57.2     | 50.2                     | 50.2                                            | 38.4                             | 35.1                                            |
|                                 |                                                                     | Median (mg/l)                                                            | 5        | 4.9                      | 4.9                                             | 4.3                              | 4.4                                             |
|                                 | Copper                                                              | Mean (mg/l)                                                              | 0.0034   | 0.0034                   | 0.0034                                          | 0.0033                           | 0.0032                                          |
|                                 |                                                                     | Median (mg/l)                                                            | 0.0014   | 0.0014                   | 0.0014                                          | 0.0013                           | 0.0012                                          |

Table N-5 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-16               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,401    | 2,304                    | 2,304                                           | 2,161                            | 2,069                                           |
| Root River Canal    | oot River Canal (annual)        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 62       | 62                       | 62                                              | 65                               | 66                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 423      | 415                      | 415                                             | 332                              | 315                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 62       | 64                       | 64                                              | 95                               | 105                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,066    | 1,968                    | 1,968                                           | 1,772                            | 1,682                                           |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 72       | 72                       | 72                                              | 75                               | 75                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 255      | 254                      | 254                                             | 202                              | 191                                             |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 47       | 49                       | 49                                              | 66                               | 70                                              |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.7     | 11.8                     | 11.8                                            | 11.8                             | 11.7                                            |
|                     |                                 | Median (mg/l)                                                           | 12.1     | 12.2                     | 12.2                                            | 12.2                             | 12.2                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 97       | 98                       | 98                                              | 98                               | 98                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.129    | 0.122                    | 0.122                                           | 0.114                            | 0.110                                           |
|                     |                                 | Median (mg/l)                                                           | 0.069    | 0.065                    | 0.065                                           | 0.063                            | 0.062                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 71       | 73                       | 73                                              | 74                               | 74                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 2.31     | 2.23                     | 2.23                                            | 1.85                             | 1.73                                            |
|                     |                                 | Median (mg/l)                                                           | 1.79     | 1.73                     | 1.73                                            | 1.43                             | 1.33                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 27.4     | 24.6                     | 24.6                                            | 19.3                             | 17.8                                            |
|                     |                                 | Median (mg/l)                                                           | 4.5      | 4.5                      | 4.5                                             | 4.1                              | 4.1                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0019   | 0.0019                   | 0.0019                                          | 0.0018                           | 0.0018                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0006   | 0.0006                   | 0.0006                                          | 0.0006                           | 0.0006                                          |

Table N-5 (continued)

|                                                   |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|---------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                               | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-17                                             | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,656    | 4,077                    | 4,077                                                       | 2,909                            | 1,982                                           |
| Root River at<br>Upstream<br>Crossing of          | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 43       | 45                       | 45                                                          | 51                               | 55                                              |
| Milwaukee-                                        |                                 | Geometric mean (cells per 100 ml)                                       | 1,123    | 1,008                    | 1,008                                                       | 713                              | 503                                             |
| Racine County<br>Line and Down-<br>stream of Root |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 7        | 9                        | 9                                                           | 18                               | 45                                              |
| River Canal                                       | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,994    | 2,570                    | 2,570                                                       | 1,594                            | 1,145                                           |
|                                                   | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 55       | 57                       | 57                                                          | 63                               | 68                                              |
|                                                   |                                 | Geometric mean (cells per 100 ml)                                       | 720      | 641                      | 641                                                         | 422                              | 291                                             |
|                                                   |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 4        | 4                        | 4                                                           | 12                               | 33                                              |
|                                                   | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.5     | 11.5                     | 11.5                                                        | 11.5                             | 11.5                                            |
|                                                   |                                 | Median (mg/l)                                                           | 11.7     | 11.7                     | 11.7                                                        | 11.7                             | 11.7                                            |
|                                                   |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                                          | 99                               | 99                                              |
|                                                   | Total Phosphorus                | Mean (mg/l)                                                             | 0.104    | 0.096                    | 0.096                                                       | 0.091                            | 0.088                                           |
|                                                   |                                 | Median (mg/l)                                                           | 0.071    | 0.067                    | 0.067                                                       | 0.065                            | 0.064                                           |
|                                                   |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 71       | 73                       | 73                                                          | 74                               | 75                                              |
|                                                   | Total Nitrogen                  | Mean (mg/l)                                                             | 1.68     | 1.48                     | 1.48                                                        | 1.29                             | 1.23                                            |
|                                                   |                                 | Median (mg/l)                                                           | 1.39     | 1.21                     | 1.21                                                        | 1.11                             | 1.07                                            |
|                                                   | Total Suspended Solids          | Mean (mg/l)                                                             | 20.6     | 16.3                     | 16.3                                                        | 13.8                             | 13.0                                            |
|                                                   |                                 | Median (mg/l)                                                           | 4.6      | 3.8                      | 3.8                                                         | 3.6                              | 3.6                                             |
|                                                   | Copper                          | Mean (mg/l)                                                             | 0.0006   | 0.0005                   | 0.0005                                                      | 0.0005                           | 0.0005                                          |
|                                                   |                                 | Median (mg/l)                                                           | 0.0001   | 0.0001                   | 0.0001                                                      | 0.0001                           | 0.0001                                          |

Table N-5 (continued)

|                                    |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-18                              | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,253    | 3,675                    | 3,675                                                       | 2,801                            | 2,096                                           |
| Root River Upstream of Hoods Creek |                                 | Percent compliance with single sample standard (<400 cells per 100 ml)  | 46       | 48                       | 48                                                          | 51                               | 54                                              |
|                                    |                                 | Geometric mean (cells per 100 ml)                                       | 983      | 865                      | 865                                                         | 629                              | 466                                             |
|                                    |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 11       | 16                       | 16                                                          | 37                               | 69                                              |
|                                    | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,687    | 2,255                    | 2,255                                                       | 1,589                            | 1,290                                           |
|                                    | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 60       | 61                       | 61                                                          | 65                               | 68                                              |
|                                    |                                 | Geometric mean (cells per 100 ml)                                       | 556      | 485                      | 485                                                         | 330                              | 241                                             |
|                                    |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 9        | 12                       | 12                                                          | 29                               | 54                                              |
|                                    | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.4     | 11.4                     | 11.4                                                        | 11.4                             | 11.4                                            |
|                                    |                                 | Median (mg/l)                                                           | 11.6     | 11.6                     | 11.6                                                        | 11.6                             | 11.6                                            |
|                                    |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                                          | 100                              | 100                                             |
|                                    | Total Phosphorus                | Mean (mg/l)                                                             | 0.102    | 0.094                    | 0.094                                                       | 0.089                            | 0.085                                           |
|                                    |                                 | Median (mg/l)                                                           | 0.068    | 0.065                    | 0.065                                                       | 0.064                            | 0.063                                           |
|                                    |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 73       | 75                       | 75                                                          | 76                               | 76                                              |
|                                    | Total Nitrogen                  | Mean (mg/l)                                                             | 1.64     | 1.45                     | 1.45                                                        | 1.26                             | 1.19                                            |
|                                    |                                 | Median (mg/l)                                                           | 1.32     | 1.16                     | 1.16                                                        | 1.04                             | 1.00                                            |
|                                    | Total Suspended Solids          | Mean (mg/l)                                                             | 31       | 23.8                     | 23.8                                                        | 20.0                             | 18.7                                            |
|                                    |                                 | Median (mg/l)                                                           | 5.2      | 4.4                      | 4.4                                                         | 4.1                              | 4.1                                             |
|                                    | Copper                          | Mean (mg/l)                                                             | 0.0013   | 0.0012                   | 0.0012                                                      | 0.0012                           | 0.0012                                          |
|                                    |                                 | Median (mg/l)                                                           | 0.0004   | 0.0003                   | 0.0003                                                      | 0.0003                           | 0.0003                                          |

Table N-5 (continued)

|                     |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-19               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,398    | 2,730                    | 2,730                                                       | 1,649                            | 841                                             |
| Ives Grove Ditch    | res Grove Ditch (annual)        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 73       | 74                       | 74                                                          | 77                               | 80                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 219      | 204                      | 204                                                         | 78                               | 53                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 183      | 194                      | 194                                                         | 270                              | 303                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2,457    | 2,013                    | 2,013                                                       | 991                              | 509                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 85       | 84                       | 84                                                          | 86                               | 89                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 103      | 104                      | 104                                                         | 29                               | 21                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 105      | 109                      | 109                                                         | 147                              | 151                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.1     | 9.9                      | 9.9                                                         | 9.9                              | 9.9                                             |
|                     |                                 | Median (mg/l)                                                           | 8.8      | 8.8                      | 8.8                                                         | 8.7                              | 8.7                                             |
|                     |                                 | Percent compliance with dissolved oxygen standard (>1 mg/l)             | 96       | 97                       | 97                                                          | 97                               | 97                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.771    | 0.659                    | 0.659                                                       | 0.673                            | 0.690                                           |
|                     |                                 | Median (mg/l)                                                           | 0.343    | 0.263                    | 0.263                                                       | 0.265                            | 0.268                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 21       | 25                       | 25                                                          | 25                               | 25                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 4.67     | 4.27                     | 4.27                                                        | 4.07                             | 4.04                                            |
|                     |                                 | Median (mg/l)                                                           | 3.47     | 3.15                     | 3.15                                                        | 2.87                             | 2.75                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 20.5     | 18.0                     | 18.0                                                        | 15.5                             | 14.4                                            |
|                     |                                 | Median (mg/l)                                                           | 4.8      | 4.6                      | 4.6                                                         | 4.2                              | 4.2                                             |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0056   | 0.0048                   | 0.0048                                                      | 0.0048                           | 0.0048                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0035   | 0.0029                   | 0.0029                                                      | 0.0029                           | 0.0029                                          |

Table N-5 (continued)

|                     |                                 |                                                                          |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|--------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-20               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                  | 4,039    | 3,218                    | 3,218                                           | 1,975                            | 1,006                                           |
| Hoods Creek         | Hoods Creek (annual)            | Percent compliance with single sample standard (<400 cells per 100 ml)   | 69       | 68                       | 68                                              | 71                               | 75                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                        | 286      | 277                      | 277                                             | 121                              | 76                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 148      | 149                      | 149                                             | 248                              | 287                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                  | 3,354    | 2,602                    | 2,602                                           | 1,393                            | 714                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)   | 81       | 79                       | 79                                              | 80                               | 83                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                        | 158      | 161                      | 161                                             | 55                               | 37                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml)  | 84       | 83                       | 83                                              | 138                              | 149                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                              | 11       | 11.0                     | 11.0                                            | 11.0                             | 11.0                                            |
|                     |                                 | Median (mg/l)                                                            | 11.7     | 11.8                     | 11.8                                            | 11.8                             | 11.8                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>3 mg/l) <sup>d</sup> | 98       | 98                       | 98                                              | 98                               | 98                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                              | 0.381    | 0.337                    | 0.337                                           | 0.345                            | 0.355                                           |
|                     |                                 | Median (mg/l)                                                            | 0.131    | 0.113                    | 0.113                                           | 0.113                            | 0.112                                           |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)       | 43       | 49                       | 49                                              | 49                               | 49                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                              | 3.20     | 2.84                     | 2.84                                            | 2.67                             | 2.63                                            |
|                     |                                 | Median (mg/l)                                                            | 2.39     | 2.05                     | 2.05                                            | 1.86                             | 1.79                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                              | 33.5     | 23.4                     | 23.4                                            | 20.5                             | 19.0                                            |
|                     |                                 | Median (mg/l)                                                            | 4.9      | 4.5                      | 4.5                                             | 4.2                              | 4.1                                             |
|                     | Copper                          | Mean (mg/l)                                                              | 0.0048   | 0.0040                   | 0.0040                                          | 0.0040                           | 0.0040                                          |
|                     |                                 | Median (mg/l)                                                            | 0.0022   | 0.0020                   | 0.0020                                          | 0.0020                           | 0.0020                                          |

|                                                       |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|-------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                                   | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-21                                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,547    | 3,910                    | 3,910                                           | 2,672                            | 1,677                                           |
| Root River at the<br>City of Racine,<br>USGS Sampling | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 48       | 49                       | 49                                              | 53                               | 56                                              |
| Location                                              |                                 | Geometric mean (cells per 100 ml)                                       | 853      | 759                      | 759                                             | 522                              | 352                                             |
| (4087240)                                             |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 17       | 23                       | 23                                              | 57                               | 105                                             |
|                                                       | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,041    | 2,555                    | 2,555                                           | 1,489                            | 943                                             |
|                                                       | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 62       | 63                       | 63                                              | 67                               | 71                                              |
|                                                       |                                 | Geometric mean (cells per 100 ml)                                       | 479      | 421                      | 421                                             | 268                              | 178                                             |
|                                                       |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 13       | 18                       | 18                                              | 43                               | 79                                              |
|                                                       | Dissolved Oxygen                | Mean (mg/l)                                                             | 11       | 11.1                     | 11.1                                            | 11.1                             | 11.1                                            |
|                                                       |                                 | Median (mg/l)                                                           | 11.3     | 11.4                     | 11.4                                            | 11.4                             | 11.4                                            |
|                                                       |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                              | 99                               | 99                                              |
|                                                       | Total Phosphorus                | Mean (mg/l)                                                             | 0.109    | 0.099                    | 0.099                                           | 0.094                            | 0.091                                           |
|                                                       |                                 | Median (mg/l)                                                           | 0.075    | 0.071                    | 0.071                                           | 0.070                            | 0.069                                           |
|                                                       |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 67       | 71                       | 71                                              | 71                               | 72                                              |
|                                                       | Total Nitrogen                  | Mean (mg/l)                                                             | 1.58     | 1.38                     | 1.38                                            | 1.20                             | 1.14                                            |
|                                                       |                                 | Median (mg/l)                                                           | 1.24     | 1.09                     | 1.09                                            | 0.99                             | 0.95                                            |
|                                                       | Total Suspended Solids          | Mean (mg/l)                                                             | 35.9     | 25.6                     | 26.6                                            | 22.8                             | 21.4                                            |
|                                                       |                                 | Median (mg/l)                                                           | 7        | 5.8                      | 5.8                                             | 5.2                              | 5.1                                             |
|                                                       | Copper                          | Mean (mg/l)                                                             | 0.0008   | 0.0006                   | 0.0006                                          | 0.0006                           | 0.0006                                          |
|                                                       |                                 | Median (mg/l)                                                           | 0.0002   | 0.0001                   | 0.0001                                          | 0.0001                           | 0.0001                                          |

Table N-5 (continued)

|                                            |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|--------------------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                        | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| RT-22                                      | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 4,924    | 4,135                    | 4,135                                                       | 2,762                            | 1,165                                           |
| Mouth of Root<br>River at Lake<br>Michigan |                                 | Percent compliance with single sample standard (<400 cells per 100 ml)  | 47       | 48                       | 48                                                          | 51                               | 55                                              |
| Ü                                          |                                 | Geometric mean (cells per 100 ml)                                       | 869      | 761                      | 761                                                         | 516                              | 339                                             |
|                                            |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 28       | 34                       | 34                                                          | 68                               | 114                                             |
|                                            | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3,327    | 2,714                    | 2,714                                                       | 1,508                            | 903                                             |
|                                            | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 62       | 62                       | 62                                                          | 67                               | 70                                              |
|                                            |                                 | Geometric mean (cells per 100 ml)                                       | 440      | 382                      | 382                                                         | 240                              | 155                                             |
|                                            |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 22       | 27                       | 27                                                          | 54                               | 87                                              |
|                                            | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.1     | 11.1                     | 11.1                                                        | 11.1                             | 11.1                                            |
|                                            |                                 | Median (mg/l)                                                           | 11.3     | 11.3                     | 11.3                                                        | 11.4                             | 11.4                                            |
|                                            |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 99       | 99                       | 99                                                          | 99                               | 99                                              |
|                                            | Total Phosphorus                | Mean (mg/l)                                                             | 0.115    | 0.104                    | 0.104                                                       | 0.099                            | 0.096                                           |
|                                            |                                 | Median (mg/l)                                                           | 0.079    | 0.074                    | 0.074                                                       | 0.073                            | 0.072                                           |
|                                            |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 65       | 68                       | 68                                                          | 69                               | 70                                              |
|                                            | Total Nitrogen                  | Mean (mg/l)                                                             | 1.56     | 1.36                     | 1.36                                                        | 1.20                             | 1.13                                            |
|                                            |                                 | Median (mg/l)                                                           | 1.23     | 1.08                     | 1.08                                                        | 0.98                             | 0.94                                            |
|                                            | Total Suspended Solids          | Mean (mg/l)                                                             | 38.5     | 28.9                     | 28.9                                                        | 25.3                             | 23.9                                            |
|                                            |                                 | Median (mg/l)                                                           | 9.4      | 8.0                      | 8.0                                                         | 7.3                              | 7.2                                             |
|                                            | Copper                          | Mean (mg/l)                                                             | 0.0015   | 0.0011                   | 0.0011                                                      | 0.0011                           | 0.0011                                          |
|                                            |                                 | Median (mg/l)                                                           | 0.0002   | 0.0002                   | 0.0002                                                      | 0.0002                           | 0.0002                                          |

#### **Table N-5 Footnotes**

<sup>a</sup>In certain limited cases, relatively minor anomalies in concentrations or percents compliance may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a slight decrease in water quality under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in water quality occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters in the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively insignificant anomalies in the comparative results.

<sup>b</sup>Five-Year LOP refers to a five-year recurrence interval level of protection against sanitary sewer overflows.

<sup>C</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

<sup>d</sup>Under Chapter NR 104 of the Wisconsin Administrative Code, this assessment point is in a stream reach classified as capable of supporting limited forage fish.

<sup>e</sup>Under Chapter NR 104 of the Wisconsin Administrative Code, this assessment point is in a stream reach classified as capable of supporting limited aquatic life.

Source: Tetra Tech, Inc., and SEWRPC.

Table N-6

WATER QUALITY SUMMARY STATISTICS FOR THE RECOMMENDED PLAN: MILWAUKEE HARBOR ESTUARY AND NEARSHORE LAKE MICHIGAN AREA<sup>2</sup>

|                     |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-1                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 1,101    | 863                      | 850                                             | 428                              | 331                                             |
| Milwaukee River     | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 79       | 85                       | 85                                              | 99                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 175      | 145                      | 144                                             | 79                               | 50                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 254      | 277                      | 277                                             | 364                              | 365                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 457      | 353                      | 328                                             | 272                              | 241                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 95       | 97                       | 97                                              | 98                               | 98                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 26       | 22                       | 21                                              | 16                               | 9                                               |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 147      | 150                      | 150                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.96     | 9.94                     | 9.94                                            | 9.89                             | 9.87                                            |
|                     |                                 | Median (mg/l)                                                                          | 10.85    | 10.85                    | 10.85                                           | 10.75                            | 10.73                                           |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 99       | 99                       | 99                                              | 99                               | 99                                              |
|                     | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0657   | 0.0653                   | 0.0652                                          | 0.0536                           | 0.0512                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0550   | 0.0554                   | 0.0555                                          | 0.0447                           | 0.0426                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 78       | 79                       | 79                                              | 87                               | 89                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.69     | 1.63                     | 1.63                                            | 1.24                             | 1.18                                            |
|                     |                                 | Median (mg/l)                                                                          | 1.48     | 1.43                     | 1.43                                            | 1.11                             | 1.05                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                            | 22.46    | 20.69                    | 20.68                                           | 20.28                            | 20.14                                           |
|                     |                                 | Median (mg/l)                                                                          | 13.09    | 12.38                    | 12.38                                           | 11.47                            | 11.38                                           |
|                     | Copper                          | Mean (mg/l)                                                                            | 0.0045   | 0.0046                   | 0.0046                                          | 0.0040                           | 0.0041                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0044   | 0.0044                   | 0.0044                                          | 0.0039                           | 0.0039                                          |

|                     |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-2                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 3,466    | 3,208                    | 3,169                                           | 2,245                            | 1,280                                           |
| Menomonee<br>River  | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 58       | 59                       | 59                                              | 67                               | 78                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 595      | 546                      | 542                                             | 376                              | 233                                             |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 208      | 211                      | 212                                             | 229                              | 253                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 1,250    | 1,111                    | 1,040                                           | 709                              | 418                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 84       | 85                       | 86                                              | 91                               | 96                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 135      | 119                      | 117                                             | 79                               | 49                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 139      | 142                      | 142                                             | 148                              | 152                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.26     | 9.45                     | 9.46                                            | 9.49                             | 9.51                                            |
|                     |                                 | Median (mg/l)                                                                          | 9.71     | 9.96                     | 9.96                                            | 9.95                             | 9.93                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0704   | 0.0698                   | 0.0696                                          | 0.0651                           | 0.0611                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0645   | 0.0659                   | 0.0659                                          | 0.0609                           | 0.0574                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 86       | 88                       | 88                                              | 90                               | 93                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.53     | 1.33                     | 1.33                                            | 1.19                             | 1.17                                            |
|                     |                                 | Median (mg/l)                                                                          | 1.51     | 1.31                     | 1.31                                            | 1.19                             | 1.17                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                            | 20.09    | 18.00                    | 17.99                                           | 17.96                            | 17.92                                           |
|                     |                                 | Median (mg/l)                                                                          | 11.64    | 11.20                    | 11.20                                           | 10.88                            | 10.83                                           |
|                     | Copper                          | Mean (mg/l)                                                                            | 0.0187   | 0.0183                   | 0.0182                                          | 0.0173                           | 0.0174                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0141   | 0.0134                   | 0.0134                                          | 0.0130                           | 0.0130                                          |

|                     |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-3                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 931      | 828                      | 808                                             | 533                              | 320                                             |
| Menomonee<br>River  | Menomonee<br>River (annual)     | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 86       | 87                       | 88                                              | 93                               | 98                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 141      | 127                      | 126                                             | 80                               | 53                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 308      | 320                      | 320                                             | 353                              | 364                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 494      | 442                      | 406                                             | 286                              | 180                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 94       | 94                       | 95                                              | 97                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 40       | 35                       | 34                                              | 24                               | 16                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 150      | 151                      | 151                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.12     | 9.28                     | 9.28                                            | 9.32                             | 9.34                                            |
|                     |                                 | Median (mg/l)                                                                          | 9.74     | 9.95                     | 9.96                                            | 9.93                             | 9.90                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0620   | 0.0619                   | 0.0618                                          | 0.0553                           | 0.0522                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0589   | 0.0600                   | 0.0600                                          | 0.0533                           | 0.0508                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 93       | 94                       | 94                                              | 96                               | 98                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.53     | 1.40                     | 1.40                                            | 1.18                             | 1.15                                            |
|                     |                                 | Median (mg/l)                                                                          | 1.44     | 1.31                     | 1.31                                            | 1.13                             | 1.10                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                            | 19.00    | 17.49                    | 17.49                                           | 17.19                            | 17.12                                           |
|                     |                                 | Median (mg/l)                                                                          | 12.24    | 11.66                    | 11.65                                           | 11.11                            | 11.06                                           |
|                     | Copper                          | Mean (mg/l)                                                                            | 0.0056   | 0.0053                   | 0.0053                                          | 0.0050                           | 0.0050                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0051   | 0.0048                   | 0.0048                                          | 0.0045                           | 0.0045                                          |

|                     |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-4                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 850      | 731                      | 716                                             | 416                              | 278                                             |
| Milwaukee River     | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 85       | 89                       | 89                                              | 97                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 147      | 132                      | 131                                             | 78                               | 54                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 298      | 310                      | 310                                             | 360                              | 365                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 399      | 345                      | 319                                             | 235                              | 167                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 95       | 96                       | 96                                              | 98                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 37       | 31                       | 31                                              | 22                               | 15                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 150      | 151                      | 151                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                            | 9.51     | 9.62                     | 9.63                                            | 9.63                             | 9.64                                            |
|                     |                                 | Median (mg/l)                                                                          | 10.13    | 10.33                    | 10.34                                           | 10.28                            | 10.25                                           |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0591   | 0.0595                   | 0.0594                                          | 0.0512                           | 0.0486                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0545   | 0.0549                   | 0.0550                                          | 0.0467                           | 0.0448                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 92       | 91                       | 91                                              | 96                               | 97                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.58     | 1.49                     | 1.49                                            | 1.20                             | 1.15                                            |
| Total Suspe         |                                 | Median (mg/l)                                                                          | 1.42     | 1.33                     | 1.33                                            | 1.10                             | 1.06                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                            | 19.03    | 17.84                    | 17.84                                           | 17.34                            | 17.24                                           |
|                     |                                 | Median (mg/l)                                                                          | 12.06    | 11.75                    | 11.75                                           | 10.94                            | 10.84                                           |
|                     | Copper                          | Mean (mg/l)                                                                            | 0.0054   | 0.0052                   | 0.0052                                          | 0.0048                           | 0.0048                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0051   | 0.0049                   | 0.0049                                          | 0.0045                           | 0.0045                                          |

|                     |                                 |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| -                   | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 352      | 358                      | 265                                             | 184                              | 129                                             |
| Kinnickinnic River  | (annual)                        | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 98       | 98                       | 99                                              | 99                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 52       | 48                       | 47                                              | 31                               | 21                                              |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 363      | 363                      | 363                                             | 364                              | 365                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                                | 255      | 298                      | 166                                             | 140                              | 118                                             |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 98       | 99                       | 99                                              | 99                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                                      | 17       | 15                       | 15                                              | 11                               | 9                                               |
|                     |                                 | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 152      | 152                      | 153                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                                            | 8.09     | 8.24                     | 8.26                                            | 8.37                             | 8.42                                            |
|                     |                                 | Median (mg/l)                                                                          | 8.58     | 8.74                     | 8.76                                            | 8.91                             | 8.95                                            |
|                     |                                 | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                                            | 0.0490   | 0.0480                   | 0.0471                                          | 0.0423                           | 0.0398                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0436   | 0.0429                   | 0.0429                                          | 0.0384                           | 0.0365                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 97       | 97                       | 98                                              | 99                               | 99                                              |
|                     | Total Nitrogen                  | Mean (mg/l)                                                                            | 1.39     | 1.32                     | 1.31                                            | 1.13                             | 1.10                                            |
|                     |                                 | Median (mg/l)                                                                          | 1.30     | 1.24                     | 1.23                                            | 1.07                             | 1.05                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                                            | 12.16    | 11.26                    | 11.20                                           | 10.85                            | 10.80                                           |
|                     |                                 | Median (mg/l)                                                                          | 7.83     | 7.44                     | 7.44                                            | 7.08                             | 7.03                                            |
|                     | Copper                          | Mean (mg/l)                                                                            | 0.0069   | 0.0066                   | 0.0066                                          | 0.0063                           | 0.0063                                          |
|                     |                                 | Median (mg/l)                                                                          | 0.0070   | 0.0066                   | 0.0065                                          | 0.0062                           | 0.0062                                          |

|                             |                                   |                                                                                        |          |                          | Condition                                       |                                  |                                                 |
|-----------------------------|-----------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point         | Water Quality<br>Indicator        | Statistic                                                                              | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-6                        | Fecal Coliform Bacteria           | Mean (cells per 100 ml)                                                                | 445      | 396                      | 383                                             | 230                              | 160                                             |
| Mouth of<br>Milwaukee River | Mouth of (annual) Milwaukee River | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 95       | 96                       | 97                                              | 99                               | 99                                              |
|                             |                                   | Geometric mean (cells per 100 ml)                                                      | 78       | 74                       | 73                                              | 47                               | 35                                              |
|                             |                                   | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 352      | 357                      | 358                                             | 365                              | 365                                             |
|                             | Fecal Coliform Bacteria           | Mean (cells per 100 ml)                                                                | 229      | 203                      | 180                                             | 139                              | 107                                             |
|                             | (May-September: 153 days total)   | Percent compliance with single sample standard (<2,000 cells per 100 ml) <sup>d</sup>  | 98       | 98                       | 98                                              | 99                               | 99                                              |
|                             |                                   | Geometric mean (cells per 100 ml)                                                      | 26       | 23                       | 23                                              | 18                               | 14                                              |
|                             |                                   | Days of compliance with geometric mean standard (<1,000 cells per 100 ml) <sup>d</sup> | 152      | 152                      | 152                                             | 153                              | 153                                             |
|                             | Dissolved Oxygen                  | Mean (mg/l)                                                                            | 9.46     | 9.55                     | 9.55                                            | 9.58                             | 9.59                                            |
|                             |                                   | Median (mg/l)                                                                          | 9.97     | 10.10                    | 10.11                                           | 10.13                            | 10.13                                           |
|                             |                                   | Percent compliance with dissolved oxygen standard (>2 mg/l) <sup>d</sup>               | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                             | Total Phosphorus                  | Mean (mg/l)                                                                            | 0.0471   | 0.0473                   | 0.0472                                          | 0.0418                           | 0.0398                                          |
|                             |                                   | Median (mg/l)                                                                          | 0.0424   | 0.0427                   | 0.0426                                          | 0.0378                           | 0.0364                                          |
|                             |                                   | Percent compliance with recommended phosphorus standard (0.1 mg/l)                     | 97       | 97                       | 97                                              | 98                               | 99                                              |
|                             | Total Nitrogen                    | Mean (mg/l)                                                                            | 1.51     | 1.44                     | 1.44                                            | 1.24                             | 1.21                                            |
|                             |                                   | Median (mg/l)                                                                          | 1.44     | 1.39                     | 1.39                                            | 1.20                             | 1.16                                            |
|                             | Total Suspended Solids            | Mean (mg/l)                                                                            | 13.28    | 12.62                    | 12.61                                           | 12.18                            | 12.12                                           |
|                             |                                   | Median (mg/l)                                                                          | 8.48     | 8.28                     | 8.28                                            | 7.83                             | 7.77                                            |
|                             | Copper                            | Mean (mg/l)                                                                            | 0.0072   | 0.0069                   | 0.0069                                          | 0.0066                           | 0.0067                                          |
|                             |                                   | Median (mg/l)                                                                          | 0.0073   | 0.0069                   | 0.0069                                          | 0.0066                           | 0.0066                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-7                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 91       | 84                       | 78                                              | 53                               | 41                                              |
| Outer Harbor        | Outer Harbor (annual)           | Percent compliance with single sample standard (<400 cells per 100 ml)  | 96       | 97                       | 97                                              | 98                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 21       | 20                       | 20                                              | 15                               | 12                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 360      | 361                      | 361                                             | 365                              | 365                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 81       | 73                       | 64                                              | 53                               | 43                                              |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                       | 98                                              | 98                               | 98                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 13       | 12                       | 12                                              | 10                               | 9                                               |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152                      | 152                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.34    | 10.36                    | 10.36                                           | 10.37                            | 10.37                                           |
|                     |                                 | Median (mg/l)                                                           | 10.69    | 10.73                    | 10.74                                           | 10.74                            | 10.75                                           |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.0274   | 0.0276                   | 0.0276                                          | 0.0258                           | 0.0250                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0242   | 0.0246                   | 0.0246                                          | 0.0231                           | 0.0226                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 99                       | 99                                              | 100                              | 100                                             |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.15     | 1.13                     | 1.13                                            | 1.06                             | 1.05                                            |
|                     |                                 | Median (mg/l)                                                           | 1.09     | 1.08                     | 1.08                                            | 1.03                             | 1.02                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 6.45     | 6.22                     | 6.22                                            | 6.10                             | 6.09                                            |
|                     |                                 | Median (mg/l)                                                           | 4.01     | 4.03                     | 4.03                                            | 3.93                             | 3.91                                            |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0094   | 0.0093                   | 0.0093                                          | 0.0092                           | 0.0092                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0096   | 0.0095                   | 0.0095                                          | 0.0094                           | 0.0094                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-8                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 66       | 61                       | 55                                              | 39                               | 30                                              |
| Outer Harbor        | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                       | 98                                              | 99                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 15       | 15                       | 15                                              | 11                               | 9                                               |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 363      | 363                      | 363                                             | 365                              | 365                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 65       | 59                       | 51                                              | 42                               | 34                                              |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 98       | 98                       | 98                                              | 99                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 11       | 10                       | 10                                              | 9                                | 7                                               |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152                      | 152                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.51    | 10.52                    | 10.52                                           | 10.53                            | 10.53                                           |
|                     |                                 | Median (mg/l)                                                           | 10.80    | 10.83                    | 10.83                                           | 10.84                            | 10.84                                           |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.0236   | 0.0239                   | 0.0238                                          | 0.0223                           | 0.0217                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0195   | 0.0199                   | 0.0199                                          | 0.0190                           | 0.0187                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 99                       | 99                                              | 100                              | 100                                             |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.04     | 1.02                     | 1.02                                            | 0.97                             | 0.96                                            |
|                     |                                 | Median (mg/l)                                                           | 0.98     | 0.97                     | 0.97                                            | 0.93                             | 0.92                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 5.74     | 5.55                     | 5.55                                            | 5.45                             | 5.44                                            |
|                     |                                 | Median (mg/l)                                                           | 3.51     | 3.54                     | 3.54                                            | 3.44                             | 3.43                                            |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0095   | 0.0094                   | 0.0094                                          | 0.0093                           | 0.0093                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0097   | 0.0096                   | 0.0096                                          | 0.0096                           | 0.0096                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-9                | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 47       | 43                       | 41                                              | 27                               | 20                                              |
| Outer Harbor        | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 98       | 98                       | 99                                              | 99                               | 100                                             |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 11       | 11                       | 11                                              | 8                                | 7                                               |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                      | 365                                             | 365                              | 365                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 26       | 23                       | 21                                              | 17                               | 14                                              |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 99       | 99                       | 99                                              | 99                               | 100                                             |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 6        | 6                        | 6                                               | 5                                | 4                                               |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.68    | 10.70                    | 10.71                                           | 10.71                            | 10.71                                           |
|                     |                                 | Median (mg/l)                                                           | 10.94    | 10.97                    | 10.98                                           | 10.99                            | 11.00                                           |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.0205   | 0.0205                   | 0.0205                                          | 0.0193                           | 0.0189                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0179   | 0.0182                   | 0.0182                                          | 0.0172                           | 0.0169                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 0.95     | 0.93                     | 0.93                                            | 0.89                             | 0.89                                            |
|                     |                                 | Median (mg/l)                                                           | 0.84     | 0.83                     | 0.83                                            | 0.80                             | 0.79                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 4.64     | 4.50                     | 4.50                                            | 4.40                             | 4.39                                            |
|                     |                                 | Median (mg/l)                                                           | 3.19     | 3.20                     | 3.20                                            | 3.16                             | 3.15                                            |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0097   | 0.0096                   | 0.0096                                          | 0.0095                           | 0.0096                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0099   | 0.0098                   | 0.0098                                          | 0.0098                           | 0.0098                                          |

|                     |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-10               | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 66       | 61                       | 57                                              | 39                               | 30                                              |
| Outer Harbor        | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                       | 98                                              | 99                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 17       | 16                       | 16                                              | 12                               | 10                                              |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 362      | 363                      | 363                                             | 364                              | 365                                             |
|                     | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 50       | 46                       | 40                                              | 34                               | 28                                              |
|                     | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 98       | 98                       | 98                                              | 99                               | 99                                              |
|                     |                                 | Geometric mean (cells per 100 ml)                                       | 11       | 11                       | 10                                              | 9                                | 8                                               |
|                     |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 152      | 152                      | 152                                             | 153                              | 153                                             |
|                     | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.37    | 10.38                    | 10.39                                           | 10.39                            | 10.39                                           |
|                     |                                 | Median (mg/l)                                                           | 10.75    | 10.78                    | 10.78                                           | 10.79                            | 10.80                                           |
|                     |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Phosphorus                | Mean (mg/l)                                                             | 0.0262   | 0.0263                   | 0.0263                                          | 0.0248                           | 0.0242                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0233   | 0.0236                   | 0.0236                                          | 0.0225                           | 0.0220                                          |
|                     |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 99       | 100                      | 100                                             | 100                              | 100                                             |
|                     | Total Nitrogen                  | Mean (mg/l)                                                             | 1.14     | 1.12                     | 1.13                                            | 1.07                             | 1.06                                            |
|                     |                                 | Median (mg/l)                                                           | 1.08     | 1.06                     | 1.07                                            | 1.03                             | 1.02                                            |
|                     | Total Suspended Solids          | Mean (mg/l)                                                             | 5.64     | 5.45                     | 5.45                                            | 5.34                             | 5.32                                            |
|                     |                                 | Median (mg/l)                                                           | 3.68     | 3.71                     | 3.71                                            | 3.62                             | 3.61                                            |
|                     | Copper                          | Mean (mg/l)                                                             | 0.0096   | 0.0095                   | 0.0095                                          | 0.0095                           | 0.0095                                          |
|                     |                                 | Median (mg/l)                                                           | 0.0097   | 0.0096                   | 0.0096                                          | 0.0096                           | 0.0096                                          |

|                                 |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-11                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 11       | 10                       | 10                                              | 7                                | 5                                               |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 5        | 5                        | 5                                               | 4                                | 3                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                      | 365                                             | 365                              | 365                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6        | 5                        | 5                                               | 4                                | 3                                               |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 3        | 3                        | 3                                               | 3                                | 3                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                             | 153                              | 153                                             |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.21    | 11.21                    | 11.21                                           | 11.21                            | 11.21                                           |
|                                 |                                 | Median (mg/l)                                                           | 11.49    | 11.50                    | 11.50                                           | 11.51                            | 11.51                                           |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0095   | 0.0095                   | 0.0095                                          | 0.0093                           | 0.0092                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0076   | 0.0077                   | 0.0077                                          | 0.0075                           | 0.0074                                          |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.62     | 0.61                     | 0.61                                            | 0.61                             | 0.60                                            |
|                                 |                                 | Median (mg/l)                                                           | 0.55     | 0.55                     | 0.55                                            | 0.55                             | 0.55                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.64     | 2.61                     | 2.61                                            | 2.58                             | 2.57                                            |
|                                 |                                 | Median (mg/l)                                                           | 2.34     | 2.34                     | 2.34                                            | 2.33                             | 2.33                                            |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.0099   | 0.0099                   | 0.0099                                          | 0.0099                           | 0.0099                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0100   | 0.0100                   | 0.0100                                          | 0.0100                           | 0.0100                                          |

|                                 |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-12                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 12       | 11                       | 11                                              | 8                                | 6                                               |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 5        | 5                        | 5                                               | 4                                | 4                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                      | 365                                             | 365                              | 365                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 6        | 6                        | 6                                               | 5                                | 4                                               |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 4        | 3                        | 3                                               | 3                                | 3                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                             | 153                              | 153                                             |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.18    | 11.19                    | 11.19                                           | 11.19                            | 11.19                                           |
|                                 |                                 | Median (mg/l)                                                           | 11.46    | 11.48                    | 11.48                                           | 11.48                            | 11.48                                           |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0099   | 0.0099                   | 0.0099                                          | 0.0096                           | 0.0095                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0080   | 0.0080                   | 0.0081                                          | 0.0078                           | 0.0077                                          |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.63     | 0.63                     | 0.63                                            | 0.62                             | 0.61                                            |
|                                 |                                 | Median (mg/l)                                                           | 0.56     | 0.56                     | 0.56                                            | 0.55                             | 0.55                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.71     | 2.67                     | 2.67                                            | 2.64                             | 2.63                                            |
|                                 |                                 | Median (mg/l)                                                           | 2.39     | 2.38                     | 2.38                                            | 2.37                             | 2.37                                            |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.0099   | 0.0099                   | 0.0099                                          | 0.0098                           | 0.0098                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0100   | 0.0100                   | 0.0100                                          | 0.0100                           | 0.0100                                          |

|                                 |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-13                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 69       | 59                       | 59                                              | 40                               | 25                                              |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                       | 98                                              | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 16       | 15                       | 15                                              | 11                               | 9                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 363      | 364                      | 364                                             | 365                              | 365                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 58       | 49                       | 48                                              | 35                               | 22                                              |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 97       | 98                       | 98                                              | 99                               | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 10       | 9                        | 9                                               | 8                                | 6                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                             | 153                              | 153                                             |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 10.87    | 10.89                    | 10.89                                           | 10.88                            | 10.88                                           |
|                                 |                                 | Median (mg/l)                                                           | 11.14    | 11.16                    | 11.17                                           | 11.16                            | 11.15                                           |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0195   | 0.0195                   | 0.0195                                          | 0.0186                           | 0.0182                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0162   | 0.0164                   | 0.0164                                          | 0.0157                           | 0.0155                                          |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.86     | 0.85                     | 0.85                                            | 0.82                             | 0.82                                            |
|                                 |                                 | Median (mg/l)                                                           | 0.78     | 0.77                     | 0.78                                            | 0.76                             | 0.75                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 4.24     | 4.04                     | 4.04                                            | 3.97                             | 3.96                                            |
|                                 |                                 | Median (mg/l)                                                           | 2.84     | 2.82                     | 2.82                                            | 2.78                             | 2.77                                            |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.0098   | 0.0098                   | 0.0098                                          | 0.0097                           | 0.0097                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0099   | 0.0099                   | 0.0099                                          | 0.0099                           | 0.0099                                          |

|                                 |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-14                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 3        | 3                        | 3                                               | 3                                | 2                                               |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 2        | 2                        | 2                                               | 2                                | 2                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                      | 365                                             | 365                              | 365                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 2        | 2                        | 2                                               | 2                                | 2                                               |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 2        | 2                        | 2                                               | 2                                | 2                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                             | 153                              | 153                                             |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.36    | 11.36                    | 11.36                                           | 11.36                            | 11.36                                           |
|                                 |                                 | Median (mg/l)                                                           | 11.64    | 11.66                    | 11.66                                           | 11.66                            | 11.66                                           |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0068   | 0.0068                   | 0.0068                                          | 0.0067                           | 0.0067                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0049   | 0.0049                   | 0.0049                                          | 0.0048                           | 0.0048                                          |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.54     | 0.54                     | 0.54                                            | 0.54                             | 0.54                                            |
|                                 |                                 | Median (mg/l)                                                           | 0.53     | 0.53                     | 0.53                                            | 0.52                             | 0.52                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.39     | 2.38                     | 2.38                                            | 2.37                             | 2.37                                            |
|                                 |                                 | Median (mg/l)                                                           | 2.33     | 2.32                     | 2.32                                            | 2.32                             | 2.32                                            |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.0099   | 0.0099                   | 0.0099                                          | 0.0099                           | 0.0099                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0100   | 0.0100                   | 0.0100                                          | 0.0100                           | 0.0100                                          |

|                                 |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-15                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 5        | 5                        | 4                                                           | 4                                | 3                                               |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 3        | 3                        | 3                                                           | 3                                | 2                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                      | 365                                                         | 365                              | 365                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 8        | 7                        | 6                                                           | 5                                | 4                                               |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 3        | 3                        | 3                                                           | 3                                | 3                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                                         | 153                              | 153                                             |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.31    | 11.32                    | 11.32                                                       | 11.31                            | 11.31                                           |
|                                 |                                 | Median (mg/l)                                                           | 11.59    | 11.59                    | 11.59                                                       | 11.60                            | 11.60                                           |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0086   | 0.0086                   | 0.0086                                                      | 0.0084                           | 0.0083                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0064   | 0.0065                   | 0.0065                                                      | 0.0063                           | 0.0063                                          |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.58     | 0.57                     | 0.57                                                        | 0.57                             | 0.57                                            |
|                                 |                                 | Median (mg/l)                                                           | 0.55     | 0.55                     | 0.55                                                        | 0.55                             | 0.55                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.67     | 2.63                     | 2.63                                                        | 2.63                             | 2.63                                            |
|                                 |                                 | Median (mg/l)                                                           | 2.31     | 2.31                     | 2.31                                                        | 2.30                             | 2.30                                            |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.0099   | 0.0099                   | 0.0099                                                      | 0.0099                           | 0.0099                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0100   | 0.0100                   | 0.0100                                                      | 0.0100                           | 0.0100                                          |

|                                 |                                 |                                                                         |          |                          | Condition                                                   |                                  |                                                 |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-16                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 9        | 9                        | 9                                                           | 7                                | 5                                               |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 5        | 5                        | 5                                                           | 4                                | 3                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                      | 365                                                         | 365                              | 365                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 5        | 4                        | 4                                                           | 4                                | 3                                               |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 3        | 3                        | 3                                                           | 3                                | 3                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                                         | 153                              | 153                                             |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.26    | 11.27                    | 11.27                                                       | 11.27                            | 11.26                                           |
|                                 |                                 | Median (mg/l)                                                           | 11.56    | 11.57                    | 11.57                                                       | 11.56                            | 11.56                                           |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0118   | 0.0119                   | 0.0119                                                      | 0.0117                           | 0.0115                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0101   | 0.0102                   | 0.0103                                                      | 0.0100                           | 0.0099                                          |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.65     | 0.65                     | 0.65                                                        | 0.64                             | 0.64                                            |
|                                 |                                 | Median (mg/l)                                                           | 0.62     | 0.62                     | 0.62                                                        | 0.61                             | 0.61                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.57     | 2.53                     | 2.53                                                        | 2.50                             | 2.50                                            |
|                                 |                                 | Median (mg/l)                                                           | 2.30     | 2.30                     | 2.29                                                        | 2.28                             | 2.28                                            |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.0099   | 0.0099                   | 0.0099                                                      | 0.0099                           | 0.0099                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0100   | 0.0100                   | 0.0100                                                      | 0.0100                           | 0.0100                                          |

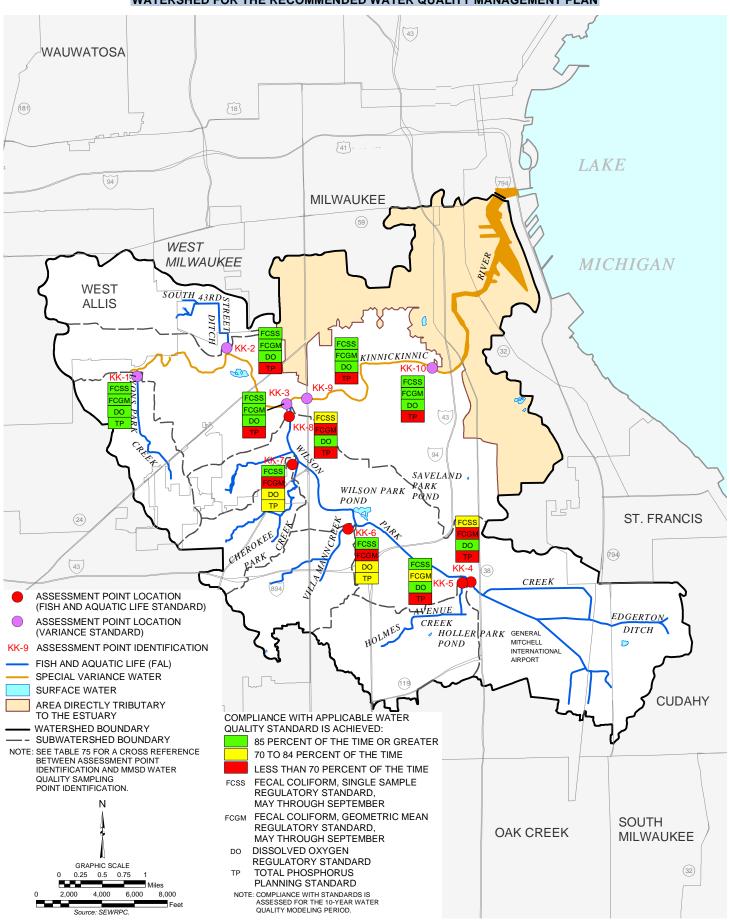
|                                 |                                 |                                                                         |          |                          | Condition                                       |                                  |                                                 |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point             | Water Quality<br>Indicator      | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOPb | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-17                           | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 21       | 21                       | 21                                              | 18                               | 16                                              |
| Nearshore Lake<br>Michigan Area | (annual)                        | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 8        | 8                        | 8                                               | 7                                | 6                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 364      | 364                      | 364                                             | 364                              | 364                                             |
|                                 | Fecal Coliform Bacteria         | Mean (cells per 100 ml)                                                 | 9        | 10                       | 10                                              | 8                                | 7                                               |
|                                 | (May-September: 153 days total) | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 |                                 | Geometric mean (cells per 100 ml)                                       | 5        | 5                        | 5                                               | 4                                | 4                                               |
|                                 |                                 | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                             | 153                              | 153                                             |
|                                 | Dissolved Oxygen                | Mean (mg/l)                                                             | 11.19    | 11.19                    | 11.19                                           | 11.19                            | 11.19                                           |
|                                 |                                 | Median (mg/l)                                                           | 11.39    | 11.40                    | 11.40                                           | 11.40                            | 11.40                                           |
|                                 |                                 | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Phosphorus                | Mean (mg/l)                                                             | 0.0196   | 0.0207                   | 0.0207                                          | 0.0206                           | 0.0205                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0161   | 0.0167                   | 0.0167                                          | 0.0166                           | 0.0165                                          |
|                                 |                                 | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                             | 100                              | 100                                             |
|                                 | Total Nitrogen                  | Mean (mg/l)                                                             | 0.97     | 1.02                     | 1.02                                            | 1.01                             | 1.01                                            |
|                                 |                                 | Median (mg/l)                                                           | 0.88     | 0.92                     | 0.92                                            | 0.91                             | 0.91                                            |
|                                 | Total Suspended Solids          | Mean (mg/l)                                                             | 2.52     | 2.50                     | 2.50                                            | 2.48                             | 2.48                                            |
|                                 |                                 | Median (mg/l)                                                           | 2.31     | 2.32                     | 2.32                                            | 2.31                             | 2.31                                            |
|                                 | Copper                          | Mean (mg/l)                                                             | 0.0102   | 0.0102                   | 0.0102                                          | 0.0102                           | 0.0102                                          |
|                                 |                                 | Median (mg/l)                                                           | 0.0101   | 0.0101                   | 0.0101                                          | 0.0101                           | 0.0101                                          |

|                                          |                                                               |                                                                         |          | Condition                |                                                             |                                  |                                                 |
|------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------|--------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------|
| Assessment<br>Point                      | Water Quality<br>Indicator                                    | Statistic                                                               | Existing | Revised 2020<br>Baseline | Revised 2020<br>Baseline with<br>Five-Year LOP <sup>b</sup> | Recommended<br>Plan <sup>C</sup> | "Extreme<br>Measures"<br>Condition <sup>C</sup> |
| LM-18<br>Nearshore Lake<br>Michigan Area | Fecal Coliform Bacteria<br>(annual)                           | Mean (cells per 100 ml)                                                 | 3        | 3                        | 3                                                           | 2                                | 2                                               |
|                                          |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                          |                                                               | Geometric mean (cells per 100 ml)                                       | 2        | 2                        | 2                                                           | 2                                | 2                                               |
|                                          |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 365      | 365                      | 365                                                         | 365                              | 365                                             |
|                                          | Fecal Coliform Bacteria<br>(May-September: 153<br>days total) | Mean (cells per 100 ml)                                                 | 2        | 2                        | 2                                                           | 2                                | 2                                               |
|                                          |                                                               | Percent compliance with single sample standard (<400 cells per 100 ml)  | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                          |                                                               | Geometric mean (cells per 100 ml)                                       | 2        | 2                        | 2                                                           | 2                                | 2                                               |
|                                          |                                                               | Days of compliance with geometric mean standard (<200 cells per 100 ml) | 153      | 153                      | 153                                                         | 153                              | 153                                             |
|                                          | Dissolved Oxygen                                              | Mean (mg/l)                                                             | 11.37    | 11.37                    | 11.37                                                       | 11.37                            | 11.37                                           |
|                                          |                                                               | Median (mg/l)                                                           | 11.63    | 11.63                    | 11.63                                                       | 11.63                            | 11.63                                           |
|                                          |                                                               | Percent compliance with dissolved oxygen standard (>5 mg/l)             | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                          | Total Phosphorus                                              | Mean (mg/l)                                                             | 0.0080   | 0.0080                   | 0.0080                                                      | 0.0080                           | 0.0079                                          |
|                                          |                                                               | Median (mg/l)                                                           | 0.0062   | 0.0063                   | 0.0063                                                      | 0.0062                           | 0.0062                                          |
|                                          |                                                               | Percent compliance with recommended phosphorus standard (0.1 mg/l)      | 100      | 100                      | 100                                                         | 100                              | 100                                             |
|                                          | Total Nitrogen                                                | Mean (mg/l)                                                             | 0.57     | 0.57                     | 0.57                                                        | 0.57                             | 0.57                                            |
|                                          |                                                               | Median (mg/l)                                                           | 0.56     | 0.56                     | 0.56                                                        | 0.56                             | 0.56                                            |
|                                          | Total Suspended Solids                                        | Mean (mg/l)                                                             | 2.20     | 2.20                     | 2.20                                                        | 2.19                             | 2.19                                            |
|                                          |                                                               | Median (mg/l)                                                           | 2.18     | 2.17                     | 2.17                                                        | 2.17                             | 2.17                                            |
|                                          | Copper                                                        | Mean (mg/l)                                                             | 0.0099   | 0.0099                   | 0.0099                                                      | 0.0099                           | 0.0099                                          |
|                                          |                                                               | Median (mg/l)                                                           | 0.0100   | 0.0100                   | 0.0100                                                      | 0.0100                           | 0.0100                                          |

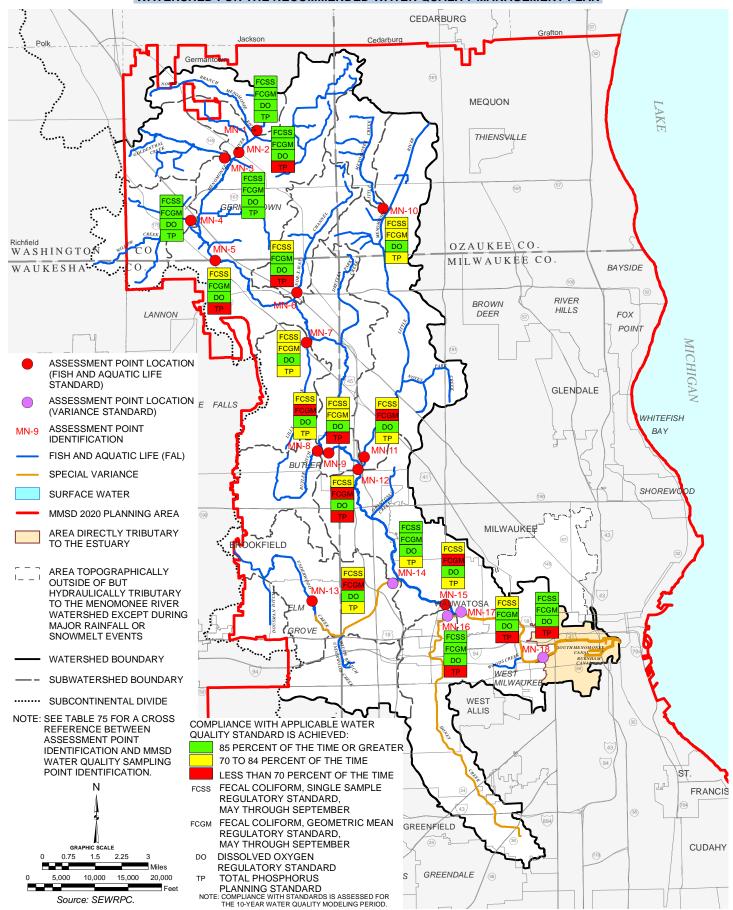
#### **Table N-6 Footnotes**

<sup>a</sup>In certain limited cases, relatively minor anomalies in concentrations or percents compliance may occur among the five conditions for which model results are presented in this table. Those anomalies might indicate a slight decrease in water quality under the recommended plan and/or "extreme measures" conditions, relative to revised 2020 baseline and/or revised 2020 baseline with five-year LOP conditions. In those cases, it may be assumed that no significant change in water quality occurs among those various conditions. Since it was not always possible to explicitly represent certain components of the recommended plan and "extreme measures" conditions in the LSPC water quality model, adjustments were made to model parameters that served as surrogates for the actual water pollution control measure being represented. In the sense that those modifications sometimes alter parameters in the revised 2020 baseline and/or revised 2020 baseline with five-year LOP model versions, in limited cases, representation of a measure in the recommended plan or "extreme measures" models may have a side effect of introducing small, relatively insignificant anomalies in the comparative results.

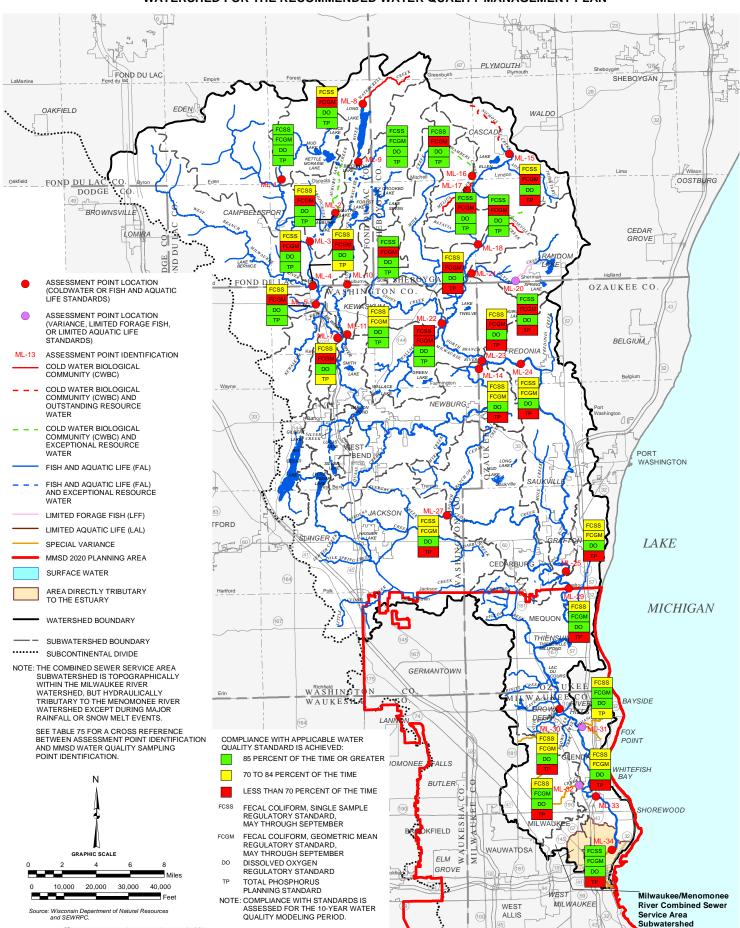
<sup>b</sup>Five-Year LOP refers to a five-year recurrence interval level of protection against sanitary sewer overflows.


<sup>C</sup>Within the water quality models for the recommended plan and extreme measures condition, the detection and elimination of illicit discharges to storm sewer systems and control of urban sourced pathogens, including those in stormwater runoff, are represented using stormwater disinfection units. Such units were initially considered as a recommended approach to treatment of runoff, but were eliminated from further consideration based on comments from the Technical Advisory Committee. However, the use of such units is considered to be appropriate as a surrogate representation of the varied and as yet undetermined means that would be applied to detect and eliminate illicit discharges and to control pathogens in urban stormwater runoff. Those units explicitly address the control of bacteria in stormwater runoff, and, based on the way that bacteria loads are represented in the calibrated model, they also implicitly provide some control of bacteria that may reach streams through illicit connections that contribute to baseflow.

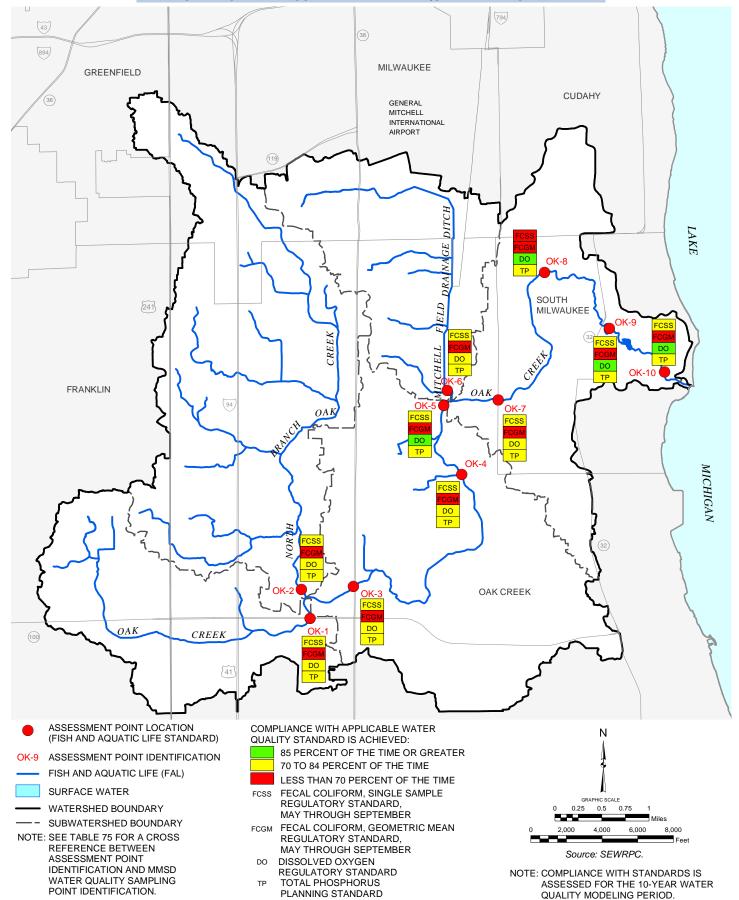
<sup>d</sup>This assessment point is located within the estuary. Variance standards are from Chapter NR 104 of the Wisconsin Administrative Code apply.


Source: HydroQual, Inc., and SEWRPC.

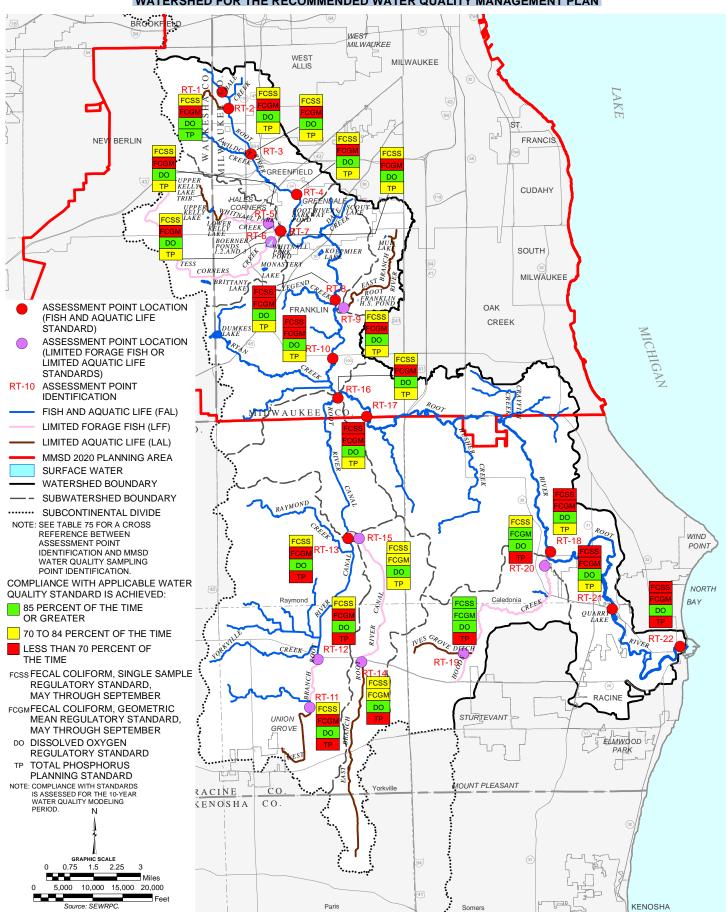
#### Map N-1


# ASSESSMENT POINTS WITHIN THE KINNICKINNIC RIVER WATERSHED FOR THE RECOMMENDED WATER QUALITY MANAGEMENT PLAN



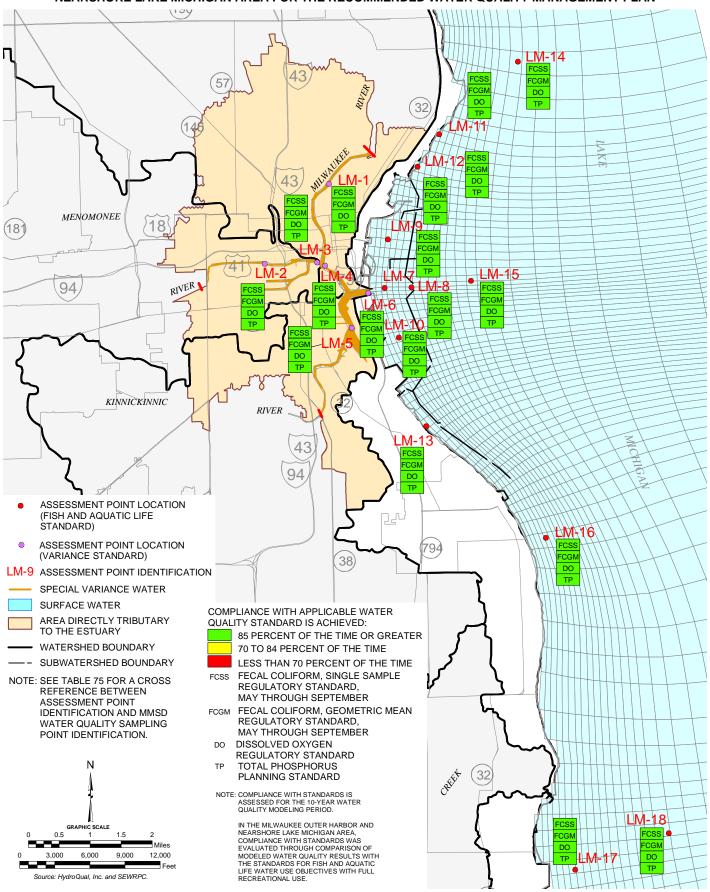

## ASSESSMENT POINTS WITHIN THE MENOMONEE RIVER WATERSHED FOR THE RECOMMENDED WATER QUALITY MANAGEMENT PLAN




## ASSESSMENT POINTS WITHIN THE MILWAUKEE RIVER WATERSHED FOR THE RECOMMENDED WATER QUALITY MANAGEMENT PLAN



# ASSESSMENT POINTS WITHIN THE OAK CREEK WATERSHED FOR THE RECOMMENDED WATER QUALITY MANAGEMENT PLAN




# ASSESSMENT POINTS WITHIN THE ROOT RIVER WATERSHED FOR THE RECOMMENDED WATER QUALITY MANAGEMENT PLAN



Map N-6

# ASSESSMENT POINTS WITHIN THE MILWAUKEE HARBOR ESTUARY AND NEARSHORE LAKE MICHIGAN AREA FOR THE RECOMMENDED WATER QUALITY MANAGEMENT PLAN



(This page intentionally left blank)

## **Appendix O**

## RIPARIAN BUFFER EFFECTIVENESS ANALYSIS

#### INTRODUCTION

The scientific literature on the effectiveness of riparian buffers in improving water quality through processing and removing anthropogenic contaminants from surface and ground waters is extensive. Added to this literature is legal practice that has established the principle of shoreline setbacks, especially with respect to both the shoreland management of lakes and flowages and to flood control. Recently, riparian buffers have been employed as an environmental management tool. Despite significant research efforts, there remains no consensus for what constitutes optimal riparian buffer design or proper buffer width to achieve maximum pollutant removal effectiveness, water quality protection, and biological protection. The Wisconsin Buffer Initiative (WBI) further developed two key concepts that are relevant to this plan: 1) riparian buffers are very effective in protecting water resources, and 2) riparian buffers need to be a part of a larger conservation system to be most effective. However, it is important to note that the WBI limited its assessment and recommendations solely to the protection of water quality, and did not consider the additional values and benefits of riparian buffers such as flood control, prevention of channel erosion, provision of fish and wildlife habitat, enhancement of environmental corridors, and water temperature moderation, among others.

This analysis seeks to identify documented scientific information extracted from published literature, which allowed the derivation of the recommended 75-foot-wide riparian buffer width for lakes and streams in the regional water quality management plan update study area, and by extension, the Southeastern Wisconsin Region. This will aid managers and planners in making decisions about establishing, maintaining, or restoring riparian buffers adjacent to all waterbodies. Although, buffer width stands out as one factor influencing the capacity for buffers to remove potential contaminants, numerous other factors described herein play significant roles in the establishment of 75-foot-wide riparian buffers as part of this comprehensive water quality management plan update.

More than 65 peer-reviewed scientific publications dating from 1975 through 2005 were examined for data on the effectiveness of riparian buffers for total suspended solids (TSS), nitrogen, and phosphorus removal around streams and lakes. These data form the basis for defining the relationship between buffer width and percent removal efficiencies for those contaminants. When introduced into the natural environment in quantities or

<sup>&</sup>lt;sup>1</sup>University of Wisconsin-Madison, College of Agricultural and Life Sciences, The Wisconsin Buffer Initiative, December 2005.

concentrations exceeding the absorption capacity of shoreland buffers, these potential pollutants have the ability to negatively impact waterways and waterbodies, diminishing their utility as recreational and aesthetic resources and reducing their value as essential elements of aquatic ecosystems.

As part of this analysis, three key elements were incorporated into the general 75-foot buffer width recommendation set forth in the regional water quality management plan update. These elements are:

- The value of riparian buffers as vegetated zones adjacent to streams, lakes, and wetlands and their use as a best management practice (BMP) for **controlling contaminants** such as nutrients and TSS entering waterbodies.
- The value of riparian buffers as habitat areas adjacent to streams, lakes, and wetlands and their use as
  a BMP for protecting and maintaining species habitat and diversity, especially amongst species of
  economic concern.
- The role of riparian buffers as a **component of comprehensive watershed management plans**, which must also include point source and nonpoint source control of nutrients and TSS loadings.

#### CONTROL OF CONTAMINANTS

Riparian buffers are one of the most effective best management practices to protect water resources in terms of water quality, riverbank stability, wildlife habitat, and aesthetics. These strips of grass, shrubs, and/or trees along the banks of rivers, streams, and lake shorelines filter polluted runoff and provide a transition zone between the land and water and associated human uses. These buffers work in various ways and with varying degrees of effectiveness. Effectiveness depends upon a number of factors including the nature of the specific contaminant, its environmental reactivity, the mass of contaminant being conveyed across the land surface, and the distance and slope across which the contaminant is being carried. The role of buffers in controlling and managing the transfer of several major contaminants through the land-water ecotone, or interface, is briefly reviewed below.

#### **Sediment Filter**

Riparian buffers help catch and filter out sediment and debris from surface runoff. Depending upon the width and complexity of the buffer, generally 50 percent to 100 percent of the sediment particles—as well as the nutrients and other contaminants attached to them—can settle out and be retained within the buffer strip as plants slow sediment-laden runoff waters. These buffers act as physical filters, retaining particulates within the mass of plant materials, roots, and stalks. For this purpose, wider forested buffers are even more effective than narrow grassed buffers.

#### Nutrient Filter, Transformer, and Sink

Riparian buffers "trap" pollutants that could otherwise wash into surface and ground water. Such buffers act both as a physical filter, retaining contaminants that adhere to sediment particles through the settling processes described above, and as biological filters. The plants that comprise the buffer strips can utilize a portion of the nutrient load being processed through the buffer strip for nutrition and growth. Phosphorus and nitrogen from sources such as fertilizer application and animal waste can become pollutants if more is applied to the land than upland plants can use. These "excess" nutrients can be transported by runoff of rainfall or snowmelt to aquatic systems, such as streams and lakes where the nutrients are then available to support and sustain the growth and reproduction of shoreland and aquatic plants. In large quantities, these plants commonly limit recreational use of the waters and shorelands, and interfere with the aesthetic enjoyment of these areas.

Phosphorus stimulates growth (i.e. it is a growth limiting element) of both terrestrial and aquatic plants in the Southeastern Wisconsin Region, and is largely responsible for the eutrophication of our waterbodies. The affinity of this element to soil particles results in approximately 80 percent or more of the available phosphorus being captured when sediment is filtered out of surface runoff by passing through the buffer.

In the case of nitrogen, another important element for plant growth, the chemical and biological activity in the soil, particularly in the soils of streamside forests, can capture and transform nitrogen and other pollutants into less biologically-available forms. Nitrogen-fixing bacteria are especially useful in capturing "excessive" nitrogen and transforming the elemental nitrogen into biologically available and/or gaseous forms.

It should be noted that, with respect to aquatic systems, the vegetation within the buffers acts as a temporary sink as the nutrients and excess water are taken up by root systems and stored in the biomass of trees during the growing season. A large portion of these nutrients are then re-released into the environment during the autumn as the plants senesce or die; however, nutrients entering the aquatic environment during the fall are less likely to create or contribute to conditions that interfere with human recreational use and aesthetic enjoyment of the downstream water resources.

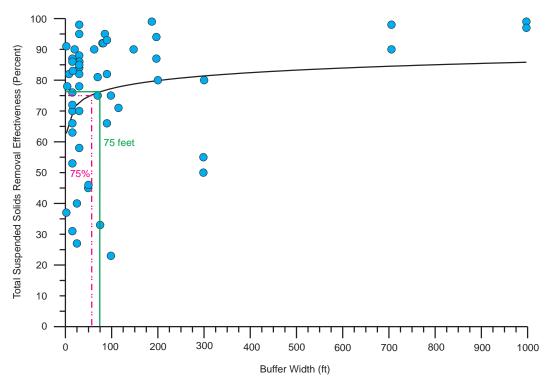
#### **Stream Flow Regulator**

Riparian buffers slow the passage of water across the land surface and allow water to infiltrate into the soil. This recharge contributes to the maintenance of the groundwater supply. Groundwater reaches streams and rivers at a much slower rate, and over longer periods of time, than surface runoff. Thus, increasing recharge helps maintain stream flow during the driest times of the year.

#### **Bed and Bank Stabilizer**

Riparian buffer vegetation helps to stabilize streambanks and shorelines and reduce erosion. The roots of the plants hold bank soils together, and the stems protect banks by deflecting the erosive action of waves, ice, boat wakes, and storm runoff. In like manner, riparian buffers also can reduce the amount of streambed scour by absorbing surface water runoff and slowing water velocities. When plant cover is removed, more surface water reaches a stream, causing the water to crest higher during storms or snowmelt, and subjecting the shorelands to higher flow velocities that can scour shorelines and streambeds.

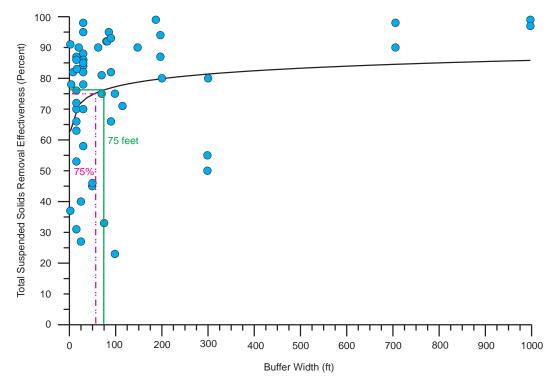
#### **Effectiveness of Shoreland Buffers**


The following range of buffer widths can be gleaned from the literature:

- To Stabilize Eroding Banks: On smaller streams, good erosion control may only require covering the banks with shrubs and trees, and a 35-foot-wide managed grass buffer. If there is active bank erosion, or on larger streams, at least a 50-foot width is necessary. Severe bank erosion on larger streams may require engineering actions to stabilize and protect the bank; however, once completed, bank protection can be done with plants. For better stabilization, more of the buffer should be planted in shrubs and trees.
- To Filter Sediment and Attached Contaminants from Runoff: For slopes of less than 15 percent, most sediment settling occurs within a 35-foot-wide buffer of grass. Greater width is needed on steeper slopes, for shrubs and trees, or where sediment loads are particularly high.
- To Filter Dissolved Nutrients and Pesticides from Runoff: A width of up to 100 feet or more may be
  necessary on steeper slopes and on less permeable soils to allow runoff to soak in sufficiently, and for
  vegetation and microbes to work on nutrients and pesticides. Most pollutants are removed within
  75 feet.

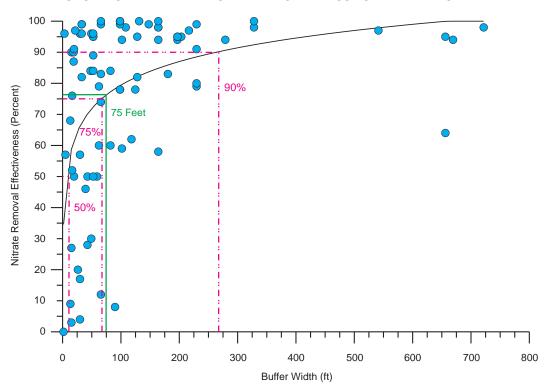
Based upon the literature review, for the purposes of contaminant management, a buffer width of 75 feet represents the most appropriate width for water quality protection. As shown in Figures O-1 through O-4, and consistent with the water quality modeling assumptions applied for the regional water quality management plan update, a 75-foot buffer width provides a high level of effectiveness in reducing TSS loads delivered to the buffer by about 75 percent, delivered total nitrogen loads by about 65 percent, delivered nitrate loads by about 75 percent, and delivered total phosphorus loads by about 70 percent. There are increased benefits of reduction beyond the 75-foot width for each of these parameters. For example, about 90 percent removal effectiveness would be expected for both nitrate and total phosphorus at approximately a 300-foot buffer width. Coincidently,

Figure O-1


RELATIONSHIP OF TOTAL SUSPENDED SOLIDS REMOVAL EFFECTIVENESS TO RIPARIAN BUFFER WIDTH



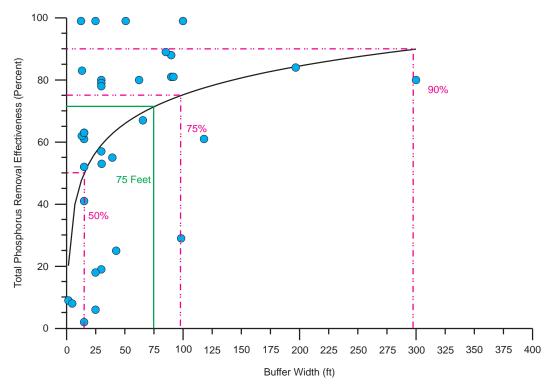
Source: SEWRPC.


Figure O-2

RELATIONSHIP OF TOTAL NITROGEN REMOVAL EFFECTIVENESS TO RIPARIAN BUFFER WIDTH



Source: SEWRPC.


Figure O-3
RELATIONSHIP OF NITRATE REMOVAL EFFECTIVENESS TO RIPARIAN BUFFER WIDTH



Source: SEWRPC.

Figure O-4

RELATIONSHIP OF TOTAL PHOSPHORUS REMOVAL EFFECTIVENESS TO RIPARIAN BUFFER WIDTH



Source: SEWRPC.

this 300-foot buffer width is well within the range for added biological community benefits as described below. However, examination of Figures O-1 through O-4 indicates that for a relatively high cost, as indicated by the incremental buffer width beyond 75 feet, a relatively small improvement in water quality would be achieved, as indicated by the incremental increase in pollutant removal effectiveness beyond that for the 75-foot buffer.

It should also be noted that buffer effectiveness is determined by slope, soil permeability, and nature of vegetative cover. Steep slopes and soils of low permeability have less capacity to provide water quality benefits and therefore, require greater buffer widths than less steeply sloped and more permeable soils. Steeply sloped lands promote rapid runoff of water and associated contaminants, while less permeable soils limit infiltration and interflow. Studies show that subsurface flows provide more effective pollutant removal capacity than surface runoff flows.<sup>2</sup> However, the effectiveness and efficiency of all buffers can be limited by the extent of contaminant loading, with even the largest buffers having reduced effectiveness under conditions of extremely high loadings. Thus, a system of riparian buffers along with agricultural nutrient management plans and urban stormwater management plans is recommended under the regional water quality management plan update to provide effective control of nonpoint source pollution.

The nature of vegetated cover within the buffer also will determine in part the magnitude of nutrient removal based upon: the requirements of specific plants primarily for nitrogen and phosphorus necessary for growth; the season, with the majority of removal occurring during the growing season; and the degree of physical filtration, with more densely packed stems typically slowing runoff and retaining a greater percentage of soil bound pollutants. Seasonality in terms of both plant growth cycles and freeze thaw cycles can influence the net effectiveness of pollutant removal, with plants actively taking up or removing nutrients in the spring and summer and releasing those nutrients during the fall when plants senesce, while frozen ground limits the ability of water to infiltrate during the winter months reducing the percentage of uptake of nutrients. Modifying the timing and rate of delivery of contaminants to aquatic systems can significantly modify undesirable biological responses in receiving waters such as lakes and streams.

#### **BIOLOGICAL PROTECTION**

Riparian buffers can be complex ecosystems that provide habitat and improve the stream and lake communities that they shelter. Habitat and riparian corridor conditions are strongly influenced by the width and nature of the buffers adjacent to a waterbody and are an important BMP with regard to protecting water from contamination by nonpoint source pollutants, as previously noted. There are many different kinds of buffers. While these buffers may be applied to a variety of situations and may be called by different names, their functions are much the same—the improvement and protection of surface water and groundwater quality; reduction of erosion on croplands, streambanks, and lakeshores; and, provision of protection and cover for insects, fish, birds, amphibians, reptiles, and mammals. The types of riparian buffers include, but are not limited to: streamside or lakeshore plantings of trees, shrubs, and grasses; filter strips or grassed waterways; and undisturbed shoreland vegetation.

<sup>&</sup>lt;sup>2</sup>Paul M. Mayer, Steven K. Reynolds, and Timothy J. Canfield, Riparian Buffer Width, Vegetative Cover, and Nitrogen Removal Effectiveness: A Review of Current Science and Regulations, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, EPA/600/R-05/118, October 2005.

<sup>&</sup>lt;sup>3</sup>D.M. Robertson, S.J. Field, J.F. Elder, G.L. Goddard, and W.F. James, Phosphorus Dynamics in Delavan Lake Inlet, Southeastern Wisconsin, 1994, U.S. Geological Survey Water Resources Report 96-4160, 1996; W.F. James, C.S. Smith, J.W Barko, and S.J. Field, "Direct and Indirect Influences on Aquatic Macrophyte Communities on Phosphorus Mobilization from Littoral Sediments of an Inlet Region in Lake Delavan, Wisconsin," U.S. Army Corps of Engineers, Technical Report W-95-2, September 1995.

#### Wildlife Habitat

The distinctive habitat offered by riparian buffers is home to a multitude of plant and animal species, including those rarely found outside of this band of land influenced by a river or lake. Continuous stretches of riparian buffer serve as wildlife travel corridors. Consequently, streambanks and lakeshores form integral elements of the environmental corridor concept developed and implemented within the Region in accordance with the regional land use and natural areas and critical species habitat protection and management plans.

#### **Aquatic Habitat**

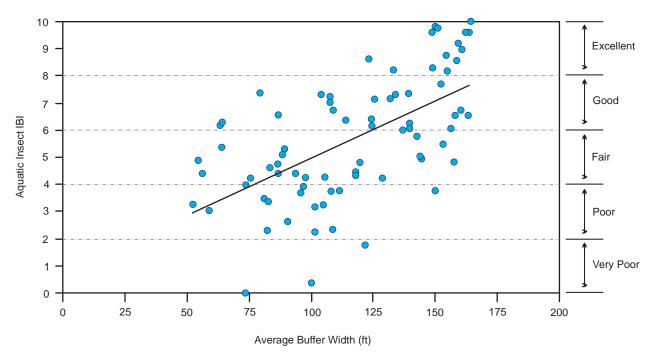
Riparian buffers benefit aquatic habitat by improving the quality of nearby waters through shading, filtering, and moderating stream flow. Trees and shrubs provide shade during the summer months, maintaining cooler and more even water temperatures, especially along small streams. Cooler water holds more oxygen and reduces stress on fish and other aquatic creatures. A few degrees difference in temperature can have a major effect on their survival. High value species, such a trout, for example, require cooler water temperatures for survival and reproduction.

The woody debris generated from within the riparian buffer supports the aquatic food web by providing food and cover for fish and their food organisms. By slowing water velocities, providing substrate for insects, among other benefits the woody debris encourages a range of organisms within a system that would be less diversely populated if it did not contain woody debris.

#### **Recreation and Aesthetics**

Riparian buffers are especially valuable in providing a green screen along waterways, blocking views of nearby development, and allowing privacy for riverfront landowners. Buffers also provide such recreational opportunities as hiking trails. For many humans, it is these attributes of riparian buffers that are most obvious and most enjoyable.

#### **To Protect Fisheries**


Research has shown that a minimum 100-foot buffer width is required to protect the quality and health of the aquatic food web.4 However, the highest quality fishery communities were associated with the widest riparian buffers that ranged from approximately 650-3.000 feet in width, which indicates that buffer widths greater than 100 feet continue to provide additional protection benefits to the fishery community. Regardless of the type of fishery, the 100-foot minimum is a relevant buffer width standard to protect and maintain a coldwater, coolwater, or warmwater fishery and associated aquatic community. The quality of these communities improves with increases beyond the minimum buffer width. In addition, research also has shown that impacts to the continuity and fragmentation of the riparian corridor buffer width are equally as important in protecting aquatic communities. Similarly, both width and continuity of undisturbed buffer strips were related positively to stream health as indicated by aquatic insect IBI, aquatic insect species richness, fisheries Index of Biotic Integrity (IBI), and trout presence. These researchers found that stream health was generally well protected with riparian buffers that ranged from about 110-130 feet in width, contained less than 13 fragments per kilometer (e.g., number of road crossings or some equivalent per length of buffer), and at least 31 percent of the buffer was comprised of 100 feet or more in width. As shown in Figure O-5, stream health (i.e. aquatic insect IBI) and buffer characteristics were linearly related where stream health improves with buffer width from about 50 to 160 feet in width. Narrow buffers having some fragmentation had modest effects on reducing stresses to stream health, whereas wide buffers

<sup>&</sup>lt;sup>4</sup>Jana S. Stewart, Lizhu Wang, John Lyons, Judy A. Horwatich, Roger Bannerman, "Influences of watershed, riparian-corridor, and reach-scale characteristics on aquatic biota in agricultural watersheds," Journal of the American Water Resources Association, Vol. 37, No. 6, 1475-1487, 2001; Wisconsin Department of Natural Resources Bureau of Integrated Science Services, Buffer Width and Continuity for Preserving Stream Health in Agricultural Landscapes, Issue Fifty-six, December 2005.

<sup>&</sup>lt;sup>5</sup>Wisconsin Department of Natural Resources Bureau of Integrated Science Services, Buffer Width and Continuity for Preserving Stream Health in Agricultural Landscapes, Issue Fifty-six, December 2005.

Figure O-5

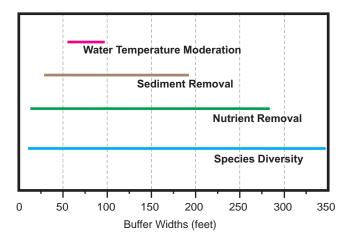
MACROINVERTEBRATE INDEX OF BIOTIC INTEGRITY SCORES AND AVERAGE BUFFER WIDTH



Source: Adapted from B.M. Weigel and others, "Buffer Width and Continuity for Preserving Stream Health in Agricultural Landscapes," Bureau of Integrated Science Services, Wisconsin Department of Natural Resources, Issue 56, 2005.

without fragmentation had substantial effects. Consistent with these findings related to stream health, the regional water quality management plan update includes a recommendation that opportunities to expand riparian buffers beyond the recommended 75-foot width be pursued along high-quality stream systems including those designated as outstanding or exceptional resource waters of the State, trout streams, or other waterways that support and sustain the life cycles of economically important species such as salmon, walleye, and northern pike.

Land use within the watershed also is an important variable influencing fish and macroinvertebrate abundance and diversity, which is why riparian buffers alone cannot address the stresses of excessive nutrient loading, stormwater runoff, or other nonpoint source pollution. For example, researchers found that combined upland (barnyard runoff controls, manure storage, and contour plowing and reduced tillage) and riparian (streambank fencing, streambank sloping, limited streambank riprapping) Best Management Practices (BMPs) treatments significantly improved overall stream habitat quality, bank stability, instream cover for fishes, and fish abundance and diversity. Specifically, improvements were most pronounced at sites with riparian BMPs; however, in sites with limited upland BMPs installed in the watershed there were no improvements in water temperature or the quality of fish community. The regional water quality management plan update recommends buffers as part of an overall system of agricultural controls such as those listed above.


#### To Protect Wildlife Habitat

Buffer widths for wildlife depend upon the desired species to be protected. As shown in Figure O-6, large streamside forest buffer widths of up to 350 feet are needed for wildlife habitat purposes in contrast to those required for protection of water quality. The larger the buffer zone, the more valuable it is as wildlife habitat.

<sup>&</sup>lt;sup>6</sup>Lizhu Wang, John Lyons, and Paul Kanehl, "Effects of watershed best management practices on habitat and fish in Wisconsin streams," Journal of the American Water Resources Association, Vol. 38, No. 3, 663-680, June 2002.

Figure O-6

# RANGE OF BUFFER WIDTHS FOR PROVIDING SPECIFIC BUFFER FUNCTIONS



NOTE: Site-specific evaluations are required to determine the need for buffers and specific buffer characteristics.

Source: Adapted from A.J. Castelle and others, "Wetland and Stream Buffer Size Requirements—A Review," Journal of Environmental Quality, Vol. 23.

Larger animals—such as fox, deer, raccoon, and large birds of prey—and interior forest species—especially forest dwelling birds that require deep forest habitat—generally require more room. Additionally, the diversity of various sedges, grasses, forbs, shrubs, and trees may be dependent upon the area available for seed dispersal, germination, and growth. Nevertheless, a narrow width and reduced diversity of vegetation may be acceptable as a travel corridor if connected to larger diverse areas of habitat. Even small patches of trees are better for migrating birds than no buffer or monotypical stands such as lawns or crops. These wildlife buffer concepts underlie the primary environmental corridor specifications of a 200-foot minimum width and two mile length<sup>7</sup>

#### **SYNTHESIS**

Buffers can be used for a variety of purposes from enhancing aquatic species diversity through reducing water temperature entering streams to enhancing terrestrial species diversity through the provision of safe passages with adequate food and shelter. For these reasons, buffer size may vary widely, depending on the specific functions required for a particular

buffer or for the protection of a particular species as shown in Figure O-6. Buffers that have widths in the 15- to 35-foot range generally provide limited water quality benefit and minimal protection of aquatic resources under most conditions. Under most circumstances, a minimum buffer width of about 50 to 100 feet is necessary to protect wetlands and streams. In general, minimum buffer widths in the 50- to 65-foot range would be expected to provide for the maintenance of the natural physical and chemical characteristics of aquatic resources. Buffer widths at the upper end of the 50- to 100-foot range seem to be necessary for the maintenance of the biological components of many wetland and stream systems, although it is important to note that site-specific conditions, such as slope, vegetation, and soil characteristics, can greatly influence the need for either wider or narrower buffers. Based upon the literature review, for the purposes of habitat management, a buffer width of 75 feet represents the minimum width necessary for provision of protection of aquatic organisms and habitat. However, a buffer of only 75 feet is not adequate to protect all aquatic and terrestrial plant and animal species.

It is clear that "one size does not fit all" with regard to riparian buffers. Buffer width depends on the purpose which the buffer is meant to serve. There is no single generic buffer which will keep the water clean, stabilize the bank, protect the fish and wildlife, and satisfy human demands. The minimum acceptable width is one that will provide acceptable levels of all of these beneficial uses at an acceptable cost. Consequently, a basic buffer should be about 75 feet from the top of the bank at the water's edge.

In practice, the size and vegetation of the buffer should match the land use and topography of the site.

 Topography: A buffer is more important for water quality in areas that collect runoff and deliver it to streams, and less critical on lands that drain away from the water. Steeper slopes call for a wider riparian buffer to allow more opportunity for the buffer to capture pollutants from faster moving runoff.

<sup>&</sup>lt;sup>7</sup>Paul Beier and Reed F. Noss, "Do Habitat Corridors Provide Connectivity?," Conservation Biology, Review, Vol. 12, No. 6, 1241-1252, December 1998.

- Hydrology and Soils: The ability of the soil to remove pollutants and nutrients from surface and ground water depends upon the type of soil, its depth, and relation to the water table. On wetter soils, a wider buffer is needed to achieve the same benefit.
- Vegetation: The purposes of the buffer will influence the type of vegetation to plant or encourage. In urban and residential areas, trees and shrubs do a better job at capturing pollutants from parking lots and lawn runoff and providing visual screening and wildlife habitat. Between croplands and waterways, a buffer of shrubs and grasses can provide many of the benefits of a forested buffer without shading crops, although trees can be used on the north side of fields. Trees have several advantages over other plants in improving water quality and offering habitat. Trees are not easily smothered by sediment and have greater root mass to resist erosion. Above ground, they provide better cover for birds and other wildlife using waterways as migratory routes. Trees can especially benefit aquatic habitat on smaller streams. In general, native vegetation is preferable to nonnative plants.

#### CONCLUDING REMARKS

While it is clear from the literature that wider buffers can provide a greater range of values for aquatic systems, the need to balance human access and use with the environmental benefits to be achieved suggests that a 75-foot-wide riparian buffer provides a minimum width necessary to contribute to good water quality and a healthy aquatic ecosystem. In general, most pollutants are removed within a 75-foot buffer width. While water quality benefits increase somewhat when buffers exceed the 75-foot width, such increases in width are increasingly less cost effective as a smaller portion of the total pollutant load is removed at a significantly higher cost. From an ecological point of view, buffers beyond a 75-foot width provide greater benefits.

These findings form the basis for the Washington County shoreland protection program, for example, and underlie many of the other shoreland ordinances adopted elsewhere in Wisconsin. A 75-foot buffer width is consistent with the required shoreland setbacks set forth in Chapter NR 115 of the *Wisconsin Administrative Code*, and with other recommended setbacks currently included within legal definitions of the shoreland area. Thus, a 75-foot wide buffer appears to be the best and most practical compromise between human use of the landscape and the needs of the environment that sustain such human uses. However, the quality and continuity of these corridors play important roles in their effectiveness, with greater levels of fragmentation by roadways and other structures limiting the effectiveness of those buffers that are put into place.

#### REFERENCES

- M. Borin, and E. Bigon. *Abatement of NO3-N concentration in agricultural waters by narrow buffer strips*. Environmental Pollution 117:165-168, 2002.
- W. Brusch, and B. Nilsson. *Nitrate transformation and water movement in a wetland area*. Hydrobiologia 251:103-111, 1993.
- D.A. Burns, and L. Nguyen. *Nitrate movement and removal along a shallow groundwater flow path in a riparian wetland within a sheep-grazed pastoral catchment: results of a tracer study.* New Zealand Journal of Marine and Freshwater Research 36: 371-385.
- A.J. Castelle, A.W. Johnson, and C. Conolly. *Wetland and stream buffer size requirements a review*. Journal of Environmental Quality 23:878-882, 1994.
- E.E. Cey, D.L. Rudolph, R. Aravena, and G. Parkin. *Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario*. Journal of Contaminant Hydrology 37:45-67, 1999.
- J.C. Clausen, K. Guillard, C.M. Sigmund, and K.M. Dors. *Water quality changes from riparian buffer restoration in Connecticut*. Journal of Environmental Quality 29:1751-1761, 2000.
- T.A. Dillaha, J.H. Sherrard, D. Lee, S. Mostaghimi, and V.O. Shanholtz. *Evaluation of vegetative filter strips as a best management practice for feed lots*. Journal of the Water Pollution Control Federation 60:1231-1238, 1988.
- T.A. Dillaha, R.B. Reneau, S. Mostaghimi, and D. Lee. *Vegetative filter strips for agricultural nonpoint source pollution control*. Transactions of the American Society of Agricultural Engineers 32:513-519, 1989.
- R.C. Doyle, G.C. Stanton, and D.C. Wolf. *Effectiveness of forest and grass buffer strips in improving the water quality of manure polluted runoff.* American Society of Agricultural Engineers Paper, 77-2501, 1977.
- M. Ghaffarzadeh, C.A. Robinson, R.M. Cruse. Vegetative filter strip effects on sediment deposition from overland flow. Agronomy Abstracts, 324, 1992.
- G.C. Hanson, P.M. Groffman, and A.J. Gold. *Symptoms of nitrogen saturation in a riparian wetland*. Ecological Applications 4:750-756, 1994.
- N.E. Haycock, P.M. Groffman, and A.J. Gold. *Role of floodplain sediments in reducing the nitrate concentration of subsurface run-off: a case study in the Cotswolds, UK*. Hydrological Processes 7:287-295, 1993.
- N.E. Haycock, G. Pinay. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. Journal of Environmental Quality 22:273-278, 1993.
- M.M. Hefting and J.M. de Klein. *Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study.* Environmental Pollution 102: S1:521-526, 1998.
- A.R. Hill, K.J. Devito, S. Campagnolo, and K. Sanmugadas. *Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon.* Biogeochemistry 51:193-223, 2000.
- R.R. Horner, and B.W. Mar. *Guide for water quality impact assessment of highway operations and maintenance.* Washington Department of Transportation, 1982.
- R.K. Hubbard, and R. Lowrance. Assessment of forest management effects on nitrate removal by riparian buffer systems. Transactions of the American Society of Agricultural Engineers 40:383-391, 1997.

- R.K. Hubbard, and J.M. Sheridan. *Nitrate movement to groundwater in the southeastern Coastal Plain.* Journal of Soil and Water Conservation 44: 20-27, 1989.
- T.C. Jacobs, and J.W. Gilliam. *Riparian losses of nitrate from agricultural drainage waters*. Journal of Environmental Quality 14:472-478, 1985.
- T.E. Jordan, D.L. Correll, and D.E. Weller. *Nutrient interception by a riparian forest receiving inputs from adjacent cropland.* Journal of Environmental Quality 14:472-473, 1993.
- R. Lowrance. *Groundwater nitrate and denitrification in a coastal plain riparian forest.* Journal of Environmental Quality 21:401-405, 1992.
- R. Lowrance, L.S. Altier, J.D. Newbold, R.R. Schnabel, P.M. Groffman, J.M. Denver, D.L. Correll, J.W. Gilliam, J.L. Robinson, R.B. Brinsfield, K.W. Staver, W. Lucas, and A.H. Todd. *Water quality functions of riparian forest buffer systems in Chesapeake Bay Watersheds*. Environmental Management 21:687-712, 1997.
- R.R. Lowrance, R.L. Todd, and L.E. Asmussen. Nutrient cycling in an agricultural watershed 1:phreatic movement. Journal of Environmental Quality 13:22-27, 1984.
- J. Lynch, E. Corbett, and K. Mussaliem. *Best management practices for controlling nonpoint source pollution of forested watersheds.* Journal of Soil and Water Conservation 1:164-167.
- C.E. Madison, R.L. Blevins, W.W. Frye, and B.J. Barfield. *Tillage and grass filter strip effects upon sediment and chemical losses*. Agronomy Abstracts, 331. 1992.
- W.L. Magette, R.B. Brinsfield, R.E. Palmer, and J.D. Wood. *Nutrient and sediment removal by vegetated filter strips*. Transactions of the American Society of Agricultural Engineers 32:663-667, 1989.
- J.V. Mannering, and C.B. Jonson. A comparison of nitrogen losses from urea and ammonium nitrate in surface runoff water. Soil Science 105(6), 428-433, 1968.
- T.L. Martin, N.K. Kaushik, H.R. Whiteley, S. Cook, and J.W. Nduhiu. *Groundwater nitrate concentrations in the riparian zones of two southern Ontario streams*. Canadian Water Resources Journal 24:125-138, 1999.
- P.M. Mayer, S.K. Reynolds Jr., T.J. Canfield. *Riparian Buffer Width, Vegetative Cover, and Nitrogen Removal Effectiveness: A Review of Current Science and Regulations*. U.S. Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory, 2005.
- W.H. Neibling, and E.E. Alberts. *Composition and yield of soil particles transported through sod strips*. American Society of Agricultural Engineers Paper, 1979.
- L.L. Osbourne, and D.A. Kovacic, 1993. *Riparian vegetated buffer strips in water quality restoration and stream management*. Freshwater Biology 29:243-258, 1993.
- W.T. Peterjohn, and D.L. Correll. *Nutrient dynamics in an agricultural watershed observations on the role of a riparian forest.* Ecology 65:1466-1475, 1984.
- G. Pinay, and H. Decamps. *The role of riparian woods in regulating nitrogen fluxes between alluvial aquifer and surface water: a conceptual model.* Regulated Rivers: Research and Management 2:507-516, 1988.
- G. Pinay, L. Roques, and A. Fabre. *Spatial and temporal patterns of denitrification in riparian forest.* Journal of Applied Ecology 30:581-591, 1993.
- K. Prach, and O. Rauch. On filter effects of ecotones. Ekologia 11:293-298, 1992.

- L.J. Puckett, T.K. Cowdery, P.B. McMahon, L.H. Tornes, and J.D. Stoner. *Using chemical hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system.* Water Resources Research 38:10.1029, 2002.
- G.R. Schellinger, and J.C. Clausen. *Vegetative filter treatment of dairy barnyard runoff in cold regions*. Journal of Environmental Quality 21:40-45, 1992.
- T.J. Schmitt, M.G. Dosskey, and K.D. Hoagland. *Filter strip performance and processes for different vegetation, widths, and contaminants.* Journal of Environmental Quality 28:1479-1489, 1999.
- J.E. Schoonover, and K.W.J. Williard. *Ground water nitrate reduction in giant cane and forest riparian buffer zones*. Journal of the American Water Resources Association 39:347-354, 2003.
- R.C. Schultz, J.P. Colletti, T.M. Isenhart, W.W. Simpkings, C.W. Mize, and M.L. Thompson. *Design and placement of a multi-species riparian buffer strip*. Agroforestry Systems 29:201-225.
- C.B. Schwer, and J.C. Clausen. *Vegetative filter strips of dairy milkhouse wastewater*. Journal of Environmental Quality 18:446-451, 1989.
- J.K. Shisler, R.A. Jordan, R.N. Wargo. *Coastal wetland buffer delineation*. New Jersey Department of Environmental Protection, 1987.
- R.C. Simmons, A.J. Gold, and P.M. Groffman. *Nitrate dynamics in riparian forests: groundwater studies*. Journal of Environmental Quality 21:659-665, 1992.
- T.B. Spruill. Effectiveness of riparian buffers in controlling groundwater discharge of nitrate to streams in selected hydrogeological settings of the North Carolina Coastal Plain. Water Science and Technology 49:63-70, 2004.
- D.H. Vanderholm, and E.C. Dickey. American Society of Agricultural Engineers Paper 78-2570, 1978.
- G. Vellidis, R. Lowrance, P. Gay, and R.K. Hubbard. *Nutrient transport in a restored riparian wetland*. Journal of Environmental Quality 32:711-726, 2003.
- P.G.F. Vidon, and A.R. Hill. *Landscape controls on nitrate removal in stream riparian zones*. Water Resources Research 40:W03201, 2004.
- L.B.M. Vought, J. Dahl, L. Pedersen, and J.O. Lacoursiere. *Nutrient retention in riparian ecotones*. Ambio 23(6):343-348, 1994.
- S.L.W Wong, and R.H. McCuen. *The Design of Vegetative Buffer Strips for Runoff and Sediment Control*. A technical paper developed as part of a study of stormwater management in coastal areas funded by Maryland Coastal Zone Management Program, 1982.
- P.Yates, and J.M. Sheridan. *Estimating the effectiveness of vegetated floodplains/wetlands as nitrate-nitrite and orthophosphorus filters*. Agriculture, Ecosystems and Environment 9:303-314, 1983.
- R.A. Young, T. Huntrods, and W. Anderson. *Effectiveness of vegetated buffer strips in controlling pollution from feedlot runoff.* Journal of Environmental Quality 9:483-487, 1980.
- J. Zirschky, D. Crawford, L. Norton, S. Richards, D. Reemer. *Ammonia removal using overland flow*. Journal of the Water Pollution Control Federation 61:1225-1232, 1989.

(This page intentionally left blank)

# Appendix P

# CRITERIA AND GUIDELINES FOR STREAM CROSSINGS TO ALLOW FISH PASSAGE AND MAINTAIN STREAM STABILITY WITHIN THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE STUDY AREA

#### TYPES OF CROSSINGS

- The number of stream crossings should be minimized.
- If a crossing is necessary, structures that maintain to the extent possible the existing streambed and bank conditions are preferable; therefore, bridges spanning streams are preferable to other structures.
- If a culvert is necessary, open bottom structures are preferable to closed bottom structures.
- If a closed bottom culvert is necessary, box culverts, elliptical, or pipe arch culverts are preferable to round pipe culverts, because round pipes generally reduce stream width to a much larger degree than the aforementioned structures, causing long term upstream and downstream passage limitations (see physical considerations below).

#### BIOLOGICAL CONSIDERATIONS<sup>1</sup>

- Contact the area WDNR fisheries manager prior to design.<sup>2</sup>
- Species of fish present (coldwater, warmwater, threatened, endangered, species of special concern).
- Life stages to potentially be impacted (e.g., egg development within substrates should be avoided).
- Migration timing of affected species/ life stages (e.g., adult spawning times should be avoided).

<sup>&</sup>lt;sup>1</sup>British Colombia Ministry of Forests, Fish-stream crossing guidebook, For. Prac. Br., Min. For., http://www.for.gov.bc.ca/tasb/legsregs/fpc/FPCGUIDE/Guidetoc.htm, Victoria, B.C. Forest Practices Code of British Columbia guidebook, 2002.

<sup>&</sup>lt;sup>2</sup>UW-Extension and WDNR, Fish Friendly Culverts, 2002.

### PHYSICAL CONSIDERATIONS<sup>3</sup>

It is important to note that in order to achieve the minimum physical criteria outlined below, the culvert(s) will need to be oversized as part of the design to ensure adequate long-term fish passage as well as the ability to pass the design period rainfall event.

It is understood that it may not be possible to achieve some of the minimum passage criteria below based upon specific on-site conditions or constraints, however, the closer the designed and completed culvert can meet these criteria the better the long-term passage and overall sustainability of the fishery will be achieved in this region.

#### **Provide Adequate Depth**

- Slope—Culvert should be installed with a slope that matches the riffle slope as measured in the thalweg<sup>4</sup> (see Minnesota DNR guidelines<sup>5</sup>)
- Water Depth—Depths should maintain the determined thalweg depth at any point within the culvert during low flow periods (see Minnesota DNR guidelines).
- Installation Below Grade—The culvert should be installed so that the bottom of the structure is buried to a depth equal to 1/6th the bankfull width of the stream (up to two feet) below the natural grade line elevation of the stream bottom (see Minnesota DNR guidelines). The culvert should then be filled to stream grade with natural substrates. The substrates should consist of a variety of gravel ranging from one to four inches in diameter and either mixed with nonuniformly laid riprap or uniformly placed alternate riprap baffles, large enough to be stable during the culvert design discharge, which will ensure stability of substrates during high flow events.

#### **Provide Adequate Width**

- Width—Culvert width shall match the bankfull width (minimum) of the existing channel.
- Offsetting Multiple Culverts—The number culverts used should be minimized. However, if multiple culverts are necessary, it is recommended that the culvert inverts be offset vertically and only one culvert be designed to provide passage during low flow conditions and the additional culverts be used to pass the higher flow events (see Figure P-1). Therefore, the low flow culvert will be the only culvert, in a series of two or more culverts, designed to provide fish passage during low flows and shall meet the physical requirements of passage above.

#### **Provide Adequate Resting Areas**

• Length—Culverts that exceed more than 75 feet in length need to provide additional resting areas (e.g., installation of baffles or weirs) within the culvert to facilitate passage.<sup>6</sup>

<sup>&</sup>lt;sup>3</sup>Washington Department of Fish and Wildlife, Habitat and Lands Program, Environmental Engineering Division, Fish Passage Design at Road Culverts: A Design Manual for Fish Passage at Road Crossings, Washington, March 3, 1999.

<sup>&</sup>lt;sup>4</sup>The thalweg is the lowest point of the streambed.

<sup>&</sup>lt;sup>5</sup>Minnesota DNR, Best Practices for Meeting DNR General Public Waters Work Permit GP 2004-0001, March 2006.

<sup>&</sup>lt;sup>6</sup>Thomas Slawski and Timothy Ehlinger, "Habitat Improvement in Box Culverts: Management in the Dark?," North American Journal of Fisheries Management, Volume 18:676-685, 1998.

Figure P-1

COMPARISON OF UNDERSIZED AND ADEQUATELY SIZED AND PLACED CULVERTS





Undersized culvert.

Properly sized and placed culverts.

Source: Minnesota Department of Natural Resources.

#### **Inlet and Outlet Protection**

- Align the culvert with the existing stream alignment (e.g., 90 degree bends at the inlet or outlet should be avoided, even though this will increase culvert length, see Minnesota DNR guidelines).
- The low flow culvert should be centered on the thalweg of the channel to ensure adequate depths inside the culvert.
- Provide grade control where there is potential for head-cuts that could degrade the channel.
- It may be necessary to install riprap protection on the outside bank below the outlet to reduce bank erosion during high flow events.

(This page intentionally left blank)

# Appendix Q

# RECOMMENDED INLAND LAKE MANAGEMENT MEASURES

#### INTRODUCTION

Lakes are unique features of the landscape, being repositories of materials transported from the land surface and conveyed by streams and rivers into their basins, as well as significant recreational, aesthetic, and environmental resources. The major lakes of the greater Milwaukee watersheds are relatively unique within the Region in that they are generally headwater lakes, situated within the drainage system tributary to the mainstem of the Milwaukee River system. These waterbodies include Auburn Lake, Crooked Lake, Forest Lake, Kettle Moraine Lake, Long Lake, Mauthe Lake, and Mud Lake in Fond du Lac County; Mud Lake and Spring Lake in Ozaukee County; Lake Ellen and Random Lake in Sheboygan County; and Barton Pond, Big Cedar Lake, Green Lake, Lake Twelve, Little Cedar Lake, Lucas Lake, Silver Lake, Smith Lake, and Wallace Lake in Washington County. Where available, water quality-related data on these lakes are set forth in Chapter VII, "Surface Water Quality Conditions and Sources of Pollution in the Milwaukee River Watershed," of SEWRPC Technical Report No 39 (TR No. 39). Water Quality Conditions and Sources of Pollution in the Greater Milwaukee Watersheds, which is a companion document to this report. While relatively few data were available for the majority of the lakes, the available data indicated that these waterbodies could be considered to be mesotrophic to eutrophic in nature, or enriched with the plant nutrients nitrogen and phosphorus and capable of supporting abundant growths of aquatic plants and sustaining a productive fishery, albeit one likely to become increasingly dominated by pollution tolerant fishes.

Given this status, the adopted regional water quality management plan, as refined by the plans derived from the Milwaukee River Priority Watersheds Program, recommended that nutrient loads to the lakes of the greater

<sup>&</sup>lt;sup>1</sup>See SEWRPC Planning Report No. 30, A Regional Water Quality Management Plan for Southeastern Wisconsin—2000, Volume Two, Alternative Plans, February 1979; see also SEWRPC Memorandum Report No. 93, A Regional Water Quality Management Plan for Southeastern Wisconsin: An Update and Status Report, March 1995.

<sup>&</sup>lt;sup>2</sup>Wisconsin Department of Natural Resources Publication No. PUBL-WR-255-90, A Nonpoint Source Control Plan for the East and West Branches of the Milwaukee River Priority Watershed Project, February 1989; Wisconsin Department of Natural Resources Publication No. PUBL-WR-253-90, A Nonpoint Source Control Plan for the North Branch Milwaukee River Priority Watershed Project, July 1989; Wisconsin Department of Natural Resources Publication No. PUBL-WR-245-91, A Nonpoint Source Control Plan for the Milwaukee River South Priority Watershed Project, December 1991; Wisconsin Department of Natural Resources Publication No. PUBL-WR-336-93, Nonpoint Source Control Plan for the Cedar Creek Priority Watershed Project, August 1993. See also SEWRPC Planning Report No. 9, A Comprehensive Plan for the Root River Watershed, September 1966; SEWRPC Planning Report No. 36, A Comprehensive Plan for the Oak Creek Watershed, August 1986.

Milwaukee watersheds be minimized by application of nonpoint source pollution control measures designed to reduce pollutant loads to the lakes from rural lands by up to 75 percent, in the case of Lake Twelve, and by up to 50 percent from urban lands, in the case of the Kelly Lakes. For this reason, implementation of the watershed management measures set forth elsewhere in this report will complement and contribute to the control of nonpoint source pollution loading to the lakes, benefiting not only the streamcourses themselves, but also the lentic waterbodies within the greater Milwaukee watersheds. Thus, the general recommendations regarding water quality management and nonpoint source pollution control, set forth in Chapter X of this report are incorporated herein by reference.

The regional water quality management plan update and status report further recommended that lake specific management plans be prepared for the waterbodies within the greater Milwaukee watersheds. These plans would present lake-specific inventory data for the direct and total drainage basins tributary to the 20 lakes and address both drainage basin and in-lake issues of concern. Appropriate in-lake water quality monitoring, aquatic plant surveys, and fisheries surveys would form part of these planning programs. Based upon the current knowledge of water quality conditions in these waterbodies, set forth in the regional water quality management plan update, and in summary form in Chapter VII of TR No. 39, it is likely that the range of issues to be addressed in such local-level plans would include watershed-based management measures designed to address nutrient loading from both public sewage treatment facilities and onsite sewage disposal systems, rural agricultural lands, and urban lands and construction sites; aquatic plant management; fisheries management; lake depth and sedimentation; and, in the case of impounded waterbodies, lake-level management. Identification and protection of environmental corridors, including riparian wetlands, as recommended in the adopted regional land use plan, regional natural areas and critical species habitat protection and management plan, and county land and water resource management plans, would also be likely issues of concern to be addressed in lake-specific management planning programs.

This appendix sets forth a summary of the lake-specific plan elements applicable to the major lakes of the greater Milwaukee watersheds, based upon consideration of the inventory data presented in the report. While these recommendations are made for the 20 major lakes, similar recommendations should be considered for application to lakes of less than 50 surface acres in areal extent, such as the Kelly Lakes and the Milwaukee County ponds and lagoons, where such measures are deemed important for purposes of water quality protection.

As of 2006, lake management plan elements had been prepared for three of the major lakes—Big Cedar Lake, Little Cedar Lake, and Silver Lake, all in Washington County—and two of the minor lakes—Upper and Lower Kelly Lakes in Milwaukee and Waukesha Counties.<sup>6</sup>

<sup>&</sup>lt;sup>3</sup>SEWRPC Memorandum Report No. 93, op. cit.

<sup>&</sup>lt;sup>4</sup>See SEWRPC Planning Report No. 48, A Regional Land Use Plan for Southeastern Wisconsin: 2035, June 2006; SEWRPC Planning Report No. 42, A Regional Natural Areas and Critical Species Habitat Protection and Management Plan for Southeastern Wisconsin, September 1997; and SEWRPC Community Assistance Planning Report No. 259, A Land and Water Resource Management Plan for Racine County: 2000-2004, September 2000.

<sup>&</sup>lt;sup>5</sup>See SEWRPC Memorandum Report No. 135, A Lake Protection Plan for the Kelly Lakes, Milwaukee and Waukesha Counties, Wisconsin, October 2000; Milwaukee County Environmental Services, Milwaukee County Pond & Lagoon Management Plan, June 2005.

<sup>&</sup>lt;sup>6</sup>See SEWRPC Memorandum Report No. 123, 2nd Edition, A Lake Protection and Recreational Use Plan for Silver Lake, Washington County, December 2005; SEWRPC Memorandum Report No. 135, op. cit.; SEWRPC Memorandum Report No. 137, A Water Quality Protection and Stormwater Management Plan for Big Cedar Lake, Washington County, Wisconsin, Volume One, Inventory Findings, Water Quality Analyses, and Recommended Management Measures, August 2001; SEWRPC Memorandum Report No. 146, An Aquatic Plant Management Plan for Little Cedar Lake, Washington County, Wisconsin, May 2004; see also, SEWRPC (Footnote Continued on Next Page)

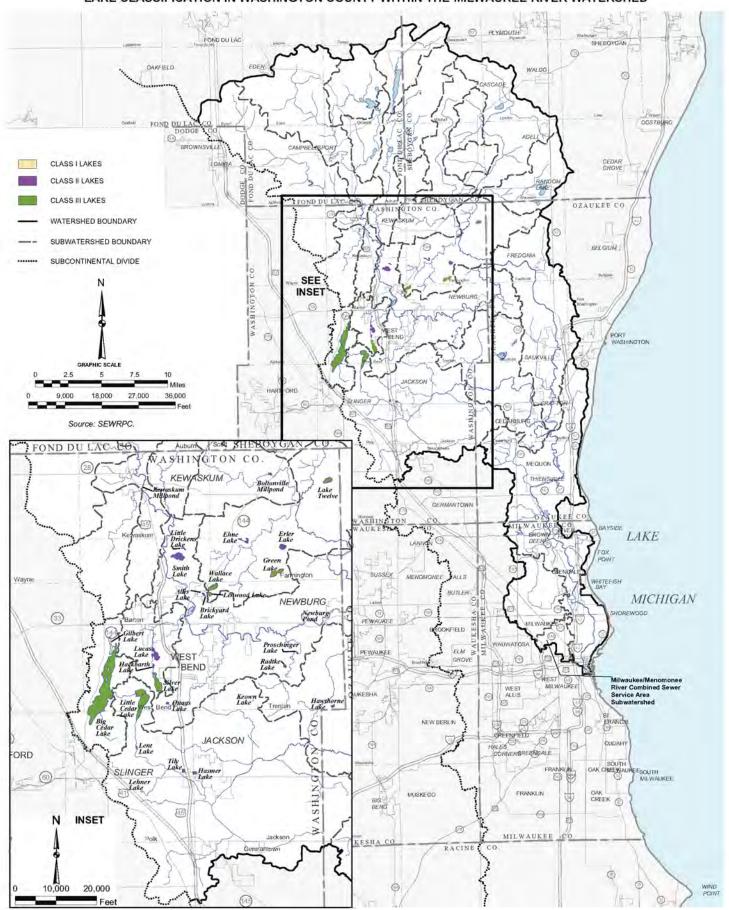
#### **County Lake and Stream Classification Programs**

During 1997, the Wisconsin Legislature created a lake classification grant program as described under Chapter NR 191 of the Wisconsin Administrative Code. This cost-share program was to be administered by the Wisconsin Department of Natural Resources (WDNR) as part of the existing Lake Protection Grant Program, and was intended to further the degree of protection of lakeshore areas within the State. Both Washington County and Waukesha County in the greater Milwaukee watersheds successfully applied for funds under this program and completed lake and stream classification projects. In terms of Washington County, this project complemented efforts by the County to recodify their shoreland, floodland, and shoreland wetland ordinances. Washington County utilized a process that resulted in the compilation of a physical and chemical description and a resource value and use assessment for each waterbody inventoried, organized by Public Land Survey township so as to be most useful to local governments tasked with adopting and implementing local zoning systems. Available data on all of the major lakes with surface areas of 50 acres in areal extent or greater and the perennial streams were collected and analyzed during this process. In addition, data on many of the minor lakes and streams were also included in this inventory process. Waukesha County used a similar process, with the inventory data being organized according to waterbody name.<sup>8</sup> Waukesha County has not adopted a classification system within its shoreland zoning ordinance. The recommendations of the Washington and Waukesha County lake and stream classification projects are incorporated by reference in the regional water quality management plan update.

As shown on Map Q-1, within the Milwaukee River watershed in Washington County, the following major and minor lakes were included in the classification system: Allis Lake, Big Cedar Lake, Boltonville Millpond, Brickyard Lake, Ehne Lake, Erler Lake, Gilbert Lake, Green Lake, Hackbarth Lake, Hasmer Lake, Hawthorn Lake, Keown Lake, Kewaskum Millpond, Lehner Lake, Lent Lake, Little Cedar Lake, Little Drickens Lake, Lucas Lake, Newburg Pond, Proschinger Lake, Quaas Lake, Radtke Lake, Silver Lake, Smith Lake, Tily Lake, Lake Twelve, and Wallace Lake. Of these waterbodies, Gilbert Lake, Kewaskum Millpond, Lehner Lake, and Newburg Pond were ranked as Class I and recommended to be subject to the highest levels of protection. These protections included limits on impervious area, increased setbacks, and related measures designed to minimize the impacts of development on the waterbodies. Allis Lake, Boltonville Millpond, Brickyard Lake, Ehne Lake, Erler Lake, Hackbarth Lake, Hasmer Lake, Hawthorn Lake, Keown Lake, Lent Lake, Little Drickens Lake, Lucas Lake, Proschinger Lake, Quaas Lake, Radtke Lake, Smith Lake, and Tily Lake were ranked as Class II and recommended to be subjected to an intermediate level of protections. Recommended setbacks were greater than the statewide minimum, for example. Class II was the default class into which any new entrants into the classification pool would be placed, unless there was documentation to support their placement into one of the other classes. The balance of the lakes, including most of the larger lakes in the Milwaukee River watershed in Washington County, were placed into Class III, which conforms to the statewide minimum requirements for shoreland protection.

Within the greater Milwaukee watersheds in Waukesha County, there are no major lakes, although several minor lakes were included in the classification system. Lower and Upper Kelly Lakes, in the Root River system, are the only named lakes within the study area that were included in this inventory. Lower Kelly Lake was utilized as an example of the application of various alternative classification systems outlined within the report, generally being proposed to be classified as a Class I waterbody under each of the alternative systems. As in Washington County, Class I was used to designate those waterbodies that should receive a higher degree of protection than currently afforded under the statewide minimum shoreland protection requirements.

Memorandum Report No. 139, Surface Water Resources of Washington County, Wisconsin, Lake and Stream Classification Project: 2000, September 2001; Memorandum Report No. 145, Lake and Stream Resources Classification Project for Waukesha County, Wisconsin: 2000, December 2005.


<sup>(</sup>Footnote Continued from Previous Page)

<sup>&</sup>lt;sup>7</sup>SEWRPC Memorandum Report No. 139, op. cit.

<sup>&</sup>lt;sup>8</sup>SEWRPC Memorandum Report No. 145, op. cit.

Map Q-1

LAKE CLASSIFICATION IN WASHINGTON COUNTY WITHIN THE MILWAUKEE RIVER WATERSHED



# DESCRIPTIONS OF MAJOR AND SELECTED MINOR LAKES AND PAST LAKE MANAGEMENT RECOMMENDATIONS

## **Major Lakes**

#### Auburn Lake

Auburn Lake, in the Town of Auburn in Fond du Lac County, is a drainage lake, discharging to a tributary to the Milwaukee River. Inflow to the Lake is through Lake Fifteen Creek. The Lake has a surface area of about 107 acres, with a maximum depth of 29 feet, and a shoreline development factor of about 1.7. The lands draining to the Lake are dominated by a marsh bog, which comprises about one-half of the shoreline of the Lake, portions of which are located within the Northern Unit of the State-owned Kettle Moraine State Forest. The Lake itself is comprised of two distinct basins connected by a shallow, relatively narrow channel. The location of the Lake adjacent to the Kettle Moraine State Forest provides an opportunity for the implementation of management measures to reduce nutrient inputs to the Lake through the maintenance of the natural landscape. The presence of park staff also provides the opportunity to control litter and macropollutants within the drainage area. Implementation of drainage basin-scale measures to limit the inflow of runoff to the Lake from the surrounding developed lands remains a potential issue of concern, including measures affecting discharges from the roadways and parking areas. The East and West Branches of the Milwaukee River Priority Watershed Plan recommended no additional reductions in phosphorus loading or suspended sediment deliveries to Auburn Lake.

#### **Barton Pond**

Barton Pond, in the City of West Bend in Washington County, is an impoundment on the mainstem of the Milwaukee River. The Pond was originally created as a stone and timber dam to provide power to run a feed and flour mill. The Pond is comprised of a single, elongated basin, with a surface area of about 51 acres, a maximum depth of seven feet, and a shoreline development factor of about 1.2. The lands draining to the Pond include both urban residential and industrial lands which abut the western and eastern shores of the waterbody, respectively. This urban-density development is served by a public sanitary sewerage system, as recommended in the adopted regional water quality management plan. Urban runoff from lands surrounding the Pond remains a potential concern and the implementation of drainage basin-scale measures to limit the inflow of stormwater runoff to the Pond from the urbanized portion of the drainage basin is likely to benefit this waterbody. A 25 percent reduction in urban nonpoint source pollutant loads to the Pond was recommended in the initial regional water quality management plan. The East and West Branches of the Milwaukee River Priority Watershed Plan refined this recommendation to an approximately 35 percent reduction in suspended sediment delivery to Barton Pond through the application of urban management practices in the West Bend metropolitan area.

#### Big Cedar Lake

Big Cedar Lake, in the Town of West Bend in Washington County, forms the headwaters of, and drains to, Cedar Creek. Big Cedar Lake has a surface area of about 1,004 acres, with a maximum depth of 105 feet, and a shoreline development factor of about 2.25. The lands draining to Big Cedar Lake include both urban residential lands and rural, formerly agricultural lands, with residential lands comprising the major portion of the riparian lands to the Lake. The urban residential lands are currently served by onsite sewage disposal systems. The control of urban nonpoint source pollutants is a potential issue of concern and the implementation of drainage basin-scale measures to limit the inflow of runoff to the Lake from the urbanized portion of the drainage basin is likely to benefit this lake. The Big Cedar Lake Protection and Rehabilitation District has implemented a series of lake management actions in concert with other nongovernmental organizations and governmental agencies within the watershed to manage stormwater and protect lake water quality. As of 1995, the Lake also was being monitored

<sup>&</sup>lt;sup>9</sup>Shoreline Development Factor (SDF) is the ratio between the actual circumference of a lake and the circumference of a circle with the same radius. A higher number indicates a more irregular lakeshore as the shoreline length is greater than the circular reference. The lower the number, the more circular a lake is in shape. A circular lake would have a SDF of 1.0, while a dendritic lake would have a SDF of greater than 1.0. SDF is related to the amount of shoreline available for development, with more irregular shorelines offering more shoreline length along which development could occur.

by a volunteer under the WDNR Self-Help Monitoring Program. Both urban and rural nonpoint source pollution abatement measures are likely to be warranted in this drainage basin. To this end, a 25 percent reduction in both urban and rural nonpoint source pollutant loads to the Lake was recommended in the initial regional water quality management plan. The Cedar Creek Priority Watershed Plan refined this recommendation as a 30 percent reduction in suspended sediment delivery to Big Cedar Lake. Implementation of the stormwater management practices identified by SEWRPC, specifically the construction of stormwater management basins in the vicinities of STH 33/144 and STH 144, were estimated to accomplish an approximately 30 percent reduction in nonpoint source contaminants delivered to Big Cedar Lake. The Big Cedar Lake Protection and Rehabilitation District has implemented those recommended measures.

#### Crooked Lake

Crooked Lake, in the Town of Auburn in Fond du Lac County and Town of Scott in Sheboygan County, drains to the East Branch of the Milwaukee River. Crooked Lake lies largely within the Northern Unit of the State-owned Kettle Moraine State Forest. The Lake has a surface area of about 65 acres, a maximum depth of 34 feet, and a shoreline development factor of about 1.8. The Crooked Lake Wetlands Marsh forms a substantial portion of the lakeshore and is a designated State Natural Area. The inlet to Crooked Lake provides a spawning ground for northern pike while the outlet forms a small tributary to the East Branch of the Milwaukee River. The control of nonpoint source pollution from onsite sewage disposal systems is not an issue of concern, and the location of the Lake within the Kettle Moraine State Forest provides an opportunity for the implementation of management measures to reduce nutrient inputs to the Lake through the maintenance of the natural landscape. The presence of park staff also provides the opportunity to control litter and macropollutants within the drainage area. The East and West Branches of the Milwaukee River Priority Watershed Plan recommended a 25 percent reduction in suspended sediments.

#### Lake Ellen

Lake Ellen, in the Town of Lyndon in Sheboygan County, drains to Chambers Creek, a tributary to the North Branch of the Milwaukee River. Lake Ellen lies adjacent to the urbanized area of the Village of Cascade. The Lake has a surface area of about 121 acres and a maximum depth of 42 feet. Control of nonpoint source pollution from onsite sewage disposal systems was an issue of concern, as was the control of urban nonpoint source pollutants. The North Branch of the Milwaukee River Priority Watershed Plan recommended a 50 percent reduction in phosphorus load and a 30 percent reduction in suspended solids in Nichols Creek downstream of the Lake Ellen outlet. A similar reduction in suspended sediments and a 25 percent reduction in the phosphorus load upstream of Lake Ellen from both rural and urban sources also were recommended.

#### Forest Lake

Forest Lake, in the Town of Auburn in Fond du Lac County, is a "kettle" lake located within the Northern Unit of the State-owned Kettle Moraine State Forest. The Lake is a seepage lake with a surface area of about 51 acres, a maximum depth of 32 feet, and a shoreline development factor of about 1.3. The lands draining to the Lake are largely in public ownership, although a small residential community exists in the vicinity of the waterbody. The control of nonpoint source pollution from onsite sewage disposal systems is not an issue of concern, and the location of the Lake within the Kettle Moraine State Forest provides an opportunity for the implementation of management measures to reduce nutrient inputs to the Lake through the maintenance of the natural landscape. The presence of park staff also provides the opportunity to control litter and macropollutants within the drainage area. The East and West Branches of the Milwaukee River Priority Watershed Plan recommended no additional reductions in phosphorus loading or suspended sediments delivery to Forest Lake.

<sup>&</sup>lt;sup>10</sup>SEWRPC Memorandum Report No. 137, A Water Quality Protection and Stormwater Management Plan for Big Cedar Lake, Washington County, Wisconsin, Volume Two, Stormwater Management Plans for Three Pilot Subbasins, August 2001.

#### Green Lake

Green Lake, in the Town of Farmington in Washington County, is a small, elongate, seepage lake formed as a remnant of a large glacial lake in the area of the Lake Michigan terminal moraine. The Lake has a surface area of about 82 acres, a maximum depth of 35 feet, and a shoreline development factor of about 1.6. The lands surrounding the Lake are largely developed for urban-density residential use. A 25 percent reduction in rural nonpoint source pollutant loads to the Lake is recommended in the initial regional water quality management plan. The East and West Branches of the Milwaukee River Priority Watershed Plan refined this recommendation as a 30 percent reduction in phosphorus loading to Green Lake.

#### Kettle Moraine Lake

Kettle Moraine Lake, in the Town of Osceola in Fond du Lac County, is a shallow, fertile lake draining into Mud Lake, also in Fond du Lac County, and ultimately into the Milwaukee River. The Lake is surrounded by an extensive area of wetland, and is adjacent to the Northern Unit of the State-owned Kettle Moraine State Forest. Kettle Moraine Lake has a surface area of about 227 acres, a maximum depth of 30 feet, and a shoreline development factor of about 1.1. The Lake is reported to be subject to significant fluctuations in water level, contributing to fish kills, including winter kills, which have been reported at irregular intervals since 1951. The East and West Branches of the Milwaukee River Priority Watershed Plan recommended no additional reductions in phosphorus loading or suspended sediments deliveries to Kettle Moraine Lake, although management measures were recommended in the downstream reaches of the Waucousta River.

#### Little Cedar Lake

Little Cedar Lake, in the Town of West Bend in Washington County, receives inflow via Cedar Creek from Big Cedar Lake, and, in turn, drains to Cedar Creek, a tributary of the Milwaukee River. The Lake has a surface area of about 259 acres, a maximum depth of 55 feet, and a shoreline development factor of about 1.8. The lands draining to Little Cedar Lake include both urban residential lands and rural, formerly agricultural lands, with residential lands comprising the major portion of the riparian lands to the Lake. The urban residential lands are currently served by onsite sewage disposal systems. The control of urban nonpoint source pollutants is a potential issue of concern and the implementation of drainage basin-scale measures to limit the inflow of runoff to the Lake from the urbanized portion of the drainage basin is likely to benefit this lake. The Little Cedar Lake Protection and Rehabilitation District conducts an aquatic plant management program on the Lake, as well as informational programming aimed at protecting lake water quality. Both urban and rural nonpoint source pollution abatement measures are likely to be warranted in this drainage basin. To this end, a 25 percent reduction in both urban and rural nonpoint source pollutant loads to the Lake was recommended in the initial regional water quality management plan. The Cedar Creek Priority Watershed Plan refined this recommendation as a 30 percent reduction in suspended sediment delivery to Little Cedar Lake.

#### Long Lake

Long Lake, in the Town of Osceola in Fond du Lac County, drains to the East Branch of the Milwaukee River. The Lake has a surface area of about 427 acres, a maximum depth of 47 feet, and a shoreline development factor of about 1.8. Long Lake lies largely within the Northern Unit of the State-owned Kettle Moraine State Forest, while portions of the northern shoreline are owned by the Boy Scouts of America and utilized as a camping area. Inflow to the Lake is via Watercress Creek, a state designated trout stream populated by brook trout. Water levels in Long Lake are maintained by an approximately six-foot elevation impoundment, which was constructed in 1860. The inundated areas of the lake shoreline were primarily shoreland wetland prior to the construction of the dam. These areas currently form a shallow shelf surrounding the deeper water portions of the Lake. The control of nonpoint source pollution from onsite sewage disposal systems is an issue of concern, given the relatively dense seasonal camper population. However, the location of the Lake within the Kettle Moraine State Forest provides an opportunity for the implementation of management measures to reduce nutrient inputs to the Lake through the maintenance of the natural landscape. The presence of park staff also provides the opportunity to control litter and macropollutants within the drainage area. The East and West Branches of the Milwaukee River Priority

<sup>&</sup>lt;sup>11</sup>SEWRPC Memorandum Report No. 146, op. cit.

Watershed Plan recommended no additional reduction in phosphorus loading to Long Lake, and a 15 percent reduction in suspended sediments.

#### Lucas Lake

Lucas Lake, in the Town of West Bend in Washington County, is an elongate waterbody on Silver Creek, located at the end of a chain-of-lakes comprised of Silver Lake, Hackbarth Lake, and Lucas Lake. A seven-foot elevation dam controls outflow from this waterbody. Outflow from Lucas Lake drains to Silver Creek, a tributary to the Milwaukee River. The Lake has a surface area of about 73 acres, a maximum depth of 15 feet, and a shoreline development factor of about 2.3. A youth camp occupies a significant portion of the shoreline, which remains in largely rural land use. Control of nonpoint source pollution is not an issue of concern at this time. A 25 percent reduction in urban nonpoint source pollutant loads to the Lake was recommended in the initial regional water quality management plan. The East and West Branches of the Milwaukee River Priority Watershed Plan refined this recommendation as a 10 percent reduction in suspended sediment delivery to Lucas Lake through the application of urban management practices in the urbanized areas of Silver Creek within the West Bend metropolitan area.

#### Mauthe Lake

Mauthe Lake, in the Town of Auburn in Fond du Lac County, is a shallow, wetland-fringed lake located within the Northern Unit of the State-owned Kettle Moraine State Forest. The Lake is a drainage lake, located immediately downstream of Long Lake on the East Branch of the Milwaukee River, and receives inflow from the upstream waterbody. Mauthe Lake has a surface area of about 63 acres, a maximum depth of 22 feet, and a shoreline development factor of about 2.2. A three-foot elevation, fixed crest dam maintains the water levels within Mauthe Lake, and sustains water-based recreation at the State campground and picnic area located on the east shore of the Lake. The control of nonpoint source pollution from onsite sewage disposal systems is not an issue of concern, and the location of the Lake within the Kettle Moraine State Forest provides an opportunity for the implementation of management measures to reduce nutrient inputs to the Lake through the maintenance of the natural landscape. The presence of park staff also provides the opportunity to control litter and macropollutants within the drainage area. The East and West Branches of the Milwaukee River Priority Watershed Plan recommended no additional reductions in phosphorus loading or suspended sediment delivery to Mauthe Lake.

#### Mud Lake (Fond du Lac County)

Mud Lake, in the Town of Osceola in Fond du Lac County, is a drained lake, receiving inflow from Kettle Moraine Lake, located immediately upstream of Mud Lake. Outflow from Mud Lake drains to the Milwaukee River near the Village of Campbellsport. Mud Lake has a surface area of about 56 acres, a maximum depth of 16 feet, and a shoreline development factor of about 1.3. The Lake is shallow and surrounded by a marshy fringe that limits development around its shorelands. Occasional winterkills have been reported from this waterbody. The East and West Branches of the Milwaukee River Priority Watershed Plan recommended no additional reductions in phosphorus loading or suspended sediments deliveries to Mud Lake, although management measures are recommended in the downstream reaches of the Waucousta River.

#### Mud Lake (Ozaukee County)

Mud Lake, in the Town of Saukville in Ozaukee County, is a large, shallow lake surrounded by an extensive floating bog and tamarack forest. The Lake has a surface area of about 245 acres, a maximum depth of four feet, and a shoreline development factor of about 1.4. A 25 percent reduction in nonpoint source pollutant loads to the Lake was recommended in the initial regional water quality management plan. No specific or refined reductions in nonpoint source nutrient loads to the Lake were recommended in the Milwaukee River South Priority Watershed Plan.

#### Random Lake

Random Lake, in the Village of Random Lake in Sheboygan County, is a heavily used recreational lake serving this residential community. The Lake has a surface area of about 213 acres, a maximum depth of 19 feet, and a shoreline development factor of about 1.9. The lands draining to Random Lake include both urban and rural lands, with residential lands comprising the major portion of the riparian lands to the Lake. The control of urban

nonpoint source pollutants is a potential issue of concern and the implementation of drainage basin-scale measures to limit the inflow of runoff to the Lake from the urbanized portion of the drainage basin is likely to benefit this lake. Both urban and rural nonpoint source pollution abatement measures are likely to be warranted in this drainage basin. To this end, the North Branch of the Milwaukee River Priority Watershed Plan recommends a 35 percent reduction in phosphorus load and a 10 percent reduction in suspended solids delivery to the Lake.

#### Silver Lake

Silver Lake, in the Town of West Bend in Washington County, forms the headwaters of Silver Creek, which drains to the Milwaukee River through a chain-of-lakes comprised of Silver Lake, Hackbarth Lake, and Lucas Lake. The Lake has a surface area of about 119 acres, a maximum depth of 45 feet, and a shoreline development factor of about 1.7. Silver Lake is surrounded by an established residential community served by public sanitary sewerage service provided by the Silver Lake Sanitary District. Lake management activities are managed by the Silver Lake Protection and Rehabilitation District, which maintains an active program of public informational programming in association with the Silver Lake Improvement Association and Silver Lake Yacht Club. The control of nonpoint source pollution from onsite sewage disposal systems is not an issue of concern. However, management measures to reduce nutrient inputs to the Lake as a result of landscape maintenance practices are indicated. To this end, a 25 percent reduction in both urban and rural nonpoint source pollutant loads to the Lake was recommended in the initial regional water quality management plan. The East and West Branches of the Milwaukee River Priority Watershed Plan refined this recommendation as a 10 percent reduction in suspended sediment delivery to Silver Lake through the application of urban management practices in the urbanized areas of Silver Creek within the West Bend metropolitan area. The implementation of good urban "housekeeping" practices within this watershed was estimated to be adequate achieve this goal.<sup>12</sup>

#### Smith Lake

Smith Lake, in the Town of Barton in Washington County, also known as Dickens or Drickens Lake, drains to the Milwaukee River. The Lake is located in a shallow depression in the terminal moraine of the Lake Michigan glacier, and receives surface inflow from the upstream Little Drickens Lake. Smith Lake has a surface area of about 77 acres, a maximum depth of five feet, and a shoreline development factor of about 1.4. While much of the lake shoreline is comprised of marsh, portions of the northern shoreline of the Lake are utilized for residential development which occurred during the 1960s. Much of the remainder of the lake watershed is in agricultural land use. Control of nonpoint source pollution from onsite sewage disposal systems is an issue of concern, as is the control of urban- and agricultural nonpoint source pollutants. No specific reductions in nonpoint source pollutant loads to the Lake were recommended in the initial regional water quality management plan. Likewise, the East and West Branches of the Milwaukee River Priority Watershed Plan recommended no additional or refined reductions in phosphorus loading or suspended sediment delivery to Smith Lake.

#### Spring Lake

Spring Lake, in the Town of Fredonia in Ozaukee County, is a seepage lake, located within the terminal moraine of the Lake Michigan glacier. The Lake has a surface area of about 66 acres, a maximum depth of 20 feet, and a shoreline development factor of about 1.5. A 25 percent reduction in nonpoint source pollutant loads to the Lake was recommended in the regional water quality management plan. The North Branch of the Milwaukee River Priority Watershed Plan refined this recommendation as a 10 percent reduction in phosphorus load and suspended solids delivery.

#### Lake Twelve

Lake Twelve, in the Town of Farmington in Washington County, is a shallow depression in the ground moraine of the Lake Michigan glacier. The Lake is spring fed, with a marshy seepage outflow to a small stream tributary to the North Branch of the Milwaukee River. Lake Twelve has a surface area of 56 acres, a maximum depth of 20 feet, and a shoreline development factor of about 1.0. The lake shoreland is occupied in large part by a church camp located on the southern shore of the Lake. Much of the north shore of the Lake is occupied by woodlands

<sup>&</sup>lt;sup>12</sup>SEWRPC Memorandum Report No. 123, op. cit.

and wetlands. Runoff from developed lands surrounding the Lake is a limited concern. The initial regional water quality management plan recommended a 25 percent reduction in urban and a 75 percent reduction in rural nonpoint source pollutant loads to the Lake. The North Branch of the Milwaukee River Priority Watershed Plan refined this recommendation to require a 20 percent reduction in phosphorus and bacteria loads to be effected by reducing barnyard runoff and winter-spreading of manure and a 20 percent reduction in suspended solids by reducing cropland erosion.

#### Wallace Lake

Wallace Lake, in the Town of Barton in Washington County, receives inflow from the upstream Lenwood Lake. However, the Lake, which is a small, "kettle" lake in the terminal moraine of the Lake Michigan glacier receives the majority of its inflow from groundwater sources. Outflow from the Lake drains through a small tributary to the Milwaukee River. Wallace Lake has a surface area of about 50 acres, a maximum depth of 35 feet, and a shoreline development factor of about 1.7. An urban-density residential community forms the shorelands of Wallace Lake. These residences are served by public sanitary sewerage services provided by the Wallace Lake Sanitary District, which also performs lake-oriented services such as aquatic plant management. The control of urban nonpoint source pollutants is a potential issue of concern. To this end, a 25 percent reduction in urban nonpoint source pollutant loads to the Lake was recommended in the initial regional water quality management plan. The North Branch of the Milwaukee River Priority Watershed Plan refined this recommendation to require a 20 percent reduction in phosphorus load and suspended solids.

#### **Minor Lakes**

#### Milwaukee County Ponds and Lagoons

The Milwaukee County ponds and lagoons collectively include 68 small waterbodies primarily located within the Milwaukee County Park System that range in surface area from the approximately 0.1 acre dry basins in Bender Park to the 19-acre Grobschmidt Park Pond, also known as Mud Lake. This waterbody is also the deepest of the ponds and lagoons, having a maximum depth of 17 feet. The 1.2-acre Root River Parkway Pond also has a maximum depth of 17 feet. The ponds and lagoons are the point of contact with inland lake ecosystems for many Milwaukee County residents and their visitors, and are heavily used recreational resources, supporting a heavily utilized fishery. In general, the initial regional water quality management plan recommended a reduction in nonpoint source contaminants of between 25 and 50 percent within Milwaukee County, with the 50 percent level of reductions in nonpoint source loadings applying to the southern portions of the County, within the Oak Creek and Root River watersheds, and the 25 percent reductions applying to the Menomonee and Milwaukee River watersheds. These reductions in the case of the ponds and lagoons are proposed to be achieved through control of shoreline erosion and stabilization of shorelines, as set forth in the pond and lagoon management plan and through implementation of the recommended urban nonpoint source pollution measures set forth in this water quality plan update. <sup>13</sup>

#### Upper and Lower Kelly Lakes

The Kelly Lakes have a collective surface area of about 15 acres: Upper Kelly Lake has a surface area of 12 acres, a maximum depth of 31 feet, and a shoreline development factor of about 1.1; Lower Kelly Lake has a surface area of about 3 acres, a maximum depth of 36 feet, and a shoreline development factor of about 1.1. Lower Kelly Lake drains through a wetland complex into Upper Kelly Lake, which is a drainage lake situated on an unnamed tributary stream of the Root River. The nonpoint source pollution reduction goals for the Lakes have been set at a 50 percent reduction in loadings in both the Root River Priority Watershed Plan and the initial regional water quality management plan. The implementation of a stream and wetland restoration program at the mouth of the

<sup>&</sup>lt;sup>13</sup>Milwaukee County Environmental Services, op. cit.

<sup>&</sup>lt;sup>14</sup>SEWRPC Planning Report No. 9, op. cit.; SEWRPC Planning Report No. 30, op. cit.

unnamed tributary discharging into Upper Kelly Lake, documented in the refined lake protection plan, <sup>15</sup> together with the application of good "housekeeping" practices in the drainage area, is estimated to accomplish a cumulative nonpoint source pollution load reduction of about 50 percent to Upper Kelly Lake.

# EFFECTIVENESS OF PLAN IMPLEMENTATION AND RECOMMENDATIONS FOR FUTURE ACTION

#### **Setting Goals**

The initial regional water quality management plan set forth specific watershed-based management measures recommended for implementation in the areas directly tributary to the major lakes within the Southeastern Wisconsin Region. In several cases, these recommendations were refined through the priority watershed nonpoint source pollution abatement planning process. In many of those refined plans, the nonpoint source pollution reduction goals were slightly higher or lower than those established during the initial regional water quality management planning program. The pollutant reductions recommended under the priority watershed study generally applied to total suspended solids and, in some instances, phosphorus and/or bacteria. It is recommended that 1) the priority watershed pollutant reductions as enumerated herein be achieved for the applicable pollutants and 2) the reductions recommended under the initial regional water quality management plan be achieved for other nonpoint source pollutants.

The specific point and nonpoint source pollution reduction goals for any given waterbody should be refined through a detailed lake-focused planning program. As noted above, various levels of plans have been prepared, among others, for Big Cedar Lake, Little Cedar Lake, and Silver Lake within the greater Milwaukee watersheds. These plans have been prepared at the request of the public inland lake protection and rehabilitation districts serving these lake-oriented communities. Financial assistance in preparing these plans can be accessed through the Chapter NR 190 Lake Management Planning Grant program. Plans can be prepared by a variety of contractors, including SEWRPC and private sector consulting firms. Some firms are listed in *The Lake List*, compiled by the University of Wisconsin-Extension. The costs of these plans, and nature of these plans—whether planning or engineering design, will depend upon site-specific conditions and requirements.

It is recommended that lake plans be prepared for the remaining major lakes in the study area. It is also recommended that Milwaukee County pursue implementation of the recommendations in its 2005 pond and lagoon management plan.

#### **Lake Monitoring**

Few long-term data sets exist for the major lakes within the greater Milwaukee watersheds. Of the available data sets, the data on Big Cedar Lake in Washington County provide the best available index of the success of the initial regional water quality management plan. These data, summarized in SEWRPC MR No. 137, <sup>16</sup> and updated in SEWRPC TR No. 39, clearly demonstrate the effectiveness of the recommended lake management actions set forth in the initial regional water quality management plan for lakes within the greater Milwaukee watersheds.

Establishment, of long-term-trend lake monitoring programs for the major lakes of the study area is recommended. These programs could be conducted by an appropriate State agency or by local government units, such as public inland lake protection and rehabilitation districts, with some of the monitoring program costs being offset through grant programs, such as the Chapter NR 190 lake management planning grant program. The estimated cost of a trophic state monitoring program, that would acquire data on phosphorus and chlorophyll

<sup>&</sup>lt;sup>15</sup>See SEWRPC Memorandum Report No. 135, 2nd Edition (draft), A Lake Protection Plan for the Kelly Lakes, Milwaukee and Waukesha Counties, Wisconsin, January 2007.

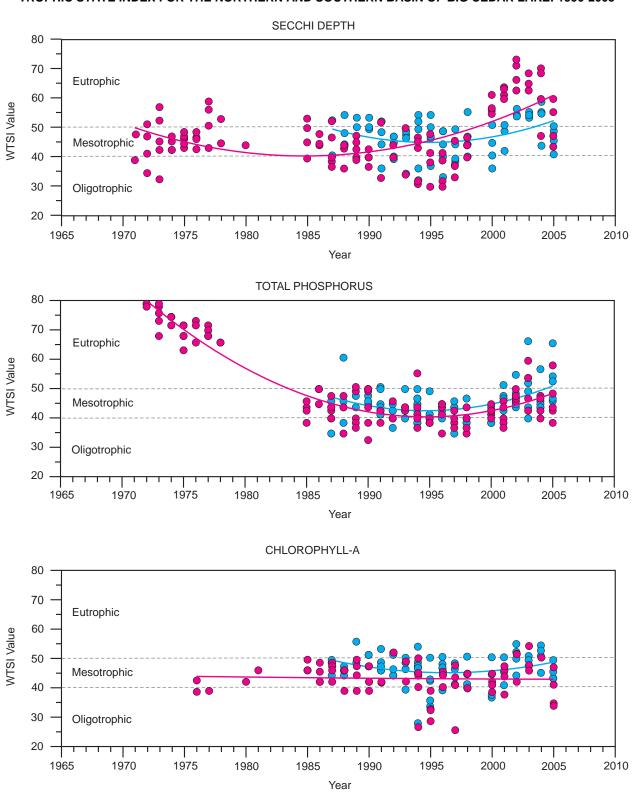
<sup>&</sup>lt;sup>16</sup>SEWRPC Memorandum Report No. 137, op. cit.

concentrations and Secchi-disc transparency, ranges from \$1,000 to \$6,000 per year, depending upon frequency of sampling, the entity collecting the samples, and water quality monitoring program selected.<sup>17</sup>

#### **Informational Programming**

Figure Q-1 shows the trends observed in the Wisconsin Trophic State Index (WTSI) values calculated for Big Cedar Lake between 1971 and 2005. Given that a lower WTSI indicates better water quality for the period from 1980 to 1995, this figure shows, in part, the effectiveness of implementing nonpoint source pollution abatement measures recommended in the original regional water quality management plan. This figure also reflects the impact of changing land use conditions within the area tributary to Big Cedar Lake during this period, as well as the results of the active informational and educational campaign conducted by the Big Cedar Lake Protection and Rehabilitation District. The latter included the distributing informational materials on residential good "housekeeping" practices, promoting and selling phosphorus-free fertilizer, and conducting events aimed at raising public awareness of lake issues. With the exception of the bulk purchase of phosphorus-free fertilizer, most of these efforts have involved little or no additional cost to the District. Many informational materials are available without charge or at a nominal charge from various agencies and organizations, such as the WDNR and University of Wisconsin-Extension. Consequently, implementation of a community-based informational program is recommended.

Formal, school-based curricula are available to complement public informational programming. Programs such as Project WET (Water Education for Teachers) and Adopt-A-Lake have been utilized by school districts to promote lake awareness and environmental awareness in general. Some lake management organizations have supported teacher training, and even the implementation of these curricula, while other lake organizations have organized and conducted "pontoon classrooms" that put young people "on the water" where they can be instructed on aquatic ecology and related topics by WDNR staff, community-based consultants, and others who are engaged in the practice of lake management. Where the opportunities exist, the conduct of these types of educational programs is recommended. Because they are frequently organized and staffed by volunteers or agency staff, these programs can have a relatively low cost.


#### **Changing Land Uses**

Superimposed upon the actions of the Big Cedar Lake Protection and Rehabilitation District was the trend toward urban residential land uses within the drainage area and, indeed, within the Town of West Bend as a whole, that resulted in the diminution of agricultural sources of contaminants to the Lake with concomitant water quality benefit. Subsequent to the data shown in Figure Q-1, data reported in SEWRPC TR No. 39 suggested that there was a period during the late 1990s and early 2000s during which water quality, as measured by Secchi disc transparency, as well as in terms of total phosphorus and chlorophyll concentrations, deteriorated, possibly in response to the extension of intensive residential and commercial land uses westward from the City of West Bend along the STH 33 corridor. Similar trends and tendencies can be seen for most of the lakes for which data are

<sup>&</sup>lt;sup>17</sup>Sampling and analysis services provided by the Wisconsin District of the U.S. Geological Survey offer a comprehensive program of sample collection, analysis and reporting, with data being published annually in the U.S. Geological Survey Open-File Report Series, Water-Quality and Lake-Stage Data for Wisconsin Lakes; the WDNR Self-Help Monitoring program offers a standard, Secchi-disc-based citizen water clarity monitoring package in which volunteers can enroll at no cost and an expanded trophic state index monitoring program in which volunteers who have successfully completed a year in the Secchi-disc-based program can enroll; and the University of Wisconsin-Stevens Point, Water and Environmental Analysis Laboratory (WEAL) lake monitoring programs offer both a spring and fall overturn package and a summer season package in which citizens collect samples for analysis by the University. These programs span the range of costs, and provide quantitative data on lake ecosystem health that are essential to assessing the degree to which both point and nonpoint source pollution abatement programs benefit the lakes of the greater Milwaukee watersheds. The selection of specific programs has been the decision of the local communities, and specifically of the public inland lake protection and rehabilitation districts where such special purpose units of government exist.

Figure Q-1

TROPHIC STATE INDEX FOR THE NORTHERN AND SOUTHERN BASIN OF BIG CEDAR LAKE: 1990-2005



South Basin

Source: Wisconsin Department of Natural Resources and SEWRPC.

North Basin

available, as documented in the Wisconsin Trophic State Index figures in Chapter VII of SEWRPC TR No. 39, although it is more clearly seen in the deeper lakes (Big Cedar, Little Cedar, Long, and Random), as shown in Chapter VII of SEWRPC TR No. 39. This millennium maximum can be clearly seen in the Secchi disc-based Wisconsin Trophic State Index (WTSI) values for Random Lake and Little Cedar Lake, and in the total phosphorus concentration-based WTSI values for Big Cedar Lake, Little Cedar Lake, and Random Lake. The data set for Long Lake is less clear, as data were not collected after the 2001 hydrologic year. With respect to the shallow lakes (Ellen, Forest, Green, and Wallace), as shown in Chapter VII of SEWRPC TR No. 39, Secchi discbased WTSI values for Wallace Lake suggest a millennium peak. While the precise reasons for these changes in lake trophic state may vary among the lakes for which data are available, some measure of water quality impairment and/or improvement can be ascribed to changing land use conditions. Typically, within the Southeastern Wisconsin Region, these changes reflect the conversion of agricultural lands to urban, primarily residential, land uses. Such changes generally reduce the mass of nutrients being placed upon the land surface, reduce the mass of sediment likely to be transported off the land surface by erosion, and modify the composition of the available contaminants by introducing additional pollutants such as heavy metals into the environment. For this reason, it is recommended that land use changes be reviewed and evaluated for potential lake-related impacts at the time planning and zoning decisions are made.

#### **Managing Stormwater and Runoff**

In addition to their informational efforts, the Big Cedar Lake Protection and Rehabilitation District, in partnership with other governmental and nongovernmental organizations, such as the Cedar Lakes Foundation Inc., purchased critical properties within the area tributary to the Lake and installed stormwater management practices that reduced the quantities of nonpoint source pollutants entering the Lake. These actions, and the subsequent recovery of water quality within Big Cedar Lake, highlight the need for ongoing remedial actions, especially during periods of land disturbance. Consequently, the ongoing application of construction site erosion controls, and the implementation and maintenance of onsite or community stormwater management practices following construction, is recommended. Costs are proportional to surface area served, and the technology selected. Generally, implementation of stormwater management practices is subject to detailed engineering design. These community-based actions support and complement state and local stormwater management requirements, such as those established pursuant to the standards set forth in Chapter NR 151 of the Wisconsin Administrative Code. In this regard, the inclusion of specific stormwater management requirements within local zoning codes is recommended, where such requirements do not currently exist. Likewise, it is recommended that critical parcels be identified for possible acquisition by both governmental and nongovernmental entities for purposes of environmental protection. For example, certain parcels of local, regional, or statewide importance are currently identified in the regional critical species habitat and natural areas protection and management plan, and preservation of those parcels is recommended in the land use element of the recommended plan presented in Chapter X of this report. Property acquisition is site-specific, and in the Southeastern Wisconsin Region, generally involves significant costs, which can, in certain situations, be offset by soliciting support from available grant programs, such as the Chapter NR 50/51 Stewardship program, Chapter NR 191 Lake Protection Grant program, or Chapter NR 195 River Planning and Protection Grant program.

#### ANCILLARY LAKE MANAGEMENT PLAN RECOMMENDATIONS

In addition to the foregoing lake and watershed management measures set forth in the adopted management plans, and the conduct of recommended local level lake management planning programs, the county land and water resource management plans recommend that lake associations and public inland lake protection and rehabilitation districts, where they exist, continue to participate in the WDNR Self-Help Monitoring Program or an equivalent program so as to further develop the knowledge base on lake water quality. Lakes not currently participating in these programs are encouraged to do so. In addition, it is recommended that the lake communities, through the appropriate local authorities, whether municipal governments or lake organizations, develop and deliver informational and educational programs involving both the community and local schools. Educational programs for schools include the Project WET, or Water Education Training for educators, and Adopt-A-Lake programs run through the University of Wisconsin-Extension. In addition, municipalities and lake organizations serving these lake communities are encouraged to make available appropriate lawn and garden care educational materials,

available through the University of Wisconsin-Extension, and to hold periodic seminars and other programs for homeowners and landscape contractors, among others, to present environmentally-friendly design options especially (but not exclusively) for shoreland areas. These efforts will complement other lake- and watershed-based interventions and directly contribute to the implementation of lake management measures within the greater Milwaukee watersheds.

#### CONCLUDING REMARKS

Lakes are an integral part of the southeastern Wisconsin landscape. They form a focus for recreational activities and often form the center of lake-oriented residential communities. As the watersheds within which the lakes are located change in response to changing human demands, the stressors placed upon these waterbodies change. Currently, many of these stressors have shifted from a primarily rural, agricultural to urban, largely residential basis, resulting in a diminution of some contaminant loads such as sediments and nutrients and the introduction of emerging contaminants such as heavy metals. Management of these changes requires awareness of the likely issues facing lake-oriented communities, as well as awareness-building among the communities to promote lake-friendly practices. More specific interventions for lake protection and rehabilitation require site-specific planning, which will refine the recommendations set forth herein with respect to these community level and watershedwide concerns.

(This page intentionally left blank)

## Appendix R

# PUBLIC SECTOR COSTS FOR COMPONENTS OF THE RECOMMENDED REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE BY MUNICIPALITY, COUNTY, OR AGENCY<sup>20</sup>

|                                       |                                                        |             |                                                                                                                                                                                            | City of Brookfield <sup>b</sup>                                             |                                                                                                            | City                                  | of Cedarburg                                                         | City of Cudahy <sup>b</sup>              |                                                                      | City of Franklin <sup>b</sup>            |                                                                      | City of Glendale <sup>b</sup>            |                                                                      |   |  |
|---------------------------------------|--------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---|--|
| Plan Element                          | Plan Subelement <sup>C</sup>                           | Description | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup>                                    | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup>                                       | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |   |  |
| Land Use Plan Element <sup>e</sup>    |                                                        |             |                                                                                                                                                                                            |                                                                             |                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |   |  |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement |             | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                                                             | 1                                                                                                          |                                       | 1                                                                    |                                          | 1                                                                    |                                          | 1                                                                    | 1                                        | 1                                                                    |   |  |
|                                       |                                                        |             | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                                                             |                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |   |  |
|                                       |                                                        |             | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                                                             | ï                                                                                                          | 87.5                                  | 1                                                                    |                                          | 1                                                                    |                                          | 1                                                                    | 1                                        | 1                                                                    |   |  |
|                                       |                                                        |             | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                                                             |                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | -                                        |                                                                      |   |  |
|                                       |                                                        |             | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                                                             |                                                                                                            | 75.0                                  |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |   |  |
|                                       |                                                        |             | City of West Bend     Northwest Interceptor                                                                                                                                                |                                                                             |                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |   |  |
|                                       |                                                        |             |                                                                                                                                                                                            |                                                                             | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system | 1                                     |                                                                      |                                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      | 1 |  |
|                                       |                                                        |             | Ryan Creek interceptor sewer                                                                                                                                                               |                                                                             |                                                                                                            |                                       |                                                                      |                                          |                                                                      | 26,751                                   | 56.0                                                                 |                                          |                                                                      |   |  |
|                                       |                                                        |             | 11                                                                                                                                                                                         | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU |                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | -                                                                    |   |  |
|                                       |                                                        |             | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                                                             |                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |   |  |

## Appendix R (continued)

|                                                      |                                                           |                                                              |                                                                                                                                        |                                       | City of Brookfield <sup>b</sup>                                      |                                       | City of Cedarburg                                                    |                                       | City of Cudahy <sup>b</sup>                                          |                                       | City of Franklin <sup>b</sup>                                        |                                          | City of Glendale <sup>b</sup>                                        |  |
|------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|--|
| Plan Element                                         | Plan Subelement <sup>C</sup>                              | Description                                                  | Component <sup>C</sup>                                                                                                                 | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |  |
| Surface Water Quality<br>Plan Element<br>(continued) | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                    | \$4,460.48                            | \$30.13                                                              | \$1,296.07                            | \$284.42                                                             | \$1,565.93                            | \$107.23                                                             | \$7,370.60                            | \$27.29                                                              | \$398.94                                 | \$9.57                                                               |  |
|                                                      |                                                           |                                                              | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>†</sup> | \$432.00                              |                                                                      | \$204.00                              |                                                                      | \$248.00                              |                                                                      | \$698.00                              |                                                                      | \$320.00                                 |                                                                      |  |
|                                                      |                                                           |                                                              | Chloride reduction programs                                                                                                            | \$10.87                               | \$32.62                                                              | \$3.55                                | \$10.66                                                              | \$4.33                                | \$12.98                                                              | \$12.22                               | \$36.67                                                              | \$5.59                                   | \$16.76                                                              |  |
|                                                      |                                                           |                                                              | Implement fertilizer management programs                                                                                               |                                       |                                                                      |                                       |                                                                      | \$5.00                                |                                                                      | \$5.00                                |                                                                      | \$5.00                                   |                                                                      |  |
|                                                      |                                                           |                                                              | Beach and riparian litter and debris control                                                                                           |                                       | \$46.11                                                              |                                       | \$7.81                                                               |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                                      | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management                    | Concrete channel renovation and rehabilitation                                                                                         |                                       | 1                                                                    |                                       | 1                                                                    |                                       | ï                                                                    |                                       | 1                                                                    | 1                                        |                                                                      |  |
|                                                      |                                                           |                                                              | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                       |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                                      |                                                           |                                                              | Dam abandonment<br>and restoration plans                                                                                               | \$25.00                               |                                                                      | \$75.00                               |                                                                      |                                       |                                                                      | \$25.00                               |                                                                      | \$25.00                                  |                                                                      |  |
|                                                      |                                                           |                                                              | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                                      | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                              | Lake management<br>plans for 17 major<br>lakes                                                                                         |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                                      |                                                           |                                                              | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                                      | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                               | Continue current<br>public health<br>monitoring programs<br>and expand to all<br>public beaches in the<br>study area                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                                      |                                                           |                                                              | Continue and expand current beach grooming programs                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       | \$27.89                                                              |                                       |                                                                      |                                          |                                                                      |  |
|                                                      |                                                           | Waterfowl Control                                            | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features        |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |

## Appendix R (continued)

|                                                      |                                                                          |                                                                                                                 |                                                                                                                                                                                                                    | City of Brookfield <sup>b</sup>          |                                                                      | City                                  | of Cedarburg                                                         | City of Cudahy <sup>b</sup>           |                                                                      | City of Franklin <sup>b</sup>            |                                                                      | City of Glendale <sup>b</sup>         |                                                                      |
|------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                                             | Description                                                                                                     | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement<br>(continued) | Water Pollution<br>Control                                                                                      | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them                                                         |                                          | -1                                                                   |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                          | Emerging Issues                                                                                                 | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                                                                            |                                          | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                          | Water Quality<br>Monitoring                                                                                     | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                          | 1                                                                    |                                       | ł                                                                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                          |                                                                                                                 | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         | 1                                        |                                                                      |                                       |                                                                      |                                       |                                                                      | 1                                        |                                                                      |                                       |                                                                      |
|                                                      |                                                                          |                                                                                                                 | Establish long-term fisheries and macroinvertebrate monitoring stations                                                                                                                                            |                                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                          |                                                                                                                 | Establish long-term aquatic habitat monitoring stations                                                                                                                                                            |                                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                          | Maintenance of the<br>Regional Water<br>Quality Manager<br>ment/MMSD 2020<br>Facilities Plan<br>Modeling System | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                          |                                                                                                                 | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models | :                                        | ï                                                                    |                                       | ï                                                                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater                      | tions Related to Recharge Areas                                                                                 | Extend groundwater<br>recharge area<br>mapping to those<br>portions of the study<br>area located outside of<br>the Southeastern<br>Wisconsin Region                                                                |                                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                                                           | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                          | Total <sup>b</sup>                                                                                              |                                                                                                                                                                                                                    | \$4,928                                  | \$109                                                                | \$1,741                               | \$303                                                                | \$1,823                               | \$148                                                                | \$34,862                                 | \$120                                                                | \$755                                 | \$26                                                                 |

## Appendix R (continued)

|                                       |                                                           |                                                                                   |                                                                                                                                                                                            |                                       | City of Greenfield <sup>b</sup>                                      |                                       | City of Mequon <sup>b</sup>                                          |                                       | City of Milwaukee <sup>b</sup>                                       |                                       | City of Muskego <sup>b</sup>                                         |                                          | City of New Berlin <sup>b</sup>                                      |  |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|--|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                                       | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |  |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                                   |                                                                                                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service<br>Areas | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       | 1                                                                    |                                       |                                                                      |                                       | ï                                                                    |                                       | -                                                                    |                                          |                                                                      |  |
|                                       |                                                           |                                                                                   | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                       |                                                           |                                                                                   | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                       |                                                           |                                                                                   | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                       |                                                           |                                                                                   | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    | 1                                     | 1                                                                    | 1                                        | :                                                                    |  |
|                                       |                                                           |                                                                                   | City of West Bend<br>Northwest Interceptor                                                                                                                                                 |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                       |                                                           |                                                                                   | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | ï                                                                    | 1                                        |                                                                      |  |
|                                       |                                                           |                                                                                   | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      | 5,758                                 | 3.4                                                                  |                                          |                                                                      |  |
|                                       |                                                           |                                                                                   | Implementation of<br>MMSD 2020 Facilities<br>Plan as Recom-<br>mended under the<br>RWQMPU                                                                                                  |                                       |                                                                      |                                       | 1                                                                    |                                       | -                                                                    |                                       | 1                                                                    |                                          |                                                                      |  |
|                                       |                                                           |                                                                                   | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |  |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$3,980.83                            | \$20.67                                                              | \$3,701.57                            | \$91.02                                                              | \$32,584.30                           | \$346.63                                                             | \$389.78                              | \$4.59                                                               | \$1,312.87                               | \$34.46                                                              |  |
|                                       |                                                           |                                                                                   | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     | \$650.00                              |                                                                      | \$874.00                              |                                                                      | \$6,698.00                            |                                                                      | \$138.00                              |                                                                      | \$380.00                                 |                                                                      |  |

|                                       |                                                           |                                                     |                                                                                                                                                            | City o                                   | f Greenfield <sup>b</sup>                                            | City                                  | of Mequon <sup>b</sup>                                               | City o                                   | of Milwaukee <sup>b</sup>                                            | City                                     | of Muskego <sup>b</sup>                                              | City o                   | f New Berlin <sup>b</sup>                                            |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$11.36                                  | \$34.09                                                              | \$15.31                               | \$45.93                                                              | \$117.21                                 | \$351.64                                                             | \$2.42                                   | \$7.25                                                               | \$6.63                   | \$19.90                                                              |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   | \$5.00                                   |                                                                      |                                       |                                                                      | \$5.00                                   |                                                                      | \$5.00                                   |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                          |                                                                      |                                       | \$196.54                                                             |                                          |                                                                      |                                          | \$3.62                                                               |                          | \$50.40                                                              |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   | \$25.00                                  |                                                                      | \$25.00                               |                                                                      | \$50.00                                  |                                                                      |                                          |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                          |                                                                      |                                       | -                                                                    |                                          | -                                                                    |                                          | -                                                                    |                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                          |                                                                      |                                       | ï                                                                    |                                          | i .                                                                  |                                          | ť                                                                    |                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                          |                                                                      |                                       | \$38.69                                                              |                                          | \$172.78                                                             |                                          | 1                                                                    |                          |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | -                        |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | City o                                | f Greenfield <sup>b</sup>                                            | City                                     | of Mequon <sup>b</sup>                                               | City o                                | of Milwaukee <sup>b</sup>                                            | City                                     | of Muskego <sup>b</sup>                                              | City o                                | f New Berlin <sup>b</sup>                                            |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly<br>expand USGS stream<br>gauging program                                                                                                                                                     |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       | 1                                                                    |                                          | 1                                                                    |                                       | -                                                                    | 1                                        | 1                                                                    |                                       | 1                                                                    |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                                          |                                                                      |                                       | -                                                                    |                                          | -                                                                    |                                       |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       | 1                                                                    |                                          |                                                                      |                                       | 1                                                                    |                                          | 1                                                                    |                                       | -                                                                    |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       | 1                                                                    |                                          | 1                                                                    |                                       | 1                                                                    |                                          | 1                                                                    |                                       | :                                                                    |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       | -                                                                    |                                          | 1                                                                    |                                       | 1                                                                    |                                          | 1                                                                    |                                       | 3                                                                    |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$4,672                               | \$55                                                                 | \$4,616                                  | \$372                                                                | \$39,455                              | \$871                                                                | \$6,293                                  | \$19                                                                 | \$1,700                               | \$105                                                                |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | City o                                   | f Oak Creek <sup>b</sup>                                             | City of F                                | Port Washington                                                      | Cit                                      | y of Racine                                                          | City of S                                | outh Milwaukee                                                       | City o                                   | f St. Francis <sup>b</sup>                                           |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                          | 1                                                                    |                                          | 1                                                                    |                                          |                                                                      |                                          | -                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                          |                                                                      |                                          |                                                                      | 155                                      |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                          |                                                                      |                                          |                                                                      | 75.0                                     |                                                                      | 75.0                                     |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                          | 1                                                                    |                                          | 1                                                                    |                                          |                                                                      | 4,298                                    | 1,600                                                                |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures    | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$5,303.56                               | \$333.89                                                             | \$5.59                                   |                                                                      | \$4,176.98                               | \$332.37                                                             | \$1,218.46                               | \$15.78                                                              | \$788.86                                 | \$3.67                                                               |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health!                                                                 | \$680.00                                 |                                                                      |                                          |                                                                      | \$726.00                                 |                                                                      | \$298.00                                 |                                                                      | \$122.00                                 |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | City o                                   | f Oak Creek <sup>b</sup>                                             | City of F                                | Port Washington                                                      | Cit                                   | y of Racine                                                          | City of S                                | South Milwaukee                                                      | City o                                   | f St. Francis <sup>b</sup>                                           |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$11.90                                  | \$35.69                                                              |                                          |                                                                      | \$12.70                               | \$38.10                                                              | \$5.20                                   | \$15.59                                                              | \$2.14                                   | \$6.42                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   | \$5.00                                   |                                                                      |                                          |                                                                      |                                       |                                                                      | \$5.00                                   |                                                                      | \$5.00                                   |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                       | \$39.90                                                              |                                          |                                                                      |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   | \$25.00                                  |                                                                      |                                          |                                                                      | \$25.00                               |                                                                      | \$25.00                                  |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                          |                                                                      |                                          |                                                                      |                                       | \$3.9                                                                |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                          | \$7.90                                                               |                                          | 1                                                                    |                                       | \$272.62                                                             |                                          | \$84.92                                                              |                                          | \$18.76                                                              |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                          |                                                                      |                                          |                                                                      |                                       | \$16.5                                                               |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | City of                                  | f Oak Creek <sup>b</sup>                                             | City of F                             | ort Washington                                                       | Cit                                      | y of Racine                                                          | City of S                                | outh Milwaukee                                                       | City o                                   | f St. Francis <sup>b</sup>                                           |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                          | 1                                                                    |                                       | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    |                                          | 1                                                                    |
|                                                      |                                                          |                                                                           | Establish long-term aquatic habitat monitoring stations                                                                                                                                                            |                                          | 1                                                                    |                                       | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    |                                          |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                          | 1                                                                    |                                       | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    |                                          |                                                                      |
|                                                      |                                                          | Facilities Plan Modeling System                                           | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                          | -                                                                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$6,025                                  | \$377                                                                | \$                                    | \$                                                                   | \$5,171                                  | \$703                                                                | \$5,925                                  | \$691                                                                | \$918                                    | \$29                                                                 |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | City of                               | Wauwatosa <sup>b</sup>                                               | City o                                | f West Allis <sup>b</sup>                                            | City                                  | of West Bend                                                         | Villa                                    | age of Adell                                                         | Village                                  | e of Bayside <sup>b</sup>                                            |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       | 1                                                                    |                                       |                                                                      |                                       | ï                                                                    |                                          | -                                                                    |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                       | **                                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                       |                                                                      |                                       |                                                                      | 75.0                                  |                                                                      | 1                                        |                                                                      | 1                                        | ;                                                                    |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       |                                                                      |                                       |                                                                      | 4,091                                 | 3.4                                                                  |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                          |                                                                      | 1                                        |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of<br>MMSD 2020 Facilities<br>Plan as Recom-<br>mended under the<br>RWQMPU                                                                                                  |                                       |                                                                      |                                       | 1                                                                    |                                       | -                                                                    |                                          | 1                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       | 1                                                                    |                                       |                                                                      |                                       | 1                                                                    |                                          | 1                                                                    |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$5,203.50                            | \$134.67                                                             | \$4,063.07                            | \$251.92                                                             | \$3,997.76                            | \$583.98                                                             | \$66.28                                  | \$7.60                                                               | \$410.03                                 | \$3.50                                                               |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     | \$828.00                              |                                                                      | \$848.00                              |                                                                      | \$448.00                              |                                                                      | \$30.00                                  |                                                                      | \$116.00                                 |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | City of                               | Wauwatosa <sup>b</sup>                                               | City o                   | of West Allis <sup>b</sup>                                           | City                                  | of West Bend                                                         | Villa                       | age of Adell                                                         | Village                  | e of Bayside <sup>b</sup>                                            |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$14.47                               | \$43.42                                                              | \$14.83                  | \$44.50                                                              | \$7.84                                | \$23.53                                                              | \$0.54                      | \$1.61                                                               | \$2.04                   | \$6.13                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   | \$5.00                                |                                                                      | \$5.00                   |                                                                      | \$5.00                                |                                                                      |                             |                                                                      | \$5.00                   |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                          |                                                                      |                                       | \$19.81                                                              |                             | \$0.37                                                               |                          | \$36.96                                                              |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                          |                                                                      |                                       |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                          |                                                                      |                                       |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                          |                                                                      | \$175.00                              |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       | 1                                                                    |                          | 1                                                                    |                                       | 1                                                                    |                             | 1                                                                    |                          | 1                                                                    |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       | 1                                                                    |                          | ł                                                                    |                                       | 1                                                                    |                             | 1                                                                    |                          | 1                                                                    |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                          |                                                                      |                                       |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                          |                                                                      |                                       |                                                                      |                             |                                                                      |                          | :                                                                    |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                       | 1                                                                    |                          | 1                                                                    |                                       | 1                                                                    |                             | 1                                                                    |                          | \$28.56                                                              |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                          |                                                                      |                                       |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                          |                                                                      |                                       |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection programs for expired and unused household pharmaceuticals                                                                             |                                       |                                                                      |                          |                                                                      |                                       |                                                                      |                             |                                                                      |                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | City of                               | Wauwatosa <sup>b</sup>                                               | City o                                   | of West Allis <sup>b</sup>                                           | City                                  | of West Bend                                                         | Villa                                    | age of Adell                                                         | Village                   | e of Bayside <sup>b</sup>                                            |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands)d | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                                          | 1                                                                    |                                       |                                                                      | ï                                        | 1                                                                    |                           |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                          | 1                                                                    | 1                                     | 1                                                                    | 1                                        |                                                                      | -:                        | 1                                                                    |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater<br>recharge area<br>mapping to those<br>portions of the study<br>area located outside of<br>the Southeastern<br>Wisconsin Region                                                                |                                       |                                                                      |                                          | 1                                                                    |                                       | 1                                                                    | 1                                        | ï                                                                    |                           | 1                                                                    |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      | 1                                        |                                                                      |                           |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$6,051                               | \$178                                                                | \$4,931                                  | \$296                                                                | \$8,800                               | \$631                                                                | \$97                                     | \$10                                                                 | \$533                     | \$75                                                                 |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Village                               | of Brown Deer <sup>b</sup>                                           | Villag                                   | ge of Butler <sup>b</sup>                                            | Village                                  | of Caledonia <sup>b</sup>                                            | Village o                                | of Campbellsport                                                     | Villag                                   | e of Cascade                                                         |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                          |                                                                      | 70                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                       |                                                                      |                                          |                                                                      | 75.0                                     |                                                                      | 75.0                                     |                                                                      | 75.0                                     |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       | 1                                                                    |                                          | 1                                                                    |                                          | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                       | 1                                                                    |                                          | 1                                                                    |                                          | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$2,121.43                            | \$54.01                                                              | \$687.46                                 | \$78.74                                                              | \$2,313.05                               | \$36.85                                                              | \$244.79                                 | \$56.01                                                              | \$66.05                                  | \$1.47                                                               |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     | \$274.00                              |                                                                      | \$52.00                                  |                                                                      | \$734.00                                 |                                                                      | \$90.00                                  |                                                                      | \$42.00                                  |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Village (                             | of Brown Deer <sup>b</sup>                                           | Villa                                    | ge of Butler <sup>b</sup>                                            | Village                                  | e of Caledonia <sup>b</sup>                                          | Village o                    | of Campbellsport                                                     | Villag                   | e of Cascade                                                         |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands)d | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$4.79                                | \$14.37                                                              | \$0.91                                   | \$2.72                                                               | \$12.84                                  | \$38.51                                                              | \$1.56                       | \$4.69                                                               | \$0.73                   | \$2.18                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   | \$5.00                                |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      | \$5.00                   |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                          | \$1.31                                                               |                                          |                                                                      |                              | \$1.37                                                               |                          | \$0.48                                                               |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | \$25.00                      |                                                                      | \$25.00                  |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | -                            |                                                                      |                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                              |                                                                      |                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Village o                                | of Brown Deer <sup>b</sup>                                           | Villag                                   | ge of Butler <sup>b</sup>                                            | Village                                  | of Caledonia <sup>b</sup>                                            | Village o                                | f Campbellsport                                                      | Villag                                   | e of Cascade                                                         |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term fisheries and macroinvertebrate monitoring stations                                                                                                                                            |                                          | ï                                                                    |                                          | 1                                                                    |                                          | 1                                                                    |                                          | ï                                                                    |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term aquatic habitat monitoring stations                                                                                                                                                            |                                          | 1                                                                    |                                          | 1                                                                    |                                          | 1                                                                    |                                          | 1                                                                    |                                          |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Facilities Plan Modeling System                                           | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$2,405                                  | \$68                                                                 | \$740                                    | \$83                                                                 | \$3,205                                  | \$75                                                                 | \$436                                    | \$62                                                                 | \$214                                    | \$4                                                                  |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Villa                    | ige of Eden                                                          | Village                               | of Elm Grove <sup>b</sup>                                            | Village                                  | of Fox Point <sup>b</sup>                                            | Village                   | e of Fredonia                                                        | Village o                | of Germantown <sup>b</sup>                                           |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands)d | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Manage-<br>ment, Operations, and<br>Maintenance (CMOM)<br>programs for munici-<br>palities outside of the<br>MMSD service area                                                   |                          | 1                                                                    |                                       | 1                                                                    |                                          | 1                                                                    | 75.0                      | 1                                                                    |                          | 1                                                                    |
|                                       |                                                           |                                                                          | City of West Bend<br>Northwest Interceptor                                                                                                                                                 |                          |                                                                      |                                       |                                                                      |                                          | 1                                                                    |                           | 1                                                                    |                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                          | 1                                                                    |                                       | 1                                                                    |                                          | 1                                                                    |                           | 1                                                                    |                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                           |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of<br>MMSD 2020 Facilities<br>Plan as Recom-<br>mended under the<br>RWQMPU                                                                                                  | 1                        | 1                                                                    |                                       | 1                                                                    |                                          | 1                                                                    |                           |                                                                      | 1                        |                                                                      |
|                                       |                                                           |                                                                          | 12. Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                      | ==                       | 1                                                                    |                                       |                                                                      |                                          | 1                                                                    |                           | 1                                                                    |                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures    | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$35.40                  | \$14.68                                                              | \$560.17                              | \$38.71                                                              | \$542.59                                 | \$4.80                                                               | \$215.74                  | \$19.61                                                              | \$12,777.28              | \$3,776.45                                                           |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     | \$6.00                   |                                                                      | \$178.00                              |                                                                      | \$160.00                                 |                                                                      | \$34.00                   |                                                                      | \$564.00                 |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Villa                                 | age of Eden                                                          | Village                                  | of Elm Grove <sup>b</sup>                                            | Village                               | e of Fox Point <sup>b</sup>                                          | Village                  | e of Fredonia                                                        | Village o                   | of Germantown <sup>b</sup>                                           |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$0.09                                | \$0.28                                                               | \$3.13                                   | \$9.39                                                               | \$2.80                                | \$8.40                                                               | \$0.59                   | \$1.78                                                               | \$9.85                      | \$29.56                                                              |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      |                                          |                                                                      | \$5.00                                |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                          | \$4.48                                                               |                                       |                                                                      |                          | \$1.33                                                               |                             | \$13.13                                                              |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      | ;                           |                                                                      |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                       |                                                                      |                                          | 1                                                                    |                                       | 1                                                                    |                          | 1                                                                    | 1                           | ł                                                                    |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                          |                                                                      |                             |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Villa                                    | ige of Eden                                                          | Village                                  | of Elm Grove <sup>b</sup>                                            | Village                                  | of Fox Point <sup>b</sup>                                            | Villag                                   | e of Fredonia                                                        | Village o                 | of Germantown <sup>b</sup>                                           |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands)d | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                           |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                          |                                                                      | - 1                                      |                                                                      |                                          |                                                                      |                                          |                                                                      |                           |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                          |                                                                      | 1                                        |                                                                      |                                          |                                                                      | :                                        | 1                                                                    |                           |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                           |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                          |                                                                      |                                          | **                                                                   |                                          |                                                                      |                                          |                                                                      |                           |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                          | ŧ                                                                    | 1                                        | ł                                                                    | ;                                        | ŧ                                                                    | 1                                        | +                                                                    |                           | ;                                                                    |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater<br>recharge area<br>mapping to those<br>portions of the study<br>area located outside of<br>the Southeastern<br>Wisconsin Region                                                                |                                          | 1                                                                    |                                          | 1                                                                    |                                          | 1                                                                    |                                          | ï                                                                    |                           | 1                                                                    |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                          | -                                                                    | 1                                        |                                                                      | 1                                        |                                                                      | :                                        |                                                                      |                           |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$41                                     | \$15                                                                 | \$741                                    | \$53                                                                 | \$710                                    | \$13                                                                 | \$325                                    | \$23                                                                 | \$13,351                  | \$3,819                                                              |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Villaç                                   | ge of Grafton                                                        | Village                                  | of Greendale <sup>b</sup>                                            | Village o                                | f Hales Corners <sup>b</sup>                                         | Villag                                   | e of Jackson                                                         | Village                                  | of Kewaskum                                                          |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 3,440                                    | 0.97                                                                 |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                          | 1                                                                    |                                          | 1                                                                    |                                          |                                                                      | 100                                      | 1                                                                    |                                          | 1                                                                    |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility | 87.5                                     |                                                                      |                                          | -                                                                    |                                          |                                                                      |                                          |                                                                      |                                          | -                                                                    |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      | 75.0                                     |                                                                      |                                          |                                                                      |                                          |                                                                      | 75.0                                     |                                                                      | 75.0                                     |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                          |                                                                      |                                          | 1                                                                    |                                          |                                                                      |                                          | -                                                                    |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures    | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$1,783.27                               | \$306.13                                                             | \$1,651.12                               | \$59.39                                                              | \$895.22                                 | \$7.75                                                               | \$645.30                                 | \$86.23                                                              | \$422.88                                 | \$59.09                                                              |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health!                                                                 | \$192.00                                 |                                                                      | \$298.00                                 |                                                                      | \$182.00                                 |                                                                      | \$64.00                                  |                                                                      | \$54.00                                  |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Villaç                                | ge of Grafton                                                        | Village                               | of Greendale <sup>b</sup>                                            | Village o                             | f Hales Corners <sup>b</sup>                                         | Villag                                | e of Jackson                                                         | Village                                  | of Kewaskum                                                          |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$3.38                                | \$10.13                                                              | \$5.22                                | \$15.66                                                              | \$3.18                                | \$9.54                                                               | \$1.12                                | \$3.35                                                               | \$0.95                                   | \$2.85                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      | \$5.00                                |                                                                      | \$5.00                                |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       | \$39.55                                                              |                                       |                                                                      |                                       |                                                                      |                                       | \$3.54                                                               |                                          | \$2.28                                                               |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   | \$25.00                               |                                                                      | \$25.00                               |                                                                      | \$100.00                              |                                                                      |                                       |                                                                      | \$25.00                                  |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current     public health     monitoring programs     and expand to all     public beaches in the     study area                                  |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |                                       | 1                                                                    |                                          | 1                                                                    |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       | -                                                                    |                                       | -                                                                    |                                       |                                                                      |                                       | -                                                                    |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Villad                                | ge of Grafton                                                        | Village                               | of Greendale <sup>b</sup>                                            | Village o                             | f Hales Corners <sup>b</sup>                                         | Villag                                | e of Jackson                                                         | Village                               | of Kewaskum                                                          |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$2,166                               | \$356                                                                | \$1,984                               | \$75                                                                 | \$1,185                               | \$17                                                                 | \$885                                 | \$93                                                                 | \$4,018                               | \$161                                                                |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Villaç                   | ge of Lomira                                                         | Village of N                          | Menomonee Falls <sup>b</sup>                                         | Village                               | of Mt. Pleasant                                                      | Village                      | e of Newburg                                                         | Village                  | e of North Bay                                                       |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands)d | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                          |                                                                      |                                       |                                                                      |                                       |                                                                      | 100                          |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                          |                                                                      |                                       | 1                                                                    | 15                                    | 1                                                                    |                              | 1                                                                    | 1                        |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      | 1                        |                                                                      |                                       |                                                                      | 75.0                                  |                                                                      | 75.0                         |                                                                      | 1                        |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                          | 1                                                                    |                                       |                                                                      |                                       | -                                                                    |                              | ï                                                                    |                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                          |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                          |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                              | 1                                                                    | 1                        |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                          | 1                                                                    |                                       |                                                                      |                                       | 1                                                                    |                              | 1                                                                    |                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$22.86                  | \$0.04                                                               | \$5,849.81                            | \$507.35                                                             | \$991.67                              | \$20.68                                                              | \$68.17                      | \$3.28                                                               | \$8.33                   | \$0.20                                                               |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     | \$2.00                   |                                                                      | \$704.00                              |                                                                      | \$240.00                              |                                                                      | \$28.00                      |                                                                      | \$6.00                   |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Villa                                 | ge of Lomira                                                         | Village of M                             | Menomonee Falls <sup>b</sup>                                         | Village                               | of Mt. Pleasant                                                      | Villag                      | e of Newburg                                                         | Village                                  | e of North Bay                                                       |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$0.02                                | \$0.07                                                               | \$12.31                                  | \$36.92                                                              | \$4.19                                | \$12.58                                                              | \$0.50                      | \$1.49                                                               | \$0.12                                   | \$0.35                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                          | \$19.31                                                              |                                       | \$55.69                                                              |                             | \$0.75                                                               |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                          | -                                                                    |                                       |                                                                      |                             | 1                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      | \$25.00                                  |                                                                      |                                       |                                                                      | \$25.00                     |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                          | 1                                                                    |                                       |                                                                      |                             | 1                                                                    |                                          | 1                                                                    |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                             |                                                                      |                                          | \$3.9                                                                |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                       |                                                                      |                                          | ï                                                                    |                                       |                                                                      |                             | 1                                                                    |                                          | \$6.38                                                               |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                             |                                                                      |                                          | \$5.5                                                                |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Villa                                    | ge of Lomira                                                         | Village of N                             | Menomonee Falls <sup>b</sup>                                         | Village                               | of Mt. Pleasant                                                      | Villag                                   | e of Newburg                                                         | Village                                  | e of North Bay                                                       |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                          |                                                                      | - 1                                      |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                          |                                                                      | 1                                        |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                          |                                                                      |                                          | **                                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                          | 1                                                                    | 1                                        | ł                                                                    |                                       | ŧ                                                                    |                                          |                                                                      |                                          | ;                                                                    |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater<br>recharge area<br>mapping to those<br>portions of the study<br>area located outside of<br>the Southeastern<br>Wisconsin Region                                                                |                                          | 1                                                                    |                                          | 1                                                                    |                                       | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                          |                                                                      | 1                                        |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$25                                     | <b>\$-</b> -                                                         | \$6,591                                  | \$564                                                                | \$4,326                               | \$89                                                                 | \$297                                    | \$6                                                                  | \$14                                     | \$16                                                                 |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Village o                                | of Random Lake                                                       | Village                                  | of River Hills <sup>b</sup>                                          | Villag                                   | ge of Saukville                                                      | Village                                  | of Shorewood <sup>b</sup>                                            | Villa                                    | ge of Slinger                                                        |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | 1                                                                    |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Gratton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | 7. Capacity, Manage-<br>ment, Operations, and<br>Maintenance (CMOM)<br>programs for munici-<br>palities outside of the<br>MMSD service area                                                | 75.0                                     |                                                                      |                                          |                                                                      | 75.0                                     |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures    | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$376.80                                 | \$51.02                                                              | \$325.04                                 | \$4.46                                                               | \$748.82                                 | \$132.01                                                             | \$269.75                                 | \$3.78                                                               | \$9.01                                   | \$0.12                                                               |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     | \$122.00                                 |                                                                      | \$148.00                                 |                                                                      | \$94.00                                  |                                                                      | \$126.00                                 |                                                                      | \$2.00                                   |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Village o                             | of Random Lake                                                       | Village                               | of River Hills <sup>b</sup>                                          | Villag                                | e of Saukville                                                       | Village                                  | of Shorewood <sup>b</sup>                                            | Villaç                                | ge of Slinger                                                        |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$2.15                                | \$6.45                                                               | \$2.58                                | \$7.75                                                               | \$1.64                                | \$4.92                                                               | \$2.21                                   | \$6.62                                                               | \$0.05                                | \$0.15                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   | \$5.00                                |                                                                      | \$5.00                                |                                                                      |                                       |                                                                      | \$5.00                                   |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       | \$1.11                                                               |                                       |                                                                      |                                       | \$44.28                                                              |                                          |                                                                      |                                       |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   | \$25.00                               |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      | ;                                     |                                                                      |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          | \$16.22                                                              |                                       |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          | \$5.5                                                                |                                       |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Village o                             | of Random Lake                                                       | Village                               | of River Hills <sup>b</sup>                                          | Villag                                | e of Saukville                                                       | Village                     | of Shorewood <sup>b</sup>                                            | Villa                                    | ge of Slinger                                                        |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                             | 1                                                                    |                                          | 1                                                                    |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       |                                                                      |                                       | 1                                                                    |                                       | ï                                                                    |                             | 1                                                                    |                                          | ł                                                                    |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                             | 1                                                                    |                                          | 1                                                                    |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                             | 1                                                                    |                                          | 1                                                                    |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$606                                 | \$59                                                                 | \$481                                 | \$12                                                                 | \$919                                 | \$181                                                                | \$403                       | \$32                                                                 | \$11                                     | \$                                                                   |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Village                               | of Sturtevant                                                        | Village                  | of Thiensville <sup>b</sup>                                          | Village                                  | of Union Grove                                                       | Village of               | West Milwaukee <sup>b</sup>                                          | Village o                                | f Whitefish Bay <sup>b</sup>                                         |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          | 1                                                                    |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       |                                                                      |                          |                                                                      |                                          |                                                                      | 1                        |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       | 1                                                                    |                          | -                                                                    |                                          | 1                                                                    |                          | -                                                                    |                                          | 1                                                                    |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$28.37                               | \$2.49                                                               | \$289.38                 | \$3.17                                                               | \$131.30                                 | \$0.94                                                               | \$521.20                 | \$1.74                                                               | \$382.79                                 | \$5.39                                                               |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>†</sup>                                                     | \$2.00                                |                                                                      | \$66.00                  |                                                                      | \$32.00                                  |                                                                      | \$58.00                  |                                                                      | \$180.00                                 |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Village                               | e of Sturtevant                                                      | Village                                  | of Thiensville <sup>b</sup>                                          | Village                                  | of Union Grove                                                       | Village of                  | West Milwaukee <sup>b</sup>                                          | Village o                                | f Whitefish Bay <sup>b</sup>                                         |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$0.05                                | \$0.15                                                               | \$1.14                                   | \$3.43                                                               | \$0.55                                   | \$1.64                                                               | \$1.01                      | \$3.04                                                               | \$3.14                                   | \$9.43                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | \$5.00                      |                                                                      | \$5.00                                   |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                          | \$2.35                                                               |                                          | \$1.81                                                               |                             |                                                                      |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             | 1                                                                    |                                          | \$8.47                                                               |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          | \$5.5                                                                |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection programs for expired and unused household pharmaceuticals                                                                             |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Village                               | of Sturtevant                                                        | Village                               | of Thiensville <sup>b</sup>                                          | Village                               | of Union Grove                                                       | Village of                            | West Milwaukee <sup>b</sup>                                          | Village o                             | f Whitefish Bay <sup>b</sup>                                         |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly<br>expand USGS stream<br>gauging program                                                                                                                                                     |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |                                       | 1                                                                    |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       |                                                                      |                                       | **                                                                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater<br>recharge area<br>mapping to those<br>portions of the study<br>area located outside of<br>the Southeastern<br>Wisconsin Region                                                                |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |                                       | 1                                                                    |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       | 1                                                                    | :                                     | -                                                                    |                                       | -                                                                    |                                       |                                                                      |                                       | 1                                                                    |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$30                                  | \$3                                                                  | \$357                                 | \$9                                                                  | \$239                                 | \$4                                                                  | \$585                                 | \$5                                                                  | \$571                                 | \$29                                                                 |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Village                  | of Wind Point                                                        | Tow                      | n of Addison                                                         | Tow                                      | n of Ashford                                                         | Tow                         | n of Auburn                                                          | Tow                      | n of Barton                                                          |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                          |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                          |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                          |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                          |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                          |                                                                      |                          | 1                                                                    |                                          | 1                                                                    |                             | 1                                                                    | 1                        |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                          | ï                                                                    |                          | 1                                                                    |                                          | ï                                                                    |                             | ť                                                                    | 1                        |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                          |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 | 1                        |                                                                      |                          |                                                                      |                                          |                                                                      | 1                           |                                                                      | 1                        |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                          |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                          |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                          |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures    | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$169.59                 | \$2.55                                                               |                          |                                                                      | \$58.72                                  | \$12.31                                                              | \$76.29                     | \$3.34                                                               | \$259.53                 | \$108.82                                                             |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health¹                                                                 | \$52.00                  |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Village                               | of Wind Point                                                        | Tow                                   | n of Addison                                                         | Tow                                   | n of Ashford                                                         | Tow                                      | n of Auburn                                                          | Tow                                      | n of Barton                                                          |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$0.90                                | \$2.71                                                               | \$0.05                                | \$0.16                                                               | \$9.41                                | \$28.23                                                              | \$10.53                                  | \$31.59                                                              | \$3.85                                   | \$11.54                                                              |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      | \$5.00                                   |                                                                      | \$5.00                                   |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       | \$1.39                                                               |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                                       |                                                                      | \$50.00                               |                                                                      | \$75.00                                  |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current     public health     monitoring programs     and expand to all     public beaches in the     study area                                  |                                       | \$7.8                                                                |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                       | \$22.30                                                              |                                       | 1                                                                    |                                       | 1                                                                    |                                          | i.                                                                   |                                          | 1                                                                    |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       | \$11.0                                                               |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection programs for expired and unused household pharmaceuticals                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Village                  | of Wind Point                                                        | Tow                                      | n of Addison                                                         | Tow                                      | n of Ashford                                                         | Tow                                      | n of Auburn                                                          | Tow                                      | n of Barton                                                          |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | -1                                                                   |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                          | 1                                                                    |                                          | -                                                                    |                                          | ï                                                                    |                                          | 1                                                                    |                                          | 1                                                                    |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$222                    | \$48                                                                 | \$                                       | \$                                                                   | \$118                                    | \$41                                                                 | \$167                                    | \$35                                                                 | \$268                                    | \$120                                                                |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Town                                  | of Brookfield                                                        | Tov                                   | vn of Byron                                                          | Town                                     | of Cedarburg                                                         | Tov                                      | vn of Dover                                                          | Tov                                      | vn of Eden                                                           |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       | 1                                                                    |                                       | -                                                                    |                                          |                                                                      |                                          | -                                                                    | i                                        |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |
|                                       |                                                           |                                                                          | 7. Capacity, Manage-<br>ment, Operations, and<br>Maintenance (CMOM)<br>programs for munici-<br>palities outside of the<br>MMSD service area                                                |                                       | :-                                                                   |                                       |                                                                      |                                          |                                                                      | 1                                        |                                                                      | 1                                        | ;                                                                    |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       | -                                                                    |                                       | -                                                                    |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       | ï                                                                    |                                       | ï                                                                    |                                          |                                                                      |                                          | ï                                                                    | 1                                        |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                       | 1                                                                    |                                       | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    | i.                                       |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        |                                       |                                                                      | \$4.66                                |                                                                      | \$265.13                                 | \$30.49                                                              | \$108.87                                 |                                                                      | \$18.28                                  | \$11.87                                                              |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health¹                                                                 |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Town                                  | of Brookfield                                                        | Tov                      | vn of Byron                                                          | Town                                     | of Cedarburg                                                         | Tov                         | vn of Dover                                                          | To                                       | wn of Eden                                                           |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$0.10                                | \$0.29                                                               | \$2.63                   | \$7.89                                                               | \$5.93                                   | \$17.80                                                              | \$0.33                      | \$1.00                                                               | \$7.23                                   | \$21.68                                                              |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                          |                                                                      | \$75.00                                  |                                                                      |                             |                                                                      | \$25.00                                  |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          | :                                                                    |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                          |                                                                      |                                          | -                                                                    |                             |                                                                      |                                          | -                                                                    |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          | ;                                                                    |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                          | ï                                                                    |                                          | ï                                                                    |                             | ï                                                                    |                                          | :                                                                    |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                       |                                                                      |                          |                                                                      |                                          | -                                                                    |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection programs for expired and unused household pharmaceuticals                                                                             |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                             |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Town                                  | of Brookfield                                                        | Tov                                      | vn of Byron                                                          | Town                                  | of Cedarburg                                                         | Tov                                      | vn of Dover                                                          | Tov                                      | vn of Eden                                                           |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      | - 1                                      |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      | 1                                        |                                                                      |                                       | 1                                                                    |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                          | **                                                                   |                                       | **                                                                   |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      | 1                                        | ł                                                                    |                                       | +                                                                    |                                          |                                                                      |                                          |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater<br>recharge area<br>mapping to those<br>portions of the study<br>area located outside of<br>the Southeastern<br>Wisconsin Region                                                                |                                       |                                                                      |                                          | 1                                                                    |                                       | 1                                                                    |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      | 1                                        |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$                                    | <b>\$-</b> -                                                         | \$7                                      | \$8                                                                  | \$346                                 | \$48                                                                 | \$109                                    | \$1                                                                  | \$51                                     | \$34                                                                 |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Tow                                   | n of Empire                                                          | Town                                     | of Farmington                                                        | Tov                                      | wn of Forest                                                         | Towr                                     | n of Fredonia                                                        | Town                                     | f Germantown                                                         |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Gratton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       | 1                                                                    |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | i.                                                                   |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Manage-<br>ment, Operations, and<br>Maintenance (CMOM)<br>programs for munici-<br>palities outside of the<br>MMSD service area                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | 1,549                                    | 11.3                                                                 |                                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures    | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        |                                       |                                                                      | \$72.11                                  | \$6.39                                                               |                                          |                                                                      | \$49.65                                  | \$1.40                                                               | \$30.43                                  |                                                                      |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Tow                                   | n of Empire                                                          | Town                                  | of Farmington                                                        | Tov                                   | vn of Forest                                                         | Town                                     | n of Fredonia                                                        | Town o                                   | f Germantown                                                         |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                |                                       |                                                                      | \$6.67                                | \$20.00                                                              | \$0.15                                | \$0.44                                                               | \$4.97                                   | \$14.90                                                              | \$0.51                                   | \$1.52                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      | \$5.00                                |                                                                      |                                       |                                                                      | \$5.00                                   |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      | \$225.00                              |                                                                      |                                       |                                                                      | \$25.00                                  |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current<br>public health<br>monitoring programs<br>and expand to all<br>public beaches in the<br>study area                                       |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                       |                                                                      |                                       |                                                                      |                                       | -                                                                    |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Tow                                   | n of Empire                                                          | Town                                  | of Farmington                                                        | Tov                                   | vn of Forest                                                         | Town                                  | of Fredonia                                                          | Town                                  | of Germantown                                                        |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | ł                                                                    |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       | -                                                                    |                                       |                                                                      |                                       | -                                                                    |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$                                    | <b>\$-</b> -                                                         | \$309                                 | \$26                                                                 | \$                                    | \$                                                                   | \$1,634                               | \$28                                                                 | \$31                                  | \$2                                                                  |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Tow                                   | n of Grafton                                                         | Town                                  | of Greenbush                                                         | Tow                                      | vn of Holland                                                        | Tow                                   | n of Jackson                                                         | Town                                     | of Kewaskum                                                          |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       | -                                                                    |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | 7. Capacity, Manage-<br>ment, Operations, and<br>Maintenance (CMOM)<br>programs for munici-<br>palities outside of the<br>MMSD service area                                                |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      | 1                                        | ;                                                                    |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       | 1                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       | ï                                                                    | 1                                        |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$205.39                              | \$6.78                                                               | \$22.93                               | \$2.79                                                               | \$5.16                                   |                                                                      | \$183.54                              | \$21.47                                                              | \$145.59                                 | \$26.55                                                              |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health¹                                                                 |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                       |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Tow                                   | n of Grafton                                                         | Town                     | of Greenbush                                                         | Tow                                      | vn of Holland                                                        | Tow                                      | n of Jackson                                                         | Town                                  | of Kewaskum                                                          |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$5.23                                | \$15.70                                                              | \$0.95                   | \$2.86                                                               | \$0.40                                   | \$1.20                                                               | \$5.04                                   | \$15.12                                                              | \$3.94                                | \$11.81                                                              |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Renovation of the MMSD Kinnickinnic River flushing station                                                                                                 |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   | \$25.00                               |                                                                      |                          |                                                                      |                                          |                                                                      | \$25.00                                  |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current     public health     monitoring programs     and expand to all     public beaches in the     study area                                  |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                       | \$4.99                                                               |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs<br>to discourage<br>unacceptably high<br>numbers of waterfowl<br>from congregating<br>near beaches and<br>other water features          |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection programs for expired and unused household pharmaceuticals                                                                             |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Tow                                   | n of Grafton                                                         | Town                                     | of Greenbush                                                         | Tow                                      | n of Holland                                                         | Town                                     | n of Jackson                                                         | Town                                     | of Kewaskum                                                          |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                                          | 1                                                                    |                                          | 1                                                                    |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Facilities Plan<br>Modeling System                                        | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      |                                          | -                                                                    |                                          | -                                                                    | -                                        |                                                                      |                                          | -                                                                    |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$236                                 | \$27                                                                 | \$24                                     | \$6                                                                  | \$6                                      | \$1                                                                  | \$214                                    | \$37                                                                 | \$150                                    | \$38                                                                 |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Tow                                   | n of Lisbon                                                          | Tow                                      | n of Lomira                                                          | Tow                                      | vn of Lyndon                                                         | Tow                                      | n of Mitchell                                                        | Tow                                      | n of Norway                                                          |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                          | ł                                                                    |                                          |                                                                      |                                          | ł                                                                    |                                          | i                                                                    |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       |                                                                      |                                          | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    |                                          | 1                                                                    |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures    | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        |                                       |                                                                      | \$285.83                                 | \$244.36                                                             | \$11.40                                  |                                                                      | \$48.31                                  | \$10.48                                                              | \$14.62                                  |                                                                      |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Tow                                   | n of Lisbon                                                          | Tow                                   | n of Lomira                                                          | Tow                                   | n of Lyndon                                                          | Tow                                   | n of Mitchell                                                        | Tow                                      | n of Norway                                                          |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$0.18                                | \$0.53                                                               | \$1.59                                | \$4.78                                                               | \$4.72                                | \$14.16                                                              | \$9.38                                | \$28.13                                                              | \$0.06                                   | \$0.17                                                               |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      |                                       |                                                                      | \$5.00                                |                                                                      |                                       |                                                                      |                                          | ==                                                                   |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                                       |                                                                      | \$50.00                               |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current     public health     monitoring programs     and expand to all     public beaches in the     study area                                  |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand<br>current beach<br>grooming programs                                                                                                  |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                          | 1                                                                    |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      | -                                     |                                                                      |                                          |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Tou                                      | vn of Lisbon                                     | Tout                                     | n of Lomira                                      | Tou                                      | n of Lyndon                                      | Tow                                      | n of Mitchell                                    | Tow                                      | n of Norway                                      |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------|
|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | TOW                                      | Annual Operation                                 |
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost<br>(thousands) <sup>d</sup> | and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly<br>expand USGS stream<br>gauging program                                                                                                                                                     |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                          |                                                  |                                          | 1                                                |                                          | 1                                                |                                          | 1                                                |                                          |                                                  |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                          |                                                  |                                          | 1                                                |                                          | ï                                                |                                          | 1                                                |                                          |                                                  |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |
|                                                      |                                                          | Facilities Plan Modeling System                                           | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |                                          |                                                  |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                          |                                                  |                                          |                                                  |                                          | -                                                |                                          |                                                  |                                          |                                                  |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$0.2                                    | \$1                                              | \$287                                    | \$249                                            | \$71                                     | \$14                                             | \$58                                     | \$39                                             | \$15                                     | \$                                               |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Town                                  | n of Osceola                                                         | To                                    | vn of Paris                                                          | To                                    | wn of Polk                                                           | Town of I                    | Port Washington                                                      | Town                                     | of Raymond                                                           |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands)d | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                              | 1                                                                    | 10                                       |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                              | 1                                                                    | 75.0                                     |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       | 1                                                                    |                                       |                                                                      |                                       | -                                                                    |                              | 1                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                              | 1                                                                    | 1                                        |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of<br>MMSD 2020 Facilities<br>Plan as Recom-<br>mended under the<br>RWQMPU                                                                                                  |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                              | ï                                                                    | 1                                        |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       | 1                                                                    |                                       | :                                                                    |                                       |                                                                      |                              | -                                                                    | 1                                        |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$147.08                              | \$4.92                                                               |                                       |                                                                      | \$547.48                              | \$71.87                                                              | \$20.11                      |                                                                      | \$351.76                                 | \$14.28                                                              |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                              |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Tow                                   | n of Osceola                                                         | To                                       | wn of Paris                                                          | То                                       | own of Polk                                                          | Town of                                  | Port Washington                                                      | Town                                  | of Raymond                                                           |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$9.73                                | \$29.19                                                              | \$0.29                                   | \$0.87                                                               | \$6.96                                   | \$20.89                                                              | \$0.65                                   | \$1.96                                                               | \$7.10                                | \$21.31                                                              |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   | \$5.00                                |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Renovation of the MMSD Kinnickinnic River flushing station                                                                                                 |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   | \$25.00                               |                                                                      |                                          |                                                                      | \$50.00                                  |                                                                      |                                          |                                                                      | \$25.00                               |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current     public health     monitoring programs     and expand to all     public beaches in the     study area                                  |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs<br>to discourage<br>unacceptably high<br>numbers of waterfowl<br>from congregating<br>near beaches and<br>other water features          |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection programs for expired and unused household pharmaceuticals                                                                             |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |

|                                                      |                                                                         |                                                                           |                                                                                                                                                                                                                    | Town                                  | n of Osceola                                                         | To                                       | wn of Paris                                                          | To                                       | own of Polk                                                          | Town of                                  | Port Washington                                                      | Town                                  | of Raymond                                                           |
|------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                                            | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement<br>(continued) | Water Quality<br>Monitoring                                               | Continue and possibly<br>expand USGS stream<br>gauging program                                                                                                                                                     |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                         |                                                                           | Establish long-term     water quality monitor-     ing programs for areas     outside of MMSD     service area                                                                                                     |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                         |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       | 1                                                                    |                                          | 1                                                                    | 1                                        |                                                                      |                                          | i                                                                    |                                       | 1                                                                    |
|                                                      |                                                                         |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       |                                                                      |                                          | -                                                                    | 1                                        |                                                                      |                                          | 1                                                                    |                                       | 1                                                                    |
|                                                      |                                                                         | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                          |                                                                      | -                                        |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                         | ment/MMSD 2020<br>Facilities Plan<br>Modeling System                      | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                          |                                                                      | 1                                        |                                                                      | -                                        |                                                                      |                                       |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater                     | Groundwater<br>Recharge Areas                                             | Extend groundwater<br>recharge area<br>mapping to those<br>portions of the study<br>area located outside of<br>the Southeastern<br>Wisconsin Region                                                                |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                         | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                                         | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$187                                 | \$34                                                                 | \$0.3                                    | \$1                                                                  | \$604                                    | \$93                                                                 | \$21                                     | \$2                                                                  | \$469                                 | \$36                                                                 |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Towr                                     | n of Richfield                                                       | Town                                     | of Saukville                                                         | То                                       | wn of Scott                                                          | Town                                     | of Sherman                                                           | Tow                                      | n of Trenton                                                         |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                          |                                                                      |                                          |                                                                      | 75.0                                     |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | -                                                                    |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                          |                                                                      |                                          | -                                                                    |                                          |                                                                      | 1                                        | 1                                                                    |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures             | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$332.62                                 | \$26.09                                                              | \$85.50                                  | \$8.74                                                               | \$46.98                                  | \$1.55                                                               | \$39.90                                  |                                                                      | \$90.41                                  | \$12.25                                                              |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Towr                                  | n of Richfield                                                       | Town                                  | of Saukville                                                         | To                                    | wn of Scott                                                          | Town                                     | of Sherman                                                           | Tow                                      | n of Trenton                                                         |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$2.29                                | \$6.87                                                               | \$5.43                                | \$16.29                                                              | \$9.95                                | \$29.84                                                              | \$9.97                                   | \$29.92                                                              | \$6.18                                   | \$18.55                                                              |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      | \$5.00                                |                                                                      | \$5.00                                |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                                       |                                                                      | \$25.00                               |                                                                      | \$25.00                                  |                                                                      | \$150.00                                 |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current     public health     monitoring programs     and expand to all     public beaches in the     study area                                  |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                          | 1                                                                    | 1                                        | 1                                                                    |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      | :                                        |                                                                      |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Town                                  | of Richfield                                                         | Town                                  | of Saukville                                                         | To                                    | wn of Scott                                                          | Town                                  | of Sherman                                                           | Tow                                   | n of Trenton                                                         |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | ï                                                                    |                                       | 1                                                                    |                                       |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |
|                                                      |                                                          | Facilities Plan Modeling System                                           | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$335                                 | \$33                                                                 | \$96                                  | \$25                                                                 | \$162                                 | \$31                                                                 | \$75                                  | \$30                                                                 | \$247                                 | \$31                                                                 |

|                                       |                                                           |                                                                          |                                                                                                                                                                                            | Tow                                   | n of Wayne                                                           | Town                                  | of West Bend                                                         | Tow                                   | n of Yorkville                                                       | Doo                                      | dge County                                                           | Fond o                                   | du Lac County                                                        |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                              | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                          |                                                                                                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       | 1                                                                    |                                       |                                                                      |                                       |                                                                      |                                          | 1                                                                    |                                          |                                                                      |
|                                       |                                                           | Areas                                                                    | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |                                          | 1                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                       |                                                                      |                                       |                                                                      | 75.0                                  |                                                                      | 1                                        |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       | -                                                                    |                                       |                                                                      |                                       |                                                                      |                                          | 1                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                                          | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      | 1                                        | ï                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                                          | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of<br>MMSD 2020 Facilities<br>Plan as Recom-<br>mended under the<br>RWQMPU                                                                                                  |                                       |                                                                      |                                       | 1                                                                    |                                       |                                                                      |                                          | 1                                                                    |                                          |                                                                      |
|                                       |                                                           |                                                                          | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures    | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        | \$4.77                                |                                                                      | \$291.63                              | \$36.18                                                              | \$445.66                              |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                          | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Tow                                   | n of Wayne                                                           | Town                                  | of West Bend                                                         | Tow                                   | n of Yorkville                                                       | Doc                                   | dge County                                                           | Fond o                                | du Lac County                                                        |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                | \$1.41                                | \$4.24                                                               | \$3.94                                | \$11.83                                                              | \$5.90                                | \$17.70                                                              |                                       |                                                                      |                                       |                                                                      |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      | \$5.00                                |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      | \$125.00                              |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                                       | ï                                                                    |                                       | ł                                                                    |                                       |                                                                      |                                       | ł                                                                    |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                       |                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       |                                                                      |                                       | ł                                                                    |
|                                       | Water Pollu<br>Control                                    | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       | \$15.0                                                               |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       | \$5.0                                                                |                                       | \$5.0                                                                |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Tow                                   | n of Wayne                                                           | Town                                     | of West Bend                                                         | Town                                     | n of Yorkville                                                       | Doo                                      | dge County                                                           | Fond o                                | du Lac County                                                        |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                                          | 1                                                                    |                                          | 1                                                                    | -                                        |                                                                      |                                       | 1                                                                    |
|                                                      |                                                          |                                                                           | Establish long-term aquatic habitat monitoring stations                                                                                                                                                            |                                       |                                                                      |                                          | 1                                                                    |                                          | i                                                                    |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
|                                                      |                                                          | Facilities Plan Modeling System                                           | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                       |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | \$5                                      |                                                                      | \$10                                  |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | \$5                                      |                                                                      | \$10                                  |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$6                                   | \$4                                                                  | \$426                                    | \$48                                                                 | \$527                                    | \$18                                                                 | \$10                                     | \$5                                                                  | \$20                                  | \$20                                                                 |

|                                       |                                                                                                                   |                                                                                                     |                                                                                                                                                                                            | Kend                                     | osha County                                                          | Milwa                                    | ukee County <sup>b</sup>                                             | Oza                                      | ukee County                                                          | Rac                                      | cine County                                                          | Shebo                                    | oygan County                                                         |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                                                                                      | Description                                                                                         | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                                                                                   |                                                                                                     |                                                                                                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement                                                            | Public Wastewater<br>Treatment Plants<br>and Associated<br>Sewer Service                            | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                                                                                   | Areas                                                                                               | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                                                                                   |                                                                                                     | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                          |                                                                      |                                          | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    |                                          | 1                                                                    |
|                                       |                                                                                                                   |                                                                                                     | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                                                                                   |                                                                                                     | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                                                                                   |                                                                                                     | City of West Bend     Northwest Interceptor                                                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                                                                                   |                                                                                                     | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |                                          |                                                                      |
|                                       |                                                                                                                   |                                                                                                     | Ryan Creek interceptor sewer                                                                                                                                                               |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                                                                                   |                                                                                                     | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                          |                                                                      |                                          | 1                                                                    |                                          |                                                                      |                                          |                                                                      |                                          | 1                                                                    |
|                                       |                                                                                                                   |                                                                                                     | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                          |                                                                      |                                          | 1                                                                    |                                          |                                                                      |                                          | -                                                                    |                                          |                                                                      |
|                                       | Nonpoint Source Pollution Abatement Plan Subelement  Recommended Urban Nonpoint Source Pollution Control Measures | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151 |                                                                                                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                                                                                   |                                                                                                     | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            | Kend                                  | osha County                                                          | Milwa                                 | ukee County <sup>b</sup>                                             | Oza                                   | ukee County                                                          | Rad                                   | cine County                                                          | Sheb                                  | oygan County                                                         |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current public health monitoring programs and expand to all public beaches in the study area                                                      |                                       |                                                                      |                                       | \$7.8                                                                |                                       | \$7.8                                                                |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                       |                                                                      |                                       | \$110                                                                |                                       | \$11                                                                 |                                       |                                                                      |                                       |                                                                      |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                       |                                                                      |                                       |                                                                      |                                       | \$120                                                                |                                       | \$73                                                                 |                                       | \$15                                                                 |
|                                       |                                                           | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                       | \$5                                                                  |                                       |                                                                      |                                       | \$5                                                                  |                                       | \$5                                                                  |                                       | <b>\$</b> 5                                                          |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    | Kend                                  | osha County                                                          | Milwa                                 | ukee County <sup>b</sup>                                             | Oza                                   | ukee County                                                          | Rac                                   | ine County                                                           | Sheb                     | oygan County                                                         |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly expand USGS stream gauging program                                                                                                                                                           |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                          |                                                                      |
|                                                      | (continued)                                              |                                                                           | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                          |                                                                      |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       | 1                                                                    |                                       | 1                                                                    |                                       | ï                                                                    |                                       | 1                                                                    |                          |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       | 1                                                                    |                                       | -                                                                    |                                       | 1                                                                    |                                       | -                                                                    |                          |                                                                      |
|                                                      |                                                          | ment/MMSD 2020<br>Facilities Plan<br>Modeling System                      | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       | :                                                                    |                                       |                                                                      |                                       |                                                                      | 1                                     |                                                                      |                          |                                                                      |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      |                                       |                                                                      | \$10                     |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      |                                       |                                                                      |                                       | -                                                                    |                                       |                                                                      | \$10                     |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$                                    | \$5                                                                  | \$                                    | \$118                                                                | \$                                    | \$144                                                                | \$                                    | \$78                                                                 | \$20                     | \$20                                                                 |

|                                       |                                                           |                                                                       |                                                                                                                                                                                            | Washingt                                 | on County                                                            | Waukesh                                  | na County                                                            | Milwaukee Metropoli                      | tan Sewerage District                                                |                                          | rn Wisconsin<br>ing Commission                                       |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                           | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                                       |                                                                                                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated               | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Sewer Service<br>Areas                                                | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                       | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                       | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                       | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                       | City of West Bend<br>Northwest Interceptor                                                                                                                                                 | ï                                        |                                                                      |                                          |                                                                      |                                          |                                                                      | ï                                        |                                                                      |
|                                       |                                                           |                                                                       | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 | 1                                        |                                                                      |                                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |
|                                       |                                                           |                                                                       | Ryan Creek interceptor sewer                                                                                                                                                               |                                          |                                                                      |                                          |                                                                      | 18,877                                   | 10.4                                                                 |                                          |                                                                      |
|                                       |                                                           |                                                                       | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                | 1                                        |                                                                      |                                          |                                                                      | 954,9009                                 | 900                                                                  | 1                                        |                                                                      |
|                                       |                                                           |                                                                       | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended<br>Urban Nonpoint<br>Source Pollution<br>Control Measures | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                                                       | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health <sup>1</sup>                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |

|                                       |                                                           |                                             |                                                                                                                                                            | Washingt                                 | ton County                                                           | Waukesh                                  | na County                                                            | Milwaukee Metropoli                      | tan Sewerage District                                                | Southeaster<br>Regional Plann            | n Wisconsin<br>ing Commission                                        |
|---------------------------------------|-----------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                 | Component <sup>C</sup>                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution | Chloride reduction programs                                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| (continued)                           | (continued)                                               | Control Measures<br>(continued)             | Implement fertilizer management programs                                                                                                                   | 1                                        |                                                                      | ï                                        |                                                                      | ł                                        |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                             | Beach and riparian<br>litter and debris control                                                                                                            |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management   | Concrete channel<br>renovation and<br>rehabilitation                                                                                                       |                                          |                                                                      |                                          |                                                                      | 175,200                                  |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                             | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                          |                                                                      |                                          |                                                                      | 3,400                                    | 600                                                                  |                                          |                                                                      |
|                                       |                                                           |                                             | Dam abandonment<br>and restoration plans                                                                                                                   |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                             | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    | 1                                        |                                                                      |                                          |                                                                      | -                                        |                                                                      |                                          |                                                                      |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                             | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                             | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                          |                                                                      | 1                                        |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                              | Continue current<br>public health<br>monitoring programs<br>and expand to all<br>public beaches in the<br>study area                                       | ;                                        |                                                                      | 1                                        |                                                                      | 1                                        |                                                                      |                                          |                                                                      |
|                                       |                                                           |                                             | Continue and expand<br>current beach<br>grooming programs                                                                                                  | 1                                        |                                                                      | 1                                        |                                                                      | ł                                        |                                                                      |                                          |                                                                      |
|                                       |                                                           | Waterfowl Control                           | Implement programs<br>to discourage<br>unacceptably high<br>numbers of waterfowl<br>from congregating<br>near beaches and<br>other water features          |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       | Water Pollution<br>Control                                |                                             | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                          | \$151                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                       |                                                           | Emerging Issues                             | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                          | \$5.0                                                                |                                          | \$5.0                                                                |                                          |                                                                      |                                          |                                                                      |

|                                                      |                                                          |                                                         |                                                                                                                                                                                                                    | Washing                                  | ton County                                                           | Waukesh                                  | na County                                                            | Milwaukee Metropoli                      | tan Sewerage District                                                | Southeaster<br>Regional Planni           |                                                                      |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                             | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                             | Continue and possibly<br>expand USGS stream<br>gauging program                                                                                                                                                     |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      | (continued)                                              |                                                         | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                         | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          |                                                         | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage- | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                          |                                                                      |                                          |                                                                      |                                          | \$15                                                                 |                                          |                                                                      |
|                                                      |                                                          | ment/MMSD 2020<br>Facilities Plan<br>Modeling System    | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | \$15                                                                 |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                           | Extend groundwater<br>recharge area<br>mapping to those<br>portions of the study<br>area located outside of<br>the Southeastern<br>Wisconsin Region                                                                |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential   | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                          |                                                                      |                                          |                                                                      | :-                                       |                                                                      |                                          |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                      |                                                                                                                                                                                                                    | \$                                       | \$156                                                                | <b>\$-</b> -                             | \$5                                                                  | \$1,152,377                              | \$1,525                                                              | \$                                       | \$15                                                                 |

|                                       |                                                           |                                                              |                                                                                                                                                                                            |                                       | eological Survey<br>Cooperators                                      | U.S. Army C                              | orps of Engineers                                                    | Port of                                  | Milwaukee                                                            | Lake Distric                             | ets or Associations                                                  | Total                                    | Study Area                                                           |
|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                                  | Component <sup>C</sup>                                                                                                                                                                     | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Land Use Plan Element <sup>e</sup>    |                                                           |                                                              |                                                                                                                                                                                            |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      |
| Surface Water Quality<br>Plan Element | Point Source Pollution<br>Abatement Plan<br>Subelement    | Public Wastewater<br>Treatment Plants<br>and Associated      | Implementation of the<br>Village of Kewaskum<br>WWTP Facilities Plan                                                                                                                       |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | \$3,440                                  | \$97                                                                 |
|                                       |                                                           | Sewer Service<br>Areas                                       | Prepare facilities plans<br>for the Villages of<br>Jackson and Newburg                                                                                                                     |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 200                                      |                                                                      |
|                                       |                                                           |                                                              | Prepare facilities plans<br>for the City of Cedar-<br>burg and Village of<br>Grafton, including<br>consideration of<br>merging operations<br>into a single, regional<br>treatment facility |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 175                                      |                                                                      |
|                                       |                                                           |                                                              | Prepare facilities plan<br>for City of Racine and<br>environs upon comple-<br>tion of amendment to<br>sewer service area                                                                   |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 250                                      |                                                                      |
|                                       |                                                           |                                                              | Capacity, Management, Operations, and Maintenance (CMOM) programs for municipalities outside of the MMSD service area                                                                      |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 1,425                                    |                                                                      |
|                                       |                                                           |                                                              | City of West Bend     Northwest Interceptor                                                                                                                                                |                                       |                                                                      |                                          | -                                                                    |                                          |                                                                      | 1                                        |                                                                      | 4,091                                    | 3.4                                                                  |
|                                       |                                                           |                                                              | Force main from     Waubeka in the Town     of Fredonia to the     Village of Fredonia     sewerage system                                                                                 |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 1,549                                    | 11.3                                                                 |
|                                       |                                                           |                                                              | Ryan Creek interceptor sewer                                                                                                                                                               |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 51,386                                   | 69.8                                                                 |
|                                       |                                                           |                                                              | Implementation of MMSD 2020 Facilities Plan as Recommended under the RWQMPU                                                                                                                |                                       |                                                                      |                                          | 1                                                                    |                                          |                                                                      | i.                                       | 1                                                                    | 954,900                                  | 900.0                                                                |
|                                       |                                                           |                                                              | Implementation of wastewater treatment plant upgrades for City of South Milwaukee                                                                                                          |                                       |                                                                      |                                          | 1                                                                    |                                          |                                                                      |                                          | 1                                                                    | 4,298                                    | 575                                                                  |
|                                       | Nonpoint Source<br>Pollution Abatement<br>Plan Subelement | Recommended Urban Nonpoint Source Pollution Control Measures | Implementation of the<br>nonagricultural (urban)<br>performance stand-<br>ards of Chapter<br>NR 151                                                                                        |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      | -                                        |                                                                      | \$121,720                                | \$8,625                                                              |
|                                       |                                                           |                                                              | Programs to detect<br>and eliminate illicit<br>discharges and control<br>pathogens that are<br>harmful to human<br>health¹                                                                 |                                       |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          |                                                                      | \$19,524                                 |                                                                      |

|                                       |                                                           |                                                     |                                                                                                                                                            |                                          | ological Survey<br>Cooperators                                       | U.S. Army C              | Corps of Engineers                                                   | Port of                                  | Milwaukee                                                            | Lake Distric                             | cts or Associations                                                  | Total                                    | Study Area                                                           |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|
| Plan Element                          | Plan Subelement <sup>C</sup>                              | Description                                         | Component <sup>C</sup>                                                                                                                                     | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element | Nonpoint Source<br>Pollution Abatement                    | Recommended<br>Urban Nonpoint                       | Chloride reduction programs                                                                                                                                |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      | \$499                                    | \$1,496                                                              |
| (continued)                           | Plan Subelement<br>(continued)                            | Source Pollution<br>Control Measures<br>(continued) | Implement fertilizer management programs                                                                                                                   |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      | \$160                                    |                                                                      |
|                                       |                                                           |                                                     | Beach and riparian<br>litter and debris control                                                                                                            |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | \$596                                                                |
|                                       | Instream Water Quality<br>Measures Plan<br>Subelement     | Hydrologic and<br>Hydraulic<br>Management           | Concrete channel renovation and rehabilitation                                                                                                             |                                          |                                                                      |                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      | 175,200                                  |                                                                      |
|                                       |                                                           |                                                     | Renovation of the<br>MMSD Kinnickinnic<br>River flushing station                                                                                           |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      | 3,400                                    | 600                                                                  |
|                                       |                                                           |                                                     | Dam abandonment<br>and restoration plans                                                                                                                   |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      | \$1,800                                  |                                                                      |
|                                       |                                                           |                                                     | Increase the dredged<br>material storage<br>volume of the Jones<br>Island Confined<br>Disposal Facility                                                    |                                          |                                                                      | \$1,600                  | \$12                                                                 | \$1,900                                  |                                                                      |                                          |                                                                      | \$3,500                                  | \$12                                                                 |
|                                       | Inland Lakes Water<br>Quality Measures<br>Plan Subelement |                                                     | Lake management<br>plans for 17 major<br>lakes                                                                                                             |                                          |                                                                      |                          |                                                                      |                                          |                                                                      | \$850                                    |                                                                      | \$850                                    |                                                                      |
|                                       |                                                           |                                                     | Implement trophic<br>state monitoring<br>programs for 20<br>major lakes                                                                                    |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          | \$120                                                                |                                          | \$120                                                                |
|                                       | Auxiliary Water Quality<br>Management Plan<br>Subelement  | Public Beaches                                      | Continue current<br>public health<br>monitoring programs<br>and expand to all<br>public beaches in the<br>study area                                       |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | \$31.2                                                               |
|                                       |                                                           |                                                     | Continue and expand current beach grooming programs                                                                                                        |                                          |                                                                      |                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |                                          | \$710                                                                |
|                                       | Wat                                                       | Waterfowl Control                                   | Implement programs to discourage unacceptably high numbers of waterfowl from congregating near beaches and other water features                            |                                          |                                                                      |                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |                                          | \$165                                                                |
|                                       |                                                           | Water Pollution<br>Control                          | Continue collection<br>programs for house-<br>hold hazardous<br>wastes and expand<br>such programs to<br>communities that<br>currently do not<br>have them |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | \$374                                                                |
|                                       | ſ                                                         | Emerging Issues                                     | Implement collection<br>programs for expired<br>and unused household<br>pharmaceuticals                                                                    |                                          |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                                          | \$40                                                                 |

|                                                      |                                                          |                                                                           |                                                                                                                                                                                                                    |                                       | ological Survey<br>Cooperators                                       | U.S. Army C              | orps of Engineers                                                    | Port of                                  | Milwaukee                                                            | Lake Distric                             | cts or Associations                                                  | Total                    | Study Area                                                           |
|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
| Plan Element                                         | Plan Subelement <sup>C</sup>                             | Description                                                               | Component <sup>C</sup>                                                                                                                                                                                             | Capital Cost (thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost<br>(thousands) <sup>d</sup> | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> | Capital Cost (thousands) | Annual Operation<br>and Maintenance<br>Cost (thousands) <sup>d</sup> |
| Surface Water Quality<br>Plan Element<br>(continued) | Auxiliary Water Quality<br>Management Plan<br>Subelement | Water Quality<br>Monitoring                                               | Continue and possibly<br>expand USGS stream<br>gauging program                                                                                                                                                     | \$145                                 | \$126                                                                |                          |                                                                      | \$145                                    | \$126                                                                |                                          |                                                                      | \$145                    | \$126                                                                |
|                                                      | (continued)                                              | continues                                                                 | Establish long-term<br>water quality monitor-<br>ing programs for areas<br>outside of MMSD<br>service area                                                                                                         |                                       | \$156                                                                |                          |                                                                      |                                          | \$156                                                                | 1                                        |                                                                      |                          | 156                                                                  |
|                                                      |                                                          |                                                                           | Establish long-term<br>fisheries and<br>macroinvertebrate<br>monitoring stations                                                                                                                                   |                                       |                                                                      |                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      |                          | 100                                                                  |
|                                                      |                                                          |                                                                           | Establish long-term<br>aquatic habitat<br>monitoring stations                                                                                                                                                      |                                       |                                                                      |                          | 1                                                                    |                                          |                                                                      | ï                                        |                                                                      |                          | 59                                                                   |
|                                                      |                                                          | Maintenance of the<br>Regional Water<br>Quality Manage-<br>ment/MMSD 2020 | Continue maintenance<br>of MMSD conveyance<br>system modeling tools                                                                                                                                                |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                          | \$15                                                                 |
|                                                      |                                                          | ment/MMSD 2020<br>Facilities Plan<br>Modeling System                      | Continue maintenance<br>of watershedwide<br>riverine water quality<br>models (LSPC) and<br>Milwaukee Harbor<br>estuary/nearshore<br>Lake Michigan hydro-<br>dynamic (ECOMSED)<br>and water quality<br>(RCA) models |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      |                          | \$15                                                                 |
| Groundwater Manage-<br>ment Plan Element             | Plan Recommenda-<br>tions Related to<br>Groundwater      | Groundwater<br>Recharge Areas                                             | Extend groundwater recharge area mapping to those portions of the study area located outside of the Southeastern Wisconsin Region                                                                                  |                                       |                                                                      |                          |                                                                      |                                          |                                                                      |                                          |                                                                      | \$25                     |                                                                      |
|                                                      |                                                          | Mapping Ground-<br>water Contamina-<br>tion Potential                     | Extend mapping of<br>groundwater contami-<br>nation potential for<br>shallow aquifers to<br>those portions of the<br>study area located<br>outside of the South-<br>eastern Wisconsin<br>Region                    |                                       |                                                                      |                          |                                                                      |                                          |                                                                      | 1                                        |                                                                      | \$25                     |                                                                      |
|                                                      |                                                          | Total <sup>b</sup>                                                        |                                                                                                                                                                                                                    | \$145                                 | \$282                                                                | \$1,600                  | \$12                                                                 | \$1,900                                  | \$                                                                   | \$850                                    | \$120                                                                | \$1,348,562 <sup>h</sup> | \$14,897 <sup>i</sup>                                                |

#### Appendix R Footnotes

<sup>a</sup>These costs were developed at a systems planning level, and they are provided to indicate to each municipality or unit of government the possible public sector cost to implement the recommended plan. The costs have a range of accuracy of +50 percent to -30 percent. Second level planning, such as facilities and stormwater management planning, would be needed to develop refined costs specific to each municipality or unit of government. The presentation of these costs does not obligate the municipality to make the indicated expenditures.

bThe totals for each of the 28 MMSD member communities and Milwaukee County do not include the community's portion of the estimated \$400 million for local management of sanitary sewer infiltration and inflow. That total amount is included in the cost assigned to the MMSD for implementation of the 2020 facilities plan

<sup>C</sup>See Table X-2 in Chapter X of this report for a complete listing of recommended plan subelements. Subelements or components of subelements for which no costs are assigned are not included in this table.

dCosts represent 2007 conditions. 2007 Engineering New-Record Construction Cost Index = 10,000. In general, where not qualified by another footnote, double dashes indicate that either it is not appropriate to assign a cost to a component, a cost is already incurred under another program or plan, or it is not possible to reasonably estimate the cost of a component because it is affected by future actions whose scope cannot be determined at this time.

eThe costs associated with implementation of the components of the regional land use plan that are incorporated in this plan are determined by many different, variable factors, such as fluctuations in the real estate market and changing Federal and State programs, making realistic estimation of those costs highly speculative. Thus, the overall costs of implementing a regional land use plan element are traditionally not estimated.

<sup>f</sup>Cost only reflects program to detect locations of illicit discharges. Costs of elimination are case specific and therefore not included here.

9A detailed breakdown of the MMSD 2020 Facilities Plan components and associated costs is presented in Tables X-3 and X-3a. The costs presented in Pales X-3 and the control of management of sanitary sewer infiltration and inflow by the MMSD member and contract communities and Milwaukee County. This total capital cost is \$15.7 million fers than the total in Table X-3, and the total in Table X-3. Those differences reflect the regional water quality management plan update recommendation that the addition of physical-chemical treatment at the MMSD South Shore wastewater treatment plant not be implemented, pending 1) further development by MMSD and the variable Volume reserved to sanitary sewer inflow operating strategy for the Inline Storage System, 2) the results of capacity analyses for the Jones Island and South Shore plants, 3) determination of actual population and land use changes, and 4) determination of the success of the wet weather peak flow management program undertaken by MMSD and the communities that it serves.

h Includes \$121,720,000 for implementation of the urban nonpoint source pollution abatement standards of Chapter NR 151 of the Wisconsin Administrative Code. That amount is not included in Table X-2.

Includes \$8,625,000 for implementation of the urban nonpoint source pollution abatement standards of Chapter NR 151 of the Wisconsin Administrative Code. That amount is not included in Table X-2.

Source: SEWRPC.

#### Appendix S

# INCENTIVES FOR ADDRESSING AGRICULTURAL NONPOINT POLLUTION SOURCES IN THE CONTEXT OF A WATERSHED-BASED PERMIT

#### INTRODUCTION

During the process of developing the implementation approach for the regional water quality management plan update there has been considerable discussion of mechanisms for addressing abatement of agricultural nonpoint pollution sources. For such sources to be effectively controlled, financial incentives for farmers to implement the measures called for under the plan should be considered. Additionally, certain recommended measures would be implemented through the established land and water resource management plans that are in place for each county in the study area. The following are possible financial incentives that could be provided:

- The implementing entity could provide additional payments to landowners to promote enrollment of land in the Conservation Reserve Enhancement Program (CREP), or similar conservation programs. Enrollment in such programs would further the recommended plan goals regarding riparian buffer establishment and prairie and wetland restoration. The additional payments could be made to make up the difference in the payments under the CREP program and the farmer's cost to remove the enrolled land from production.
- The implementing entity could make grant funding available to enable greater implementation of agricultural nonpoint source pollution control components of the Chapter NR 151 standards.
- Water quality trading which is a voluntary, market-based approach under which an entity which would incur high costs to control a pollutant purchases pollutant reductions, or "credits," from a different entity that has lower costs to produce an environmentally equivalent, or better, pollution reduction.

#### SPECIFIC ISSUES RELATED TO WATER QUALITY TRADING

#### **Background**

According to the USEPA, favorable conditions for successful implementation of a water quality trading system include: 1

<sup>&</sup>lt;sup>1</sup>http://www.epa.gov/owow/watershed/trading.htm.

- The existence of a "driver" that motivates facilities to reduce loads of a pollutant, such as a water quality-based requirement in a NPDES permit or establishment of a TMDL (see Chapter VI of this report),
- Pollution sources in a watershed that have significantly different costs to control the pollutant of concern,
- The necessary levels of pollutant reduction are not so large that loads from all sources in a watershed
  must be reduced as much as possible to attain the total reduction needed, indicating a lack of surplus
  reductions to trade, and
- State regulators and watershed stakeholders are open to applying a water quality trading approach.

Three approaches to water quality trading may be applicable to implementation of the regional water quality management plan update: 1) trading of point source controls on discharges from sewerage systems, including wastewater treatment plants, for controls on upstream nonpoint sources, such as agricultural runoff; 2) trading of controls on urban stormwater among the municipal members of a group that has obtained a WPDES stormwater discharge permit; 2,3 and 3) trading of controls on urban stormwater for controls on upstream nonpoint sources, such as agricultural runoff.

The USEPA water quality trading policy also specifically supports water quality trades in instances where such trades achieve "greater environmental benefits than ... under existing regulatory programs ..., such as the creation and restoration of wetlands, floodplains and wildlife and/or waterfowl habitat." Water quality trading within the context of the recommendations of the regional water quality management plan update would likely provide such greater environmental benefits through riparian buffer establishment, wetland and prairie restoration, and instream habitat improvement.

The USEPA supports trading of nutrients, such as nitrogen and phosphorus and sediment (including cross-pollutant trading of nutrient reductions to offset downstream oxygen-related impacts). The USEPA also recognizes that trading could be accomplished for other pollutants such as heavy metals and thermal loads, but it categorizes those types of trades as being riskier. When nonpoint source pollution reductions are traded for point source loads, a factor of safety is generally applied to the nonpoint source reduction because of the inherent uncertainties in estimating the effectiveness of best management practices in reducing nonpoint source loads and the inability to adequately measure nonpoint source loads and load reductions at a large scale. The USDA Conservation Effects Assessment Program has been initiated to develop standardized ways to estimate the environmental value of various agricultural conservation systems.<sup>5</sup>

Water quality trades may occur directly between trading partners, through the intercession of a broker; through aggregators who accumulate pollution reduction credits from several entities that can then be sold in bulk to

<sup>&</sup>lt;sup>2</sup>Stormwater discharge permit group members are listed in Chapter II of this report.

<sup>&</sup>lt;sup>3</sup>In water quality trading cases, application of the principle of environmental equivalence interjects the requirement that the lower cost pollution reduction be obtained from a source that is located upstream of the source for which the credits are to be purchased.

<sup>&</sup>lt;sup>4</sup>USEPA Office of Water Quality Trading Policy, Final Water Quality Trading Policy, January 13, 2003.

<sup>&</sup>lt;sup>5</sup>Marc Ribaudo, Robert Johansson, and Carol Jones, Environmental Credit Trading: Can Farming Benefit?, U.S. Department of Agriculture, February 2006. Available at: http://www.usda.gov/AmberWaves/February06/Features/featureupdate.htm.

entities seeking to purchase credits; and through the facilitation of a single, central exchange that purchases and sells credits.<sup>6</sup>

In situations where a farmer is participating in the USDA cost-share funded conservation programs (e.g., the Conservation Reserve or Conservation Reserve Enhancement Programs), it may not be possible to trade credits from a cost-shared practice.<sup>7</sup>

#### Water Quality Trading in the Context of the Recommended Plan and a Watershed-Based Permit

The regional water quality management plan update, which is based on a watershedwide water quality model that is applied to establish specific recommendations for improving water quality, could be a key factor in determining the pollution reduction goals that are necessary for implementing water quality trading.

At the most fundamental level, the feasibility of a water quality trading approach is dependent on the availability of excess water quality credits, i.e., additional pollution reductions from a given source beyond the level of reduction needed to meet specified water quality goals. In the case of the recommended regional water quality management plan update, it has been demonstrated that improvements in water quality that are significant enough to achieve compliance with water quality standards in noncompliant stream reaches would not be expected from additional, generally costly controls on point sources such as wastewater treatment plant discharges, combined and separate sanitary sewer overflows, and industrial discharges, but that significant water quality improvements could be attained through implementation of less costly controls on urban and rural nonpoint source pollution. However, as indicated in Chapter X of this report, for certain stream reaches and pollutants, even with complete implementation of the recommended water quality plan, compliance with the applicable water use objectives and supporting water quality standards and criteria would not be expected. Nonetheless, implementation of the recommended plan can be seen as a significant additional step toward attainment of fishable and swimmable conditions in the streams and lakes of the study area as called for under the Federal Clean Water Act. If a watershed-based permit were designed to achieve water quality improvement consistent with implementation of the recommended water quality management plan update, the applicability of water quality credit trading and the degree to which such trading could be applied would be greatly dependent on how baseline conditions for nonpoint sources, particularly agricultural sources, were established. In the future, when total maximum daily loads of pollutants of concern are developed as required by the USEPA, the ability to trade water quality credits would have to be reevaluated.

<sup>&</sup>lt;sup>6</sup>Conservation Technology Information Center, Getting Paid for Stewardship: An Agricultural Community Water Quality Trading Guide, *July 2006*.

<sup>&</sup>lt;sup>7</sup>Ribaudo, et .al and Conservation Technology Information Center, op. cit.

(This page intentionally left blank)

#### Appendix T

## MODEL RESOLUTION FOR ENDORSEMENT OF THE REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

WHEREAS, the Southeastern Wisconsin Regional Planning Commission, which was duly created by the Governor of the State of Wisconsin in accordance with Section 66.0309(2) of the *Wisconsin Statutes* on the 8th day of August 1960, upon petition of the Counties of Kenosha, Milwaukee, Ozaukee, Racine, Walworth, Washington, and Waukesha, has the function and duty of making and adopting a master plan for the physical development of the Region; and

WHEREAS, the Governor of the State of Wisconsin has designated the seven-county Southeastern Wisconsin Region as an areawide water quality management planning area and the Southeastern Wisconsin Regional Planning Commission as the official water quality management planning agency for that area, all in accordance with the procedural requirements set forth in Section 208 of the Federal Water Pollution Control Act; and

| WHEREAS, the Southeastern Wisconsin Regional Planning Commission, pursuant to its function and duty as a     |
|--------------------------------------------------------------------------------------------------------------|
| regional planning agency and its designation as a water quality management planning agency, has prepared and |
| adopted at its meeting held on the day of 200_, an update to the areawide water quality                      |
| management plan set forth in a report entitled, SEWRPC Planning Report No. 50, A Regional Water Quality      |
| Management Plan Update for the Greater Milwaukee Watersheds, published in 200_; and                          |

WHEREAS, the Commission has transmitted certified copies of its resolution adopting the regional water quality management plan update for the greater Milwaukee watersheds, together with the aforementioned SEWRPC Planning Report No. 50, to the local units of government concerned and to the appropriate State and Federal agencies; and

WHEREAS, the (name of local governing body) has supported, participated in the financing of, and generally concurred in the regional planning programs undertaken by the Southeastern Wisconsin Regional Planning Commission, and believes that the regional water quality management plan update prepared by the Commission is a sound and valuable guide to water quality management in the development of not only the Region but also the local community, and that the adoption of such plan by the (name of local governing body) will assure a common understanding by the units and agencies of government concerned and enable these units and agencies of government to program the necessary plan implementation work.

| (Name of Local Governing Body) on the day of                                                                        | ,                                                           |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| management plan update for the greater Milwaukee watersh                                                            | neds previously adopted by the Commission as set            |
| forth in SEWRPC Planning Report No. 50 as a guide for region                                                        | onal and community development.                             |
| BE IT FURTHER HEREBY RESOLVED that the the Southeastern Wisconsin Regional Planning Commission a Natural Resources. |                                                             |
| Tradata Resources.                                                                                                  |                                                             |
|                                                                                                                     |                                                             |
|                                                                                                                     | (D. :1 a M. Cl. :                                           |
|                                                                                                                     | (President, Mayor, or Chairman of the Local Governing Body) |
| ATTESTATION:                                                                                                        |                                                             |
|                                                                                                                     |                                                             |
|                                                                                                                     |                                                             |
| (Clerk of Local Governing Body)                                                                                     |                                                             |

## **Appendix U**

# POTENTIAL FUNDING PROGRAMS TO IMPLEMENT PLAN RECOMMENDATIONS

#### Table U-1

#### FUNDING PROGRAM DESCRIPTIONS<sup>a</sup>

| Administrator of<br>Grant Program                                                                | Name of Funding<br>Program                                                     | Eligibility                                                                                             | Types of Projects and Funding Eligibility Criteria                                                                                                                                                                                                                                                    | Assistance<br>Provided                                                                                                                                                                                                                                       | Application<br>Deadline                                                     |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| -                                                                                                | Riparian Bu                                                                    | fers, Prairie and Wetland                                                                               | Restoration, and Instream Meas                                                                                                                                                                                                                                                                        | sures                                                                                                                                                                                                                                                        | ı                                                                           |
| U.S. Army Corps of<br>Engineers (USCOE)                                                          | Water Resources<br>Development and<br>Flood Control Acts                       | Local governments                                                                                       | Water resources planning assistance     Emergency streambank and shoreline protection                                                                                                                                                                                                                 | 50 percent for studies<br>and 65 percent for<br>project implementa-<br>tion of Federal cost-<br>share assistance;<br>35 to 50 percent<br>local match is<br>required                                                                                          | None                                                                        |
| USCOE                                                                                            | Flood Hazard<br>Mitigation and<br>Riverine Ecosystem<br>Restoration<br>Program | Local governments                                                                                       | Flood hazard mitigation to include relocation of threatened structures     Riverine ecosystem restoration such as conservation or restoration of natural floodwater storage areas     Planning activities to determine responses to future flood situations     Project areas must be in a floodplain | 50 percent for studies<br>and 65 percent for<br>project implementa-<br>tion of Federal cost-<br>share assistance;<br>35 to 50 percent<br>local match is<br>required                                                                                          | Undetermined                                                                |
| U.S. Department of<br>Agriculture (USDA),<br>Natural Resources<br>Conservation Service<br>(NRCS) | Emergency Water-<br>shed Protection<br>Program                                 | Individual landowners<br>provided they have a<br>local sponsor such as<br>a local unit of<br>government | Sale of agricultural floodprone lands to NRCS for floodplain easements     Land must have a history of repeated flooding (at least twice in the past 10 years)     Landowner retains most of the rights as before the sale     NRCS has authority to restore the floodplain function and value        | The USDA pays the landowner one of three options: a geographic rate, a value based on the assessment of the land in agricultural production, or an offer made by the landowner; 75 percent Federal cost-share assistance; 25 percent local match is required | Variable                                                                    |
| USDA NRCS                                                                                        | Emergency<br>Conservation<br>Program                                           | Individual landowners                                                                                   | Regrading and shaping farmland     Restoring conservation structures     Redistribution of eroded soil     Debris removal     Projects must be in response to a natural disaster                                                                                                                      | Up to 64 percent<br>Federal cost-share<br>assistance; the<br>remaining per-<br>centage is the<br>landowner's<br>responsibility                                                                                                                               | After a desig-<br>nated State or<br>Presidential<br>disaster<br>declaration |

| Administrator of<br>Grant Program                                                    | Name of Funding<br>Program                                                                     | Eligibility                                                                                                                       | Types of Projects and Funding Eligibility Criteria                                                                                                                                                                                                                                                                    | Assistance<br>Provided                                                                                                                                                                                                                                                                                                                     | Application<br>Deadline          |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Riparian Buffers, Prairie and Wetland Restoration, and Instream Measures (continued) |                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            |                                  |  |
| U.S. Department of<br>Agriculture, Farm<br>Services Agency<br>(FSA)                  | Conservation Reserve<br>Program                                                                | Individual landowners in<br>a 10- or 15-year<br>contract                                                                          | Riparian buffers     Trees     Windbreaks     Grassed waterways                                                                                                                                                                                                                                                       | 50 percent Federal cost-share assist-ance; 50 percent local match from individual; an annual rental payment for the length of the contract is also provided                                                                                                                                                                                | Annually or ongoing <sup>C</sup> |  |
| USDA FSA                                                                             | Conservation Reserve<br>Enhancement<br>Program                                                 | Individual landowners in<br>a 10- or 15-year<br>contract                                                                          | Filter strips     Riparian buffers     Grassed waterways     Permanent grasses (only in specially designated grassland project areas)     Wetland development and restoration                                                                                                                                         | 50 percent Federal cost-share assist-ance; one-time signing incentive payment (up to \$150 per acre); practice incentive payment (about 40 percent of cost of establishing practice); annual rental payment; State of Wisconsin lump sum payment; Wisconsin practice incentive payment (about 20 percent of cost of establishing practice) | Ongoing                          |  |
| Wisconsin Department of<br>Natural Resources<br>(WDNR)                               | Municipal Flood<br>Control Grants<br>Chapter NR 199<br>of the Wisconsin<br>Administrative Code | Cities, villages, towns,<br>metropolitan sewer-<br>age districts                                                                  | Acquisition and removal of structures     Flood proofing and elevation of structures     Riparian restoration projects     Acquisition of vacant land or purchase of easements     Construction of stormwater and groundwater facilities related to flood control and riparian restoration projects     Flood mapping | 70 percent State cost-<br>share assistance;<br>30 percent local<br>match                                                                                                                                                                                                                                                                   | July 15                          |  |
| U.S. Fish and Wildlife<br>Service (FWS)                                              | Wildlife Conservation<br>and Appreciation<br>Program                                           | State fish and wildlife<br>agencies, private<br>organizations and<br>local communities<br>must work through<br>their State agency | Problem identification     Species and habitat conservation     Public enjoyment of fish and wildlife     Species monitoring     Identification of significant habitats                                                                                                                                               | \$768,000 available nationally <sup>d</sup>                                                                                                                                                                                                                                                                                                | September 1                      |  |
| FWS                                                                                  | Partners for Fish and<br>Wildlife Habitat<br>Restoration<br>Program                            | Private landowners for a 10-year contract                                                                                         | Restoration of degraded wetlands, native grasslands, stream and riparian corridors, and other habitat areas                                                                                                                                                                                                           | Full cost-share and<br>technical assist-<br>ance; individual<br>projects cannot<br>exceed \$25,000                                                                                                                                                                                                                                         | Continuous                       |  |
| FWS <sup>e</sup>                                                                     | Partnership for<br>Wildlife                                                                    | Nonprofit organizations,<br>State and local<br>agencies, and<br>individuals                                                       | Preservation of nongame fish and wildlife species     Management of nongame fish and wildlife species     Habitat restoration projects                                                                                                                                                                                | \$768,000 available<br>nationally <sup>d</sup><br>Must be matched<br>equally from outside<br>sources                                                                                                                                                                                                                                       | September 1                      |  |

| Administrator of<br>Grant Program                                                    | Name of Funding<br>Program                                        | Eligibility                                                                                  | Types of Projects and Funding Eligibility Criteria                                                                                                                                                    | Assistance<br>Provided                                                                                                                                                                                                                                  | Application<br>Deadline |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Riparian Buffers, Prairie and Wetland Restoration, and Instream Measures (continued) |                                                                   |                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         |                         |  |
| FWS                                                                                  | North American<br>Wetlands Conser-<br>vation Fund                 | State and public agencies                                                                    | Property acquisition for the protection of wetlands that migratory birds, fish and wildlife are dependant on     Wetland restoration and protection projects     Habitat restoration projects         | 50 percent Federal<br>cost-share assist-<br>ance; 50 percent<br>local match is<br>required                                                                                                                                                              | Variable                |  |
| FWS                                                                                  | Great Lakes Fish and<br>Wildlife Restoration<br>Act Grant Program | States, tribal govern-<br>ment, other interested<br>entities                                 | Cooperative conserva-<br>tion, restoration, and<br>management of fish and<br>wildlife resources and<br>their habitat                                                                                  | Cost-share up to<br>75 percent of<br>project cost                                                                                                                                                                                                       | February 28             |  |
| USDA NRCS                                                                            | Wildlife Habitat<br>Incentives Program                            | Individual landowners<br>for a 10-year contract                                              | Instream structures for fish     Prairie restoration     Wetland scrapes     Wildlife travel lanes                                                                                                    | Cost-share of up to 75 percent of installation                                                                                                                                                                                                          | Continuous              |  |
| USDA NRCS                                                                            | Wetland Reserve<br>Program                                        | Individual landowners<br>for a 10-year agree-<br>ment, or a 30-year or<br>permanent easement | Wetland restoration of<br>lands in current agri-<br>cultural production                                                                                                                               | 75 to 100 percent cost-share depending on option chosen and technical assistance. Also between 75 to 100 percent of the cost of the land assessment taken out of production in a one time payment for the 30-year and permanent easement options only   | Continuous              |  |
| USDA                                                                                 | Watershed Protection<br>and Flood Preven-<br>tion Program         | State and local<br>governments                                                               | Fish and wildlife habitat enhancement projects     Wetland restoration     Projects are intended to be larger scale                                                                                   | Technical assistance and cost-sharing are provided; up to 100 percent Federal cost-share assistance for flood control prevention; typical project range is \$3.5 to \$5.0 million in Federal financial assistance                                       | Ongoing                 |  |
| USCOE                                                                                | Aquatic Ecosystem<br>Restoration<br>Program                       | State and local governments                                                                  | Restoration of degraded aquatic ecosystems to a more natural condition                                                                                                                                | 65 percent Federal cost-share assist- ance; local match of 35 percent is required; maximum Federal share is \$5,000,000 per project; 100 percent of maintenance, replacement, and rehabilitation costs must be provided locally with non- Federal funds | None                    |  |
| U.S. Environmental<br>Protection Agency<br>(USEPA)                                   | Five-Star Restoration<br>Program                                  | Public or private organizations that engage in community-based restoration projects          | Wetland restoration projects     Riparian restoration projects     Projects must be part of a larger watershed and be community based     Projects must also have at least five contributing partners | \$500,000 available nationally <sup>d</sup> ; project award ranges between \$5,000 and \$20,000 at the local level; average award is around \$10,000; technical assistance is also provided                                                             | March 2                 |  |

| Administrator of<br>Grant Program               | Name of Funding<br>Program                                                                        | Eligibility                                                                                                                                  | Types of Projects and<br>Funding Eligibility Criteria                                                                                                                                                                                                                                 | Assistance<br>Provided                                                                                                                               | Application<br>Deadline     |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
|                                                 | Riparian Buffers, Prairie and Wetland Restoration, and Instream Measures (continued)              |                                                                                                                                              |                                                                                                                                                                                                                                                                                       |                                                                                                                                                      |                             |  |  |
| U.S. Department of<br>Transportation<br>(USDOT) | Transportation Enhancement Program                                                                | State and local units of government                                                                                                          | Wetland preservation and restoration     Stormwater treatment systems to address runoff from roads and highways     Natural habitat restoration                                                                                                                                       | 80 percent Federal<br>cost-share assist-<br>ance; 20 percent<br>local match is<br>required                                                           | Ongoing                     |  |  |
| WDNR <sup>g</sup>                               | Stewardship<br>Incentives Program                                                                 | Individual landowners                                                                                                                        | Riparian buffers     Reforestation     Forest improvement     Tree planting     Forest management plan development     Wildlife and fisheries habitat improvement to include travel corridors, nest boxes and platforms, instream habitat enhancements                                | 65 percent Federal<br>cost-share assist-<br>ance; 35 percent<br>cost-share from<br>individual; \$5,000<br>maximum per<br>project <sup>h</sup>        | Ongoing                     |  |  |
| WDNR                                            | State Wildlife Grants<br>Program                                                                  | Nonprofit organizations,<br>State and local<br>agencies, and<br>individuals                                                                  | Project must address an ecological priority, threat/issue, or conservation action as identified in Wisconsin's Wildlife Action Plan                                                                                                                                                   | Planning projects require 25 percent non-Federal matching funds and implementation projects require 50 percent non- Federal matching funds           | March 13                    |  |  |
| WDNR                                            | Small and Abandoned<br>Dam Removal<br>Grant Program                                               | Counties, cities, villages,<br>towns, tribes, public<br>inland lake protection<br>and rehabilitation<br>districts, and private<br>dam owners | Eligible project costs include labor, materials, and equipment directly related to planning the actual removal, the dam removal itself, and the restoration of the impoundment.                                                                                                       | WDNR will fund<br>50 percent of<br>eligible project<br>costs, with a<br>maximum grant<br>award of \$50,000                                           | Ongoing                     |  |  |
| WDNR                                            | County Conservation<br>Aids                                                                       | County and tribal<br>governing bodies<br>participating in the<br>county fish and wildlife<br>programs                                        | Improvement and enhancement of fish and wildlife resources and habitat                                                                                                                                                                                                                | Specific funding is<br>allocated to each<br>county with the<br>state paying a<br>maximum of<br>50 percent of the<br>eligible actual<br>project costs | July 1                      |  |  |
| WDNR                                            | Urban Rivers Grant<br>Program                                                                     | Local units of government                                                                                                                    | Land acquisition to preserve<br>open areas in urban<br>environments adjacent<br>to streams and rivers                                                                                                                                                                                 | 50 percent State cost-<br>share assistance;<br>50 percent local<br>match is required                                                                 | May 1                       |  |  |
| WDNR                                            | River Protection Grant<br>Program, Chapter<br>NR 195 of the<br>Wisconsin Adminis-<br>trative Code | Local units of government and nonprofit conservation organizations                                                                           | Activities designed to develop partnerships that protect river ecosystems     Educational projects     Activities associated with river management plan development     Land acquisition     Ordinance development     Installation of practices to control nonpoint source pollution | 75 percent State cost-<br>share assistance;<br>25 percent local<br>match is required                                                                 | March 15 and<br>September 1 |  |  |

| Administrator of<br>Grant Program                                                   | Name of Funding<br>Program                                    | Eligibility                                                                                                                            | Types of Projects and<br>Funding Eligibility Criteria                                                                                                                                                                                           | Assistance<br>Provided                                                                                                                                                                                     | Application<br>Deadline                                                                                          |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                     | Riparian Buffers, F                                           | Prairie and Wetland Restora                                                                                                            | ation, and Instream Measures (                                                                                                                                                                                                                  | continued)                                                                                                                                                                                                 |                                                                                                                  |
| WDNR Utilizing U.S.<br>Department of Interior<br>Funding                            | Land and Water<br>Conservation Fund<br>Grants Program         | Local units of govern-<br>ment and State<br>agencies, apply to the<br>WDNR                                                             | State planning for the acquisition of State and local parks     Land acquisition for open space, estuaries, forests, and wildlife and natural resource areas     Facilities to enhance recreational opportunities                               | \$40 million available nationally <sup>d</sup> 50 percent cost-sharing of a project. Federal funds cannot exceed 50 percent of an eligible project                                                         | May 1                                                                                                            |
| WDNR                                                                                | Stewardship Grant<br>Program, Urban<br>Green Space<br>Program | Local units of gov-<br>ernment , lake<br>protection and<br>rehabilitation districts,<br>and nonprofit<br>conservation<br>organizations | Land acquisition for<br>greenway space in<br>urban areas, protection<br>of scenic or ecological<br>features, and wildlife<br>habitat improvement                                                                                                | 50 percent State cost-<br>sharing assistance;<br>50 percent local<br>match is required                                                                                                                     | Ongoing                                                                                                          |
| Wisconsin Coastal<br>Management Program                                             | Wisconsin Coastal<br>Management Grant<br>Program              | State, local, tribal<br>governments, and<br>nonprofit<br>organizations                                                                 | Coastal land acquisition     Wetland protection and habitat restoration     Nonpoint source pollution control                                                                                                                                   | Total of \$1.5 million annually                                                                                                                                                                            | November 2                                                                                                       |
| National Fish and<br>Wildlife Foundation                                            | Challenge Grant<br>Program                                    | Federal, State, and local<br>governments,<br>educational<br>institutions, and<br>nonprofit<br>organizations                            | Habitat protection and restoration on private lands     Sustainable communities through conservation     Conservation education                                                                                                                 | Average funding level is between \$25,000 and \$75,000 per project; projects must have a match of at least 50 percent from non-Federal funding sources                                                     | Project pre-<br>proposal:<br>June 1 and<br>October 15;<br>full project<br>proposal:<br>July 15 and<br>December 1 |
| National Fish and<br>Wildlife Foundation                                            | Great Lakes<br>Watershed<br>Restoration<br>Program            | State and local<br>governments, tribes,<br>and nonprofit<br>organizations                                                              | Restore, enhance, and protect fish communities and habitats, wetlands, tributaries and their watersheds, Great Lakes shoreline and upland habitat.      Address terrestrial and aquatic invasive species      Promote individual stewardship    | Funding level is<br>between \$35,000<br>and \$100,000 per<br>project; projects<br>must have a match<br>of at least 50 per-<br>cent from non-<br>Federal funding<br>sources                                 | Project applications November 15. Announceme nt of awards April 15 of following year                             |
| Eastman Kodak                                                                       | American Greenway<br>Grants                                   | Land trusts, local units<br>of government, and<br>nonprofit<br>organizations                                                           | Ecological assessments     Mapping and surveying     Planning activities     Creative projects that work to establish greenways in communities     Must have matching funds from other sources     Must show that the project will be completed | Grants with a<br>maximum amount<br>of \$2,500                                                                                                                                                              | March 1 to<br>June 1                                                                                             |
|                                                                                     | Ru                                                            | ral and Urban Nonpoint So                                                                                                              | ource Pollution Abatement                                                                                                                                                                                                                       |                                                                                                                                                                                                            |                                                                                                                  |
| Wisconsin Department of<br>Agriculture, Trade and<br>Consumer Protection<br>(DATCP) | Land and Water<br>Resource<br>Management<br>Program           | Individual landowners                                                                                                                  | Grassed waterways     Manure storage systems     Grade stabilization structure     Nutrient and pest management plans     Conservation tillage                                                                                                  | 50 to 70 percent State cost-share assistance; 30 to 50 percent individual cost-share is required; in the case of financial hardship, up to 90 percent cost-share assistance can be obtained from the State | December 31                                                                                                      |

| Administrator of<br>Grant Program | Name of Funding<br>Program                                                                                                                                                                                                            | Eligibility                                                                                                               | Types of Projects and Funding Eligibility Criteria                                                                                                                                                                                                                                                                             | Assistance<br>Provided                                                                                                                                                                                                                                                      | Application<br>Deadline |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                   | Rural and                                                                                                                                                                                                                             | d Urban Nonpoint Source F                                                                                                 | Pollution Abatement (continued                                                                                                                                                                                                                                                                                                 | d)                                                                                                                                                                                                                                                                          |                         |
| DATCP                             | Farmland<br>Preservation<br>Program                                                                                                                                                                                                   | Individual landowners<br>for a period of 10<br>years                                                                      | Best management practices that will lower the soil erosion rate to the tolerable soil loss rate or below                                                                                                                                                                                                                       | Tax incentives on an annual basis                                                                                                                                                                                                                                           | None                    |
| WDNR                              | Urban Nonpoint Source Water Pollution Abatement and Storm Water Management Grant Program. Funding is through Chapter NR 155 of the Wisconsin Adminis- trative Code                                                                    | Local units of government                                                                                                 | Planning     Educational and information activities     Ordinance development and enforcement     Training     Storm water detention ponds     Streambank and shoreline stabilization                                                                                                                                          | 70 percent State cost-<br>share assistance for<br>projects not involv-<br>ing construction,<br>requiring a 30 per-<br>cent local match; 50<br>percent State cost-<br>share assistance for<br>projects involving<br>construction,<br>requiring a 50 per-<br>cent local match | May 1                   |
| WDNR                              | Targeted Runoff Management Grant Program, Chapter 120 of the Wisconsin Administrative Code; in the future, specific rural nonpoint source abatement measures will be funded under Chapter NR 151 of the Wisconsin Administrative Code | Local units of government                                                                                                 | Complying with nonpoint source performance standards     Improving 303(d) waters     Protecting outstanding water resources     Compliance with a notice of discharge for an animal feeding operation     Addressing a water quality concern of national or statewide importance, such as the Upper Mississippi River concerns | 70 percent State cost-<br>share assistance;<br>30 percent local<br>match is required.<br>Rural projects<br>cannot exceed<br>\$30,000 in funding<br>and urban projects<br>cannot exceed<br>\$150,000                                                                         | May 1                   |
| WDNR                              | Land Recycling Loan<br>(Brownfields)<br>Program                                                                                                                                                                                       | Local units of government                                                                                                 | Remedy environmental contamination affecting surface water or groundwater                                                                                                                                                                                                                                                      | Low interest loan                                                                                                                                                                                                                                                           | Dec. 31                 |
| USDA NRCS                         | Environmental Quality<br>Incentives Program                                                                                                                                                                                           | Individual landowner in a<br>three-year contract                                                                          | Animal waste management practices     Soil erosion and sediment control practices     Nutrient management     Habitat improvement                                                                                                                                                                                              | 75 to 90 percent<br>Federal cost-share<br>assistance                                                                                                                                                                                                                        | Annually <sup>i</sup>   |
| USDA                              | Water Quality Special<br>Research Grants<br>Program                                                                                                                                                                                   | Land-Grant Institutions, Hispanic-Serving Institutions, State and Private controlled Institutions of higher education     | Projects funded shall improve the quality of surface water and groundwater resources through research, education, and extension activities                                                                                                                                                                                     | Awards up to<br>\$600,000 a dollar-<br>for-dollar match is<br>required                                                                                                                                                                                                      | April 4                 |
| USEPA                             | U.S. Environmental Protection Agency Clean Water State Revolving Fund                                                                                                                                                                 | Low interest loans offered to and distributed by the state to various borrowers to fund water quality protection projects | Agricultural, rural, and urban runoff control     Estuary improvement projects     Estuary improvement projects     Wet weather flow control, including storm water and sewer overflows     Alternative treatment technologies water reuse and conservation projects.                                                          | Currently the program<br>has more than \$27<br>billion in assets                                                                                                                                                                                                            | Ongoing                 |

#### Table U-1 (continued)

| Administrator of<br>Grant Program       | Name of Funding<br>Program                                                     | Eligibility                                                                                                                                                                                                                | Types of Projects and Funding Eligibility Criteria                                                                                                                                                                                         | Assistance<br>Provided                                                                                                                                                                 | Application<br>Deadline               |
|-----------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                         | Rural and                                                                      | d Urban Nonpoint Source F                                                                                                                                                                                                  | Pollution Abatement (continued                                                                                                                                                                                                             | l)                                                                                                                                                                                     |                                       |
| USEPA                                   | Water Pollution<br>Control Program<br>Grants                                   | State and interstate<br>water pollution control<br>agencies                                                                                                                                                                | Water Quality Management programs including permitting, pollution control activities, surveillance, monitoring, and enforcement, and provision for training and public information.                                                        | Formula Grants<br>\$5,630,000<br>available<br>nationally <sup>d</sup>                                                                                                                  | Ongoing                               |
| USEPA <sup>j</sup>                      | Watershed Assistance<br>Grants Program                                         | Local units of govern-<br>ment, nonprofit<br>conservation<br>organizations                                                                                                                                                 | Developing watershed and<br>river partnerships and<br>organizations                                                                                                                                                                        | \$365,000 available<br>nationally <sup>d</sup> ; locally<br>projects are funded<br>in the following<br>ranges: \$4,000 and<br>under, and \$4,000<br>and over with a cap<br>of \$30,000 | Variable                              |
| USEPA                                   | Targeted Watershed<br>Grants Program                                           | Watershed<br>organizations<br>nominated by state<br>governor or tribal<br>leader                                                                                                                                           | Innovative watershed level approaches for combating threats and impairments and a clear set of performance measures with identified and measurable environmental indicators                                                                | Range from \$600,000<br>to \$900,000 and a<br>25 percent non-<br>Federal match is<br>required                                                                                          | May 1                                 |
| USEPA                                   | Pesticide Environ-<br>mental Stewardship<br>Grants Program                     | Pesticide Environmental<br>Stewardship Program<br>(PESP) Partners and<br>Supports, any<br>organization, group, or<br>business committed to<br>reducing the<br>environmental risk<br>from pesticides is<br>eligible to join | Implementation of pollution control measures     Plan development which includes strategies to reduce pesticide risk     Grant applicants must be PESP partners or members                                                                 | \$300,000 available<br>nationally <sup>d</sup> ; locally<br>grants are provided<br>up to a maximum of<br>\$50,000                                                                      | Ongoing                               |
| Wisconsin Coastal<br>Management Program | Wisconsin Coastal<br>Management Grant<br>Program                               | State, local, tribal<br>governments, and<br>nonprofit<br>organizations                                                                                                                                                     | Coastal land acquisition     Wetland protection and habitat restoration     Nonpoint source pollution control                                                                                                                              | Total of \$1.5 million annually                                                                                                                                                        | November 2                            |
|                                         | Po                                                                             | oint Source Pollution Abate                                                                                                                                                                                                | ement Recommendations                                                                                                                                                                                                                      |                                                                                                                                                                                        | Į.                                    |
| USEPA                                   | U.S. Environmental<br>Protection Agency<br>Clean Water State<br>Revolving Fund | Funding for State of<br>Wisconsin Clean<br>Water Fund Program<br>which issues grants to<br>municipalities                                                                                                                  | Sewerage and waste-water treatment facilities     Nonpoint source pollution abatement projects     Estuary protection projects                                                                                                             | 80 percent Federal,<br>20 percent State;<br>interest rate varies<br>with State bond<br>issues                                                                                          | Ongoing                               |
| USEPA                                   | Direct Federal Line-<br>Item Grant                                             | State and interstate water pollution control agencies                                                                                                                                                                      | Wastewater construction and planning projects                                                                                                                                                                                              | Formula Grants yielding more than \$3 billion in direct wastewater-related grants since 1992                                                                                           | Ongoing                               |
| USDA                                    | Water and Waste<br>Disposal Systems<br>for Rural<br>Communities                | Local units of govern-<br>ments, nonprofit<br>organizations,<br>associations, and<br>districts                                                                                                                             | Installation, repair, improvement or expansion of a rural water facility     Installation, repair, improvement or expansion of a rural waste disposal facility     Collection and treatment of sanitary waste, stormwater and solid wastes | \$706 million in loans,<br>\$528 million in<br>grants, and \$75<br>million in guaran-<br>teed loans, available<br>nationally <sup>d</sup>                                              | Determined by<br>State USDA<br>office |

#### Table U-1 (continued)

| Administrator of<br>Grant Program | Name of Funding<br>Program                                                                       | Eligibility                                                                                                                                   | Types of Projects and<br>Funding Eligibility Criteria                                                                                                                                                                                                       | Assistance<br>Provided                                                                                                                                                                                                   | Application<br>Deadline    |
|-----------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                   |                                                                                                  | Inland Lake and Lake Mi                                                                                                                       | chigan Water Quality                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                            |
| USEPA                             | Beach Act Grants                                                                                 | State, local, tribal<br>governments                                                                                                           | Develop and implement beach water quality monitoring and notification programs at Great Lakes beaches. Develop and implement programs to inform the public about the risk of exposure to disease-causing microorganisms in the waters at the state beaches. | Formula Grants<br>Wisconsin's 2007<br>allocation \$225,960                                                                                                                                                               | Annual                     |
| FWS                               | Federal Clean Vessel<br>Act                                                                      | State, local, tribal<br>governments, and<br>nonprofit<br>organizations                                                                        | Education/information materials, construction, renovation, operation and maintenance of pump out and dump stations, including floating restrooms                                                                                                            | Range from \$30,000<br>(there is no specific<br>minimum) to<br>\$1,000,000 and a<br>25 percent non-<br>Federal match is<br>required                                                                                      | January 31                 |
| USCOE                             | Estuary Habitat<br>Restoration<br>Program                                                        | State, local, tribal governments                                                                                                              | Habitat restoration activities including the restablishment of chemical, physical, hydrologic, and biological features and components                                                                                                                       | Project costs should<br>not be less than<br>\$100,000 or more<br>than \$1,000,000.<br>The Federal share<br>will generally not<br>exceed 65 percent                                                                       | Ongoing                    |
| WDNR                              | Aquatic Invasive<br>Species Control<br>Grants                                                    | Counties, local and tribal<br>government, public<br>inland lake protection<br>and rehabilitation<br>districts, and town<br>sanitary districts | Education, prevention and planning     Established infestation control     Early detection and rapid response                                                                                                                                               | Awards up to<br>50 percent of the<br>cost of a project up<br>to a maximum grant<br>amount of \$75,000                                                                                                                    | February 1 and<br>August 1 |
| WDNR                              | Lake Planning Grant<br>Program, Chapter<br>NR 190 of the<br>Wisconsin Adminis-<br>trative Code   | Local units of<br>governments, lake<br>districts, and nonprofit<br>conservation<br>organizations                                              | Gathering and analyzing water quality information     Land use planning within lake watersheds     Gathering and compiling demographic information pertinent to individual lakes     Developing lake management plans                                       | Up to 75 percent State cost-share assistance, not to exceed \$10,000; 25 percent local match is required; lakes are eligible for more than one grant, however, the total amount of State dollars cannot exceed \$100,000 | February 1 and<br>August 1 |
| WDNR                              | Lake Protection Grant<br>Program, Chapter<br>NR 191 of the<br>Wisconsin Adminis-<br>trative Code | Local units of<br>government, lake<br>districts, and nonprofit<br>conservation<br>organizations                                               | Land acquisition     for easement     establishment     Wetland restoration     Lake restoration projects     Other projects involving lake improvement                                                                                                     | 75 percent State cost-<br>share which cannot<br>exceed \$200,000;<br>25 percent local<br>match is required                                                                                                               | May 1                      |
| WDNR                              | Lake Classification<br>Grant Program <sup>K</sup>                                                | Counties                                                                                                                                      | Development of a county lake classification system                                                                                                                                                                                                          | \$50,000 per grant                                                                                                                                                                                                       | May 1                      |
| Great Lakes Governors             | Great Lakes<br>Protection Fund                                                                   | Government agencies,<br>nonprofit<br>organizations,<br>businesses,<br>individuals                                                             | Addressing biological pollution     Ecosystem restoration     Market mechanisms for environmental improvement     Restoring natural flow regimes                                                                                                            | Variable                                                                                                                                                                                                                 | None                       |
|                                   | Т                                                                                                | Water Quality                                                                                                                                 | 1                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          | 1                          |
| USGS                              | Stream Gaging<br>Cooperator<br>Program                                                           | State agencies,<br>sewerage system and<br>wastewater treatment<br>plant operators, and<br>other units of<br>government                        | Installation, operation,<br>and maintenance of<br>stream gages                                                                                                                                                                                              | 50 percent Federal,<br>50 percent<br>cooperator                                                                                                                                                                          | Annual                     |

#### Table U-1 (continued)

| Administrator of<br>Grant Program | Name of Funding<br>Program                   | Eligibility                                                                                                                                               | Types of Projects and Assistance Application Funding Eligibility Criteria Provided Deadline                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Ed                                           | ucational and Other Waters                                                                                                                                | hed Improvement Grants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USEPA                             | Environmental<br>Education Grants<br>Program | Local or State education agencies, colleges, and nonprofit organizations, State environmental agencies, and noncommercial education broadcasting agencies | Improving environmental education teaching skills     Educating teachers, students, or the public about human health problems     Building capacity for environmental education programs     Educating the public through print, broadcast, or other media  \$2 million available nationally <sup>d</sup> ; locally, grants are for \$5,000; \$5000 to \$25,000; and up to \$100,000  \$100,000  Mid-November nationally <sup>d</sup> ; locally, grants are for \$5,000; \$5000 to \$25,000; and up to \$100,000 |

NOTE: The Catalog of Federal Domestic Assistance programs can be accessed at: <a href="http://12.46.245.173/cfda/cfda.htm">http://12.46.245.173/cfda/cfda.htm</a>]. Additional information on grants can be accessed through the U.S. Environmental Protection Agency at: <a href="http://cfpub.epa.gov/fedfund/">http://cfpub.epa.gov/fedfund/</a> and the University of Wisconsin-Madison Libraries Grants Information Collection at: <a href="http://grants.library.wisc.edu">http://grants.library.wisc.edu</a>.

<sup>f</sup>Must apply through an intermediary organization which includes the National Association of Counties, the National Association of Service and Conservation Corps, the National Fish and Wildlife Foundation, and the Wildlife Habitat Council.

<sup>9</sup>The Wisconsin Department of Natural Resources utilizes USDA Forest Service funding for the Stewardship Incentives Program.

<sup>j</sup>The USEPA provides grant funding to the private nonprofit organization River Network to disburse funding. Applications must be made through River Network.

Source: Northeastern Illinois Planning Commission, Upper Des Plaines River Phase 2 Funding Project Interim Report, December 2000, and SEWRPC.

<sup>&</sup>lt;sup>a</sup>Some of the programs described in this table may not be available under all envisioned conditions for a variety of reasons, including local eligibility requirements or lack of funds in Federal and/or State budgets at a given time.

<sup>&</sup>lt;sup>b</sup>In kind services are allowed as a part of the local cost-share assistance.

<sup>&</sup>lt;sup>C</sup>Two types of sign-up are available for CRP: continuous CRP, which has no timeline and is used for small sensitive tracts of land and regular CRP, which has an annual sign up application period and is used for large tracts of land.

<sup>&</sup>lt;sup>d</sup>Available on an annual basis.

eThe Fish and Wildlife Service receives support funding from the National Fish and Wildlife Foundation and other private sources to help fund this program.

 $<sup>^</sup>h\mathrm{Cost} ext{-sharable}$  practices must be part of implementation of a Forest Stewardship Plan prepared by a forester.

<sup>&</sup>lt;sup>I</sup>EQIP provides minimal funding in Southeastern Wisconsin.

<sup>&</sup>lt;sup>k</sup>The Lake Classification Grant Program is a subgrant program of the Lake Protection Grant Program.

# Table U-2 POTENTIAL GRANT PROGRAMS TO IMPLEMENT SELECTED SPECIFIC PLAN RECOMMENDATIONS

|    | Plan Recommendations                                                                                                                                                                                                              | Grant Programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -  |                                                                                                                                                                                                                                   | at Source Pollution Abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1. | Construction of Municipal Sewerage and Wastewater Treatment Facilities                                                                                                                                                            | USEPA – Clean Water State Revolving Fund WDNR – State of Wisconsin Clean Water Fund Program Direct Federal Line-Item Grant USDA – Water and Waste Disposal Systems for Rural Communities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | Rural and U                                                                                                                                                                                                                       | rban Nonpoint Source Pollution Abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1. | Reduce Agricultural Nonpoint Source Pollution  A. Reduce Erosion from Cropland through Measures Such as Conservation Tillage and Grassed Waterways                                                                                | USDA – NRCS – Environmental Quality Incentives Program USDA – Emergency Conservation Program USDA – FSA –Conservation Reserve Program DATCP – Land and Water Resource Management Program WDNR – Targeted Runoff Management Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | B. Install Riparian Buffers/Filter Strips                                                                                                                                                                                         | USDA – FSA –Conservation Reserve Program USDA – FSA – Conservation Reserve Enhancement Program WDNR – Targeted Runoff Management Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|    | C. Practice More Effective Manure and Nutrient Management                                                                                                                                                                         | USDA – NRCS – Environmental Quality Incentives Program DATCP – Land and Water Resource Management Program WDNR – Targeted Runoff Management Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | D. Install Diversions Around Barnyards                                                                                                                                                                                            | USDA – FSA – Conservation Reserve Program USDA – NRCS – Environmental Quality Incentives Program WDNR – Targeted Runoff Management Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|    | E. Restrict Livestock Access to Streams                                                                                                                                                                                           | WDNR – Targeted Runoff Management Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|    | F. Manage Milking Center Wastewater                                                                                                                                                                                               | DATCP – ATCP50 Cost-Share Funds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|    | G. Expanded Oversight and Maintenance of Private Onsite<br>Sewage Disposal System                                                                                                                                                 | USDA – Water and Waste Disposal Systems for Rural Communities Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 2. | Reduce Urban Nonpoint Source Pollution     A. Implement Nonagricultural Performance Standards of Chapter NR 151 for Construction Sites, Existing and New Development, and Redevelopment     B. Marina Waste Management Facilities | WDNR – Urban Nonpoint Source and Stormwater Grants Program     WDNR/USFWS – Federal Clean Vessel Act Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|    | Riparian Buffers, Prairie                                                                                                                                                                                                         | and Wetland Restoration, and Instream Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1. | Encourage Riparian Buffer Establishment Along Stream and River Corridors                                                                                                                                                          | USFWS – Partners for Fish and Wildlife Habitat Restoration Program USDA – NRCS – Wildlife Habitat Incentives Program USDA – FSA – Conservation Reserve Program USDA – Emergency Watershed Protection Program USEPA – Five-Star Restoration Program WDNR – Stewardship Incentives Program WDNR – Urban Rivers Grant Program WDNR – Municipal Flood Control Grants Program WDNR/U.S. Department of the Interior – Land and Water Conservation Fund Grants Program National Fish and Wildlife Foundation – Challenge Grant Program Eastman Kodak – American Greenway Grants Program Great Lakes Governors – Great Lakes Protection Fund                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2. | Establish Buffers Along Lake Shorelines                                                                                                                                                                                           | WDNR – Lake Protection Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 3. | Wetland Restoration/Protection                                                                                                                                                                                                    | USDA – Emergency Watershed Protection Program USFWS – North American Wetlands Conservation Fund USFWS – Partners for Fish and Wildlife Habitat Restoration Program USFWS – Partnership for Wildlife USDA – NRCS – Wetland Reserve Program USDA – Watershed Protection and Flood Prevention Program USDA – Emergency Watershed Protection Program USDA – NRCS – Wildlife Habitat Incentives Program USDA – NRCS – Wildlife Habitat Incentives Program USDA – FSA – Conservation Reserve Enhancement Program USDA – FSA – Conservation Reserve Program USDOT – Transportation Enhancement Program USDOT – Transportation Enhancement Program USCOE – Flood Hazard Mitigation and Riverine Ecosystem Restoration Program WDNR – Lake Protection Grant Program WDNR – Stewardship Incentives Program WDNR – Nunicipal Flood Control Grants Program WDNR – River Protection Grant Program WDNR – River Protection Grant Program Great Lakes Governors – Great Lakes Protection Fund Eastman Kodak – American Greenway Grants Program |  |  |

#### Table U-2 (continued)

|    | Plan Recommendations                                                                                                                                                                                                  |                                         | Grant Programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Riparian Buffers, Prairie and W                                                                                                                                                                                       | etla                                    | and Restoration, and Instream Measures (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4. | Prairie Restoration                                                                                                                                                                                                   | • • • • • • • • • • • • • • • • • • • • | USFWS – Partners for Fish and Wildlife Habitat Restoration Program USFWS – Partnership for Wildlife USDA-NRCS – Wildlife Habitat Incentives Program USDA – Emergency Watershed Protection Program USDA-FSA – Conservation Reserve Program USDA-FSA – Conservation Reserve Enhancement Program National Fish and Wildlife Foundation – Challenge Grant WDNR – River Protection Grant Program WDNR – Stewardship Incentives Program WDNR – Municipal Flood Control Grants Program Eastman Kodak – American Greenway Grants Program                                                                                                                                                                                                                      |
| 5. | Concrete Channel Renovation and Rehabilitation                                                                                                                                                                        | •                                       | USCOE – Flood Hazard Mitigation and Riverine Ecosystem Restoration Program WDNR – River Protection Grant Program Great Lakes Governors – Great Lakes Protection Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6. | Dam Abandonment and Associated Stream Restoration                                                                                                                                                                     | •                                       | WDNR – Small and Abandoned Dam Removal Grant Program<br>Great Lakes Governors – Great Lakes Protection Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7. | Fisheries Protection and Enhancement                                                                                                                                                                                  | •                                       | USFWS – Great Lakes Fish and Wildlife Restoration Act Grant Program USFWS – Wildlife Conservation and Appreciation Program USFWS – Partners for Fish and Wildlife Habitat Restoration Program USFWS – Partnership for Wildlife USDA – NRCS – Wildlife Habitat Incentives Program USDA – Watershed Protection and Flood Prevention Program USCOE – Aquatic Ecosystem Restoration WDNR – State Wildlife Grants Program WDNR – County Conservation Aids WDNR – Stewardship Incentives Program WDNR – Stewardship Incentives Program WDNR – Stewardship Grant Program Great Lakes Governors – Great Lakes Protection Fund National Fish and Wildlife Foundation – Challenge Grant Program National Fish and Wildlife Foundation – Challenge Grant Program |
| 8. | Water Quality Monitoring                                                                                                                                                                                              | •                                       | USEPA – Beach Act Grants<br>USGS – Cooperative Stream Gaging Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                       | In                                      | land Lake Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. | Preparation of Lake Management Plans                                                                                                                                                                                  | •                                       | WDNR – Lake Protection Grant Program WDNR – Lake Planning Grant Program WDNR – Lake Classification Grant Program WDNR – Aquatic Invasive Species Control Grants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2. | Control of Nonpoint Source Pollution                                                                                                                                                                                  | •                                       | See "Rural and Urban Nonpoint Source Pollution Abatement" and "Riparian Buffers,<br>Prairie and Wetland Restoration, and Instream Measures" categories in this table for<br>applicable grant programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. | Lake Monitoring                                                                                                                                                                                                       | •                                       | USGS – Cooperative Stream Gaging Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. | Informational Programming                                                                                                                                                                                             | •                                       | See "Education" category in this table for applicable programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                       |                                         | Education                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1. | Provide Information to Agricultural Landowners through Short<br>Courses and Distribution of Educational Materials on the<br>Environmental and Economic Benefits of Nutrient<br>Management and Soil Erosion Control    | •                                       | WDNR – River Protection Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. | Work with and Provide Information to Agricultural Supply<br>Companies, Lawn Maintenance Companies, and Golf Course<br>Superintendents on the State Requirements and Principles of<br>Nutrient and Chemical Management | •                                       | WDNR – River Protection Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. | Provide Information to Contractors and Developers on<br>Appropriate Best Management Practices for Stormwater<br>Management and Erosion Control                                                                        | •                                       | WDNR – Urban Nonpoint Source and Stormwater Grants Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. | Provide Information to Riparian Property Owners and<br>Landscape Contractors on the Effectiveness of Riparian<br>Buffers and Design Options                                                                           | •                                       | WDNR – River Protection Grant Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5. | Promote and Help to Implement In-School Environmental and Natural Resource Educational Programs                                                                                                                       | •                                       | USEPA – Environmental Education Grants Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6. | Provide Information to Watershed Residents on Appropriate Yard Care Management Practices                                                                                                                              | •                                       | WDNR – River Protection Grant Program WDNR – Urban Nonpoint Source and Stormwater Grants Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Table U-2 (continued)

The Catalog of Federal Domestic Assistance programs can be accessed at: <a href="http://12.46.245.173/cfda/cfda.html">http://12.46.245.173/cfda/cfda.html</a>. Additional information on grants can be accessed through the U.S. Environmental Protection Agency at: <a href="http://cfpub.epa.gov/fedfund/and">http://cfpub.epa.gov/fedfund/and</a> the University of Wisconsin-Madison Libraries Grants Information Collection at: <a href="http://grants.library.wisc.edu">http://grants.library.wisc.edu</a>. NOTES:

The following abbreviations were used in this table:

USDOT -USEPA -USGS -DATCP -WDNR -U.S. Department of Transportation
U.S. Environmental Protection Agency
U.S. Geological Survey
Wisconsin Department of Agriculture, Trade, and Consumer Protection FSA - Farm Services Agency
USFWS - U.S. Fish and Wildlife Service
NRCS - Natural Resources Conservation Service
USCOE - U.S. Army Corps of Engineers
USDA - U.S. Department of Agriculture

Wisconsin Department of Natural Resources

Source: SEWRPC.

### Appendix V

# PLAN IMPLEMENTATION FUNDING CONTACT INFORMATION<sup>a,b</sup>

| Administrator of<br>Grant Program                                                            | Name of<br>Grant Program                                                                    | Address                                                                                                                                                                      | Phone Number   | Internet Web Address                                      |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------|
|                                                                                              | Riparian Bu                                                                                 | uffers, Prairie and Wetland Restoration, and Instrear                                                                                                                        | n Measures     |                                                           |
| U.S. Army Corps of Engineers (USCOE)                                                         | Water Resources<br>Development and Flood<br>Control Acts                                    | U.S. Army Corps of Engineers<br>Detroit District<br>477 Michigan Avenue<br>Detroit, MI 48226                                                                                 | (888) 694-8313 | www.lre.usace.army.mil                                    |
| USCOE                                                                                        | Flood Hazard Mitigation and<br>Riverine Ecosystem<br>Restoration Program                    | U.S. Army Corps of Engineers<br>Planning Division<br>20 Massachusetts Avenue, NW<br>Washington, DC 20314                                                                     | (202) 761-0115 | www.usace.army.mil                                        |
| U.S. Department of Agriculture<br>(USDA), Natural Resource<br>Conservation Service<br>(NRCS) | Emergency Watershed<br>Protection Program                                                   | U.S. Department of Agriculture<br>Natural Resources Conservation Service<br>6515 Watts Road, Suite 200<br>Madison, WI 53719                                                  | (608) 276-8732 | www.nrcs.usda.gov                                         |
| USDA NRCS                                                                                    | Emergency Conservation<br>Program                                                           | U.S. Department of Agriculture<br>Natural Resources Conservation Service<br>826 Main Street<br>Union Grove, WI 53182                                                         | (262) 878-1243 | www.nrcs.usda.gov                                         |
| USDA, Farm Services Agency<br>(FSA)                                                          | Conservation Reserve<br>Program                                                             | U.S. Department of Agriculture<br>Farm Services Agency<br>826 Main Street<br>Union Grove, WI 53182                                                                           | (262) 878-1234 | www.fsa.usda.gov                                          |
| USDA FSA                                                                                     | Conservation Reserve<br>Enhancement Program                                                 | County Land Conservation Department USDA Farm Service Agency or USDA Natural Resources Conservation Service                                                                  | (262) 878-1234 | www.fsa.usda.gov                                          |
| Wisconsin Department of<br>Natural Resources (WDNR)                                          | Municipal Flood Control<br>Grants Chapter NR 199<br>of the Wisconsin<br>Administrative Code | Wisconsin Department of Natural Resources<br>101 S. Webster Street - CF/8<br>P.O. Box 7921<br>Madison, WI 53707-7921                                                         | (608) 267-7152 | www.dnr.state.wi.us/org/caer/cfa/Ef/flood/gr<br>ants.html |
| U.S. Fish and Wildlife Service (FWS)                                                         | Wildlife Conservation and<br>Appreciation Program                                           | Fish and Wildlife Service<br>Department of the Interior<br>Division of Federal Aid<br>4401 N. Fairfax Drive, Room 400<br>Arlington, VA 22203                                 | (703) 358-1852 | www.fws.gov                                               |
| FWS                                                                                          | Partners for Fish and Wildlife<br>Habitat Restoration<br>Program                            | Fish and Wildlife Service<br>Department of the Interior<br>Division of Federal Aid<br>4401 N. Fairfax Drive, Room 400<br>Arlington, VA 22203                                 | (703) 358-2201 | www.fws.gov/cep/coastweb.html                             |
| FWS                                                                                          | Partnership for Wildlife                                                                    | Fish and Wildlife Service<br>Department of the Interior<br>1849 C Street, NW<br>Washington, DC 20240                                                                         | (703) 358-2156 | www.fa.r9.fws.gov                                         |
| FWS                                                                                          | North American Wetlands<br>Conservation Fund                                                | Fish and Wildlife Service Department of the Interior Executive Director of North American Waterfowl and Wetlands Office 4401 N. Fairfax Drive, Suite 110 Arlington, VA 22203 | (703) 358-1784 | www.northamerican.fws.gov/nawchp.html                     |

#### Appendix V (continued)

| Administrator of<br>Grant Program                  | Name of<br>Grant Program                                                                                         | Address                                                                                                                                                                                                                                                      | Phone Number                     | Internet Web Address                                                                                                   |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                    | Riparian Buffers, P                                                                                              | Prairie and Wetland Restoration, and Instream Measu                                                                                                                                                                                                          | res (continued)                  |                                                                                                                        |
| FWS                                                | Great Lakes Fish and Wildlife<br>Restoration Act Grant<br>Program                                                | Great Lakes Fish and Wildlife Restoration Act<br>U.S. Fish and Wildlife Service<br>Bishop Henry Whipple Federal Building<br>1 Federal Drive<br>Fort Snelling, MN 55111                                                                                       | (612) 713-5168                   | www.fws.gov/midwest/Fisheries/glfwra-<br>grants.html                                                                   |
| NRCS                                               | Wildlife Habitat Incentives<br>Program<br>Wetland Reserve Program                                                | U.S. Department of Agriculture<br>Natural Resources Conservation Service<br>826 Main Street<br>Union Grove, WI 53182                                                                                                                                         | (262) 878-1234                   | www.nrcs.usda.gov                                                                                                      |
| USDA                                               | Watershed Protection and Flood Prevention Program                                                                | Headquarters: Department of Agriculture<br>Natural Resources Conservation Service<br>P.O. Box 2890<br>Washington, DC 20013                                                                                                                                   | (202) 720-3534                   | www.ftw.nrcs.usda.gov/programs.html                                                                                    |
| USCOE                                              | Aquatic Ecosystem<br>Restoration Program                                                                         | U.S. Army Corps of Engineers<br>Detroit District<br>477 Michigan Avenue<br>Detroit, MI 48226                                                                                                                                                                 | (888) 694-8313                   | www.lre.usace.army.mil                                                                                                 |
| U.S. Environmental Protection<br>Agency (USEPA)    | Five-Star Restoration Program                                                                                    | U.S. Environmental Protection Agency Office of Wetlands, Oceans and Watershed (4502F) Ariel Rios Building 1200 Pennsylvania Avenue, NW Washington, DC 20460 Program operated in cooperation with the National Association of Counties, the National Fish and | (202) 260-8076                   | www.epa.gov/owow/wetlands/restore/5star<br>www.nfwf.org                                                                |
| U.S. Department of Transportation (USDOT)          | Transportation Enhancement Program                                                                               | Wildlife Foundation, the Wildlife Habitat Council, and the Southern Company  U.S. Department of Transportation 400 Seventh Street, SW                                                                                                                        | (202) 366-4000                   | www.dot.gov                                                                                                            |
| William Control                                    | Wissensia Ossatal                                                                                                | Washington, DC 20590                                                                                                                                                                                                                                         | (000) 007 7000                   |                                                                                                                        |
| Wisconsin Coastal<br>Management Program            | Wisconsin Coastal<br>Management Grant<br>Program                                                                 | Wisconsin Coastal Management Program<br>P.O. Box 8944<br>Madison WI 53708-8944                                                                                                                                                                               | (608) 267-7982                   | www.doa.state.wi.us                                                                                                    |
| WDNR                                               | Stewardship Incentives<br>Program                                                                                | Wisconsin Department of Natural Resources<br>9531 Rayne Road, Suite 4<br>Sturtevant, WI 53177                                                                                                                                                                | (262) 884-2390                   | www.dnr.state.wi.us                                                                                                    |
| WDNR                                               | State Wildlife Grants Program                                                                                    | Wisconsin Department of Natural Resources<br>Bureau of Endangered Resources<br>101 S. Webster Street<br>P.O. Box 7921<br>Madison, WI 53707                                                                                                                   | (608) 264-6043                   | http://dnr.wi.gov/org/land/er/swg/                                                                                     |
| WDNR                                               | Small and Abandoned Dam<br>Removal Grant Program                                                                 | Wisconsin Department of Natural Resources<br>Small and Abandoned Dam Removal Grant Program<br>c/o River Program Coordinator, FH/3<br>P.O. Box 7921<br>Madison, WI 53707-7921                                                                                 | (608) 266-9273                   | www.dnr.state.wi.us/org/caer/cfa/Grants/Da<br>mRemov.html                                                              |
| WDNR                                               | County Conservation Aids                                                                                         | Wisconsin Department of Natural Resources<br>2300 N. Dr. Martin Luther King Jr. Drive<br>Milwaukee, WI 53212                                                                                                                                                 | (414) 263-8610                   | www.dnr.state.wi.us/org/caer/cfa/Grants/coc<br>onserv.html                                                             |
| WDNR                                               | Urban Rivers Grant Program River Protection Grant Program                                                        | Wisconsin Department of Natural Resources<br>2300 N. Dr. Martin Luther King Jr. Drive<br>Milwaukee, WI 53212                                                                                                                                                 | (414) 263-8704                   | www.dnr.state.wi.us                                                                                                    |
| WDNR Utilizing U.S. Department of Interior Funding | Land and Water Conservation<br>Fund Grants Program<br>Stewardship Grant Program,<br>Urban Green Space<br>Program | Wisconsin Department of Natural Resources 2300 N. Dr. Martin Luther King Jr. Drive Milwaukee, WI 53212 or U.S. Department of the Interior National Park Service, Recreation Programs                                                                         | (414) 263-8704<br>(202) 565-1200 | www.dnr.state.wi.us www.ncrc.nps.gov/lwcf                                                                              |
|                                                    |                                                                                                                  | 1849 C Street NW<br>Washington, DC 20240                                                                                                                                                                                                                     |                                  |                                                                                                                        |
| National Fish and Wildlife<br>Foundation           | Challenge Grant Program                                                                                          | National Fish and Wildlife Foundation<br>1120 Connecticut Avenue, NW<br>Washington, DC 20036                                                                                                                                                                 | (202) 857-0166                   | www.nfwf.org/guideliens.htm                                                                                            |
| National Fish and Wildlife<br>Foundation           | Great Lakes Watershed<br>Restoration Program                                                                     | National Fish and Wildlife Foundation<br>Attention: Great Lakes Watershed Restoration<br>Grants Program<br>1 Federal Drive<br>Fort Snelling, MN 55111                                                                                                        |                                  | http://www.nfwf.org/AM/Template.cfm?Secti<br>on=Browse_All_Programs&CONTENTID=48<br>83&TEMPLATE=/CM/ContentDisplay.cfm |
| Eastman Kodak                                      | American Greenway Grants                                                                                         | American Greenways<br>The Conservation Fund<br>1800 N. Kent Street, Suite 1120,<br>Arlington, VA 22209                                                                                                                                                       | (703) 525-6300                   | www.conservationfund.org                                                                                               |

#### Appendix V (continued)

| Administrator of<br>Grant Program                                                   | Name of<br>Grant Program                                                                                                                         | Address                                                                                                                                                                                | Phone Number                     | Internet Web Address                                                |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|
|                                                                                     | Ru                                                                                                                                               | ral and Urban Nonpoint Source Pollution Abatemen                                                                                                                                       | t                                |                                                                     |
| Wisconsin Department of<br>Agriculture, Trade and<br>Consumer Protection<br>(DATCP) | Land and Water Resource<br>Management Program<br>Farmland Preservation<br>Program                                                                | Wisconsin Department of Agriculture,<br>Trade and Consumer Protection<br>Agricultural Resource Management<br>2811 Agriculture Drive<br>P.O. Box 8911<br>Madison, WI 53708              | (608) 224-4500<br>(608) 224-4633 | www.datcp.state.wi.us                                               |
| WDNR                                                                                | Urban Nonpoint Source Water<br>Pollution Abatement and<br>Storm Water Management<br>Grant Program<br>Targeted Runoff Management<br>Grant Program | Wisconsin Department of Natural Resources<br>Bureau of Watershed Management<br>101 S. Webster Street<br>P.O. Box 7921<br>Madison, WI 53707-7921                                        | (608) 266-2621                   | www.dnr.state.wi.us                                                 |
| WDNR                                                                                | Land Recycling Loan<br>(Brownfields) Program                                                                                                     | Wisconsin Department of Natural Resources<br>Bureau of Community Financial Assistance<br>101 S. Webster Street<br>P.O. Box 7921<br>Madison, WI 53707-7921                              | (608) 266-0849                   | http://www.dnr.state.wi.us/org/caer/cfa/EL/S ection/brownfield.html |
| NRCS                                                                                | Environmental Quality<br>Incentives Program                                                                                                      | U.S. Department of Agriculture<br>Natural Resources Conservation Service<br>826 Main Street<br>Union Grove, WI 53182                                                                   | (262) 878-1234                   | www.nrcs.usda.gov                                                   |
| USDA                                                                                | Water Quality Special<br>Research Grants Program                                                                                                 | U.S. Department of Agriculture;<br>1400 Independence Avenue<br>Washington, DC 20250-2210                                                                                               | (202) 205-5952                   | www.csrees.usda.gov                                                 |
| USEPA                                                                               | U.S. Environmental Protection<br>Agency Clean Water State<br>Revolving Fund                                                                      | U.S. Environmental Protection Agency<br>Clean Water State Revolving Fund Branch<br>401 M Street<br>Washington, DC 20460                                                                | (202) 260-7359                   | http://www.epa.gov/owm                                              |
| USEPA                                                                               | Water Pollution Control<br>Program Grants                                                                                                        | US Environmental Protection Agency<br>Office of Wastewater Management<br>Office of Wetlands, Oceans and Watersheds<br>1200 Pennsylvania Avenue, N.W.<br>Washington, DC 20460           | (202) 564-8831                   | http://www.epa.gov/owm                                              |
| USEPA                                                                               | Watershed Assistance Grants<br>Program                                                                                                           | River Network<br>520 SW 6th Avenue, Suite 1130<br>Portland, OR 97204<br>or                                                                                                             | (503) 241-3506                   | www.rivernetwork.org                                                |
|                                                                                     |                                                                                                                                                  | U.S. Environmental Protection Agency<br>Office of Wetlands, Oceans, and Watersheds<br>401 M Street, SW, 4501F<br>Washington, DC 20460                                                  | (202) 260-9194                   | www.epa.gov/owow/wag.html                                           |
| USEPA                                                                               | Targeted Watershed Grants<br>Program                                                                                                             | U.S. Environmental Protection Agency<br>Office of Wetlands, Oceans, and Watersheds<br>1301 Constitution Avenue<br>Washington, DC 20004                                                 | (312) 886-7742                   | www.epa.gov/twg/                                                    |
| USEPA                                                                               | Pesticide Environmental<br>Stewardship Grants<br>Program                                                                                         | U.S. Environmental Protection Agency Office of Prevention, Pesticides, and Toxic Substances Office of Pesticides Ariel Rios Building 1200 Pennsylvania Avenue, NW Washington, DC 20460 | (703) 308-7035                   | www.epa.gov/oppbppd1/PESP                                           |
|                                                                                     | Po                                                                                                                                               | int Source Pollution Abatement Recommendations                                                                                                                                         |                                  |                                                                     |
| USEPA                                                                               | Direct Federal Line-Item Grant                                                                                                                   | U.S. Environmental Protection Agency<br>Region 5<br>77 W. Jackson Boulevard<br>Chicago, IL 60604                                                                                       | (312) 353-2000                   | www.epa.gov/ogd/                                                    |
| USDA                                                                                | Water and Waste Disposal<br>Systems for Rural<br>Communities                                                                                     | U.S. Department of Agriculture<br>Rural Utilities Service<br>Water and Environmental Programs<br>Room 4050-S, Stop 1548<br>1400 Independence Avenue, SW<br>Washington, DC 20250        | (202) 690-2670                   | www.usda.gov/rus//water/programs.htm                                |
|                                                                                     |                                                                                                                                                  | Inland Lake and Lake Michigan Water Quality                                                                                                                                            |                                  |                                                                     |
| USEPA                                                                               | Beach Act Grants                                                                                                                                 | U.S. Environmental Protection Agency<br>Office of Water Resources Center<br>1200 Pennsylvania Avenue<br>Washington, DC 20460                                                           | (202) 566-1731                   | www.epa.gov/waterscience/beaches/grants/                            |
| FWS                                                                                 | Federal Clean Vessel Act                                                                                                                         | U.S. Fish and Wildlife Service<br>Division of Federal Assistance<br>4401 N. Fairfax Drive<br>Arlington, VA 22203                                                                       | (703) 358-2156                   | http://federalasst.fws.gov/cva/cva.html                             |

#### Appendix V (continued)

| Administrator of<br>Grant Program | Name of<br>Grant Program                                                                      | Address                                                                                                                                                         | Phone Number   | Internet Web Address                                                 |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------|--|--|
|                                   | Inla                                                                                          | nd Lake and Lake Michigan Water Quality (continued                                                                                                              | )              |                                                                      |  |  |
| USCOE                             | Estuary Habitat Restoration<br>Program                                                        | U.S. Army Corps of Engineers<br>441 G Street, NW<br>Washington, DC 20314                                                                                        | (202) 761-4750 | www.usace.army.mil/cw/cecw-<br>p/estuary_act/                        |  |  |
| WDNR                              | Aquatic Invasive Species<br>Control Grants                                                    | Wisconsin Department of Natural Resources<br>2300 N. Dr. Martin Luther King Jr. Drive<br>Milwaukee, WI 53212                                                    | (414) 263-8610 | http://dnr.wi.gov/org/caer/cfa/Grants/Lakes/i<br>nvasivespecies.html |  |  |
| WDNR                              | Lake Planning Grant Program  Lake Protection Grant Program  Lake Classification Grant Program | UWEX-Lakes Partnership<br>UW-Stevens Point<br>1900 Franklin Street<br>Stevens Point, WI 54481                                                                   | (715) 346-2116 | www.uwsp.edu/cnr/uwexlakes/grants                                    |  |  |
| Great Lakes Governors             | Great Lakes Protection Fund                                                                   | Great Lakes Protection Fund<br>1560 Sherman Avenue, Suite 880<br>Evanston, IL 60201                                                                             | (847) 425-8150 | www.glpf.org                                                         |  |  |
|                                   |                                                                                               | Water Quality Monitoring                                                                                                                                        |                |                                                                      |  |  |
| USGS                              | Stream Gaging Cooperator<br>Program                                                           | U.S. Geological Survey<br>Office of Surface Water<br>415 National Center<br>Reston, VA 20192                                                                    | (703) 648-5301 | http://water.usgs.gov/wid/html/SG.html                               |  |  |
|                                   | Educational and Other Watershed Improvement Grants                                            |                                                                                                                                                                 |                |                                                                      |  |  |
| USEPA                             | Environmental Education<br>Grants Program                                                     | U.S. Environmental Protection Agency<br>Office of Environmental Education (1704)<br>Ariel Rios Building<br>1200 Pennsylvania Avenue, NW<br>Washington, DC 20460 | (202) 260-8619 | www.epa.gov/enviroed/grants.html                                     |  |  |

<sup>&</sup>lt;sup>a</sup>The Catalog of Federal Domestic Assistance programs can be accessed at: <a href="http://12.46.245.173/cfda/cfda.html">http://12.46.245.173/cfda/cfda.html</a>. Additional information on grants can be accessed through the U.S. Environmental Protection Agency at: <a href="http://cfpub.epa.gov/fedfund/">http://cfpub.epa.gov/fedfund/</a> and through the University of Wisconsin-Madison Libraries Grants Information Collection at: <a href="http://grants.library.wisc.edu">http://grants.library.wisc.edu</a>.

Source: SEWRPC.

<sup>&</sup>lt;sup>b</sup>Some of the programs described in this table may not be available under all envisioned conditions for a variety of reasons, including local eligibility requirements or lack of funds in Federal and/or State budgets at a given time.

### Appendix W

# PUBLIC HEARING INFORMATION AND WRITTEN COMMENTS ON THE PLAN

#### PUBLIC INFORMATION MEETINGS AND HEARINGS SCHEDULED ON REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

Citizens are invited to public information meetings and hearings related to the profection and improvement of water quality in a major portion of southeastern Wisconsin. These sessions will provide opportunities to learn more about, and to comment on the findings and recommendations documented in Southeastern Wisconsin Regional Planning Commission (SENPLO) Planning Report No. 50. A Regional Water Quality Management Plan Update for the Creater Missauker Watershoeds. The plan includes recommendations related to land use, surface water quality, and groundwater quality in the Kinnick, Menomonee, Missauker, and Root River watersheds; the Oak Creek watershed, and the direct drainage area to Lake Michigan. These watersheds are orughty comprised of areas draining toward Lake Michigan from extreme ontheastern Ded County, southeastern Fond du Lac County, southwestern Sheboygan County, eastern Washington County, and all of Cautkee, and south of the County except the northeastern portion, extreme eastern Waskinst County, all of Waskinskee County, essetern Rache County, and a small portion of the Town of Parts in Kenosha County. The study area also includes the nearshore Lake Michigan area from the Village of Mich Point. Copies of the report chapters, including he recommended plan chapter, are now available for review on the SEWRPC web site at http://www.sewpc.org/waterqualityplan/chaptars.asp.

The plan was prepared by SEWRPC, in parinership with the Milwaukee Metropolitan Sewerage District (MMSD) under the "Water Quality Initiative," and in cooperation the Wisconsin Department of Natural Resources (WDNR) and the U.S. Geological Survey (USGS). The plan was developed in close coordination with the MMSD 0200 Facilities Plan. Preparation of the plan was guided by a Technical Advisory, Committee composed of representatives of county and runnipolal glovernment, special-purpose units of government, MMSD, WDNR, USGS, the U.S. Environmental Protection Agency, academic institutions, and environmental and conservation organizations. In addition, the regional water quality meangement plan and MMSD Pacitities Plan were presented and discussed at periodic meetings of a joint Citizens Advisory Council formed specifically to provide injust on the two plans and of meetings of watershed officials, consisting of the elected and appointed representatives from the counties, cities, villages, and towns in the study area.

The following 4:30-7:00 p.m. sessions will be held during October 2007:

October 15 at Gateway Technical College, Racine Campus, Racine Building, 901 Pershing Drive, Parking Lot D, Great Lakes Room (#110)

October 16 at the Downtown Transit Center, Harbor Lights Room (upper floor), 909 E. Michigan Street, Milwaukee

October 23 at Riveredge Nature Center, 4458 W. Hawthorne Drive, Newburg, WI, 53060, located a mile north of STH 33 on CTH Y, northeast of Newburg

Each session will begin with a meeting in "open house" format from 4:30-5:30 p.m., which will provide an opportunity to meet one-on-one or in small groups with the Commission staff to receive information, ask questions, and provide comment. A presentation will be made by the Commission staff at 5:30 p.m., (followed by a public hearing providing a forum for public comment in Town hall" format from approximately 6:00 p.m. to 7:00 p.m.

Persons with special needs are asked to contact Gary K. Korb at (262) 547-6721 a minimum of 72 hours in advance of the public session date so that appropriate arrangements can be made. Affected may be site access and/or mobility, materials review or interpretation, or active participation, including the submission of comments.

in addition to providing comments at the public meetings and hearings, written comments may also be submitted. Written comments should be received no later than Wednesday, October 24, 2007. To obtain a paper copy of the recommended plan chapter, to ask questions, or to submit written comments on the Regional Water Quality Management Plan Update, please conflact.

Southeastern Wisconsin Regional Planning Commission Michael G. Hahn, Chief Environmental Engineer V239 N1812 Kedwood Drive P. O. Box 1607 Wanksaha, Wisconsi 1817-1807 Phone: 252-677-671 Fast, 252-547-1103 e-mail: mhahm@sewnpc.org

#### SEWRPC REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS PUBLIC INFORMATION MEETING/PUBLIC HEARING

Gateway Technical College – Racine October 15, 2007

| Name            | Representing                              | Address                                | Telephone Number/E-Mail Address |
|-----------------|-------------------------------------------|----------------------------------------|---------------------------------|
| Watter Mahr     | NMEB                                      | 1338 Wish Ave                          | 262 634 5588                    |
| Sharon Horponai | Storm Water Commission<br>Town of Raymond | 2665-96th ST<br>Franksville W:53126    | 262 835 4537                    |
| BILL STRUTZ     | INSINK ERATOR                             | 4700 2151 STREET<br>RACINE, WI 53406   | 262-554-360,                    |
| Michael Keleman | In Sink Erator                            | 4-100 21 st Street<br>Racine, WI 53406 | 262-598-5219                    |
| Daniel Schmice  | 14 SENRIE Cum.                            | PO. Bix 394 53040<br>Kendas Lum WI.    | 262-626-4656                    |
| Umma Byhon      | citizen                                   | Wind Sarly Point Lake                  | 185262-8                        |
|                 |                                           | /                                      |                                 |
|                 |                                           |                                        |                                 |
|                 |                                           |                                        |                                 |
|                 |                                           |                                        |                                 |
|                 |                                           |                                        |                                 |
|                 |                                           |                                        |                                 |

#131636 V1 - RWQMPU PUBLIC MTG SIGN IN SHEET

SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION PUBLIC INFORMATION HEARING ON REGIONAL WATER OUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

OCTOBER 15, 2007

Public hearing held before MARY RING, a Registered Professional Reporter and Notary Public in and for the State of Wisconsin, at Gateway Technical College. Racine Campus. Racine Building, 901 Pershing Drive. Great Lakes Room, #110, Racine, Wisconsin, on October 15, 2007, commencing at 4:30 p.m. and concluding at 7:00 p.m.

735 North Water Street, Suite M185 Milwaukee, WI 53202 (414) 224-9533 (800) 456-9531

SEWRPC HEARING, 10/15/2007

APPEARANCES FOR SEWRPC: 2 Michael G. Hahn, Chief Environmental Engineer Daniel Schmidt. Commissioner Gary K. Korb. Regional Planning Educator Thomas Slawski, Principal Planner Joseph Boxhorn, Staff Ronald Printz, Staff 3 4 6 7 INDEX 8 Comments By: 9 10 11 12 13 15 16 17

18

19

20

21

22

23

24

25

BROWN & JONES REPORTING, INC. 414-224-9533

TRANSCRIPT OF PROCEEDINGS (Mr. Schmidt announced the following two

upcoming meetings, Oct. 16, 2007 and October 23, 2007.)

MR. SCHMIDT: We'll go right into the 5 6 public comment portion of the meeting. If you have a public comment, I would ask that -- Are there microphones out there at all? 8

1 2

3

04:10 4

04.10

06 06

06.07

06:07 9 06:07 10

06:07 11

06:67 12

06:07 13

06:07 14

06 07 15

06.07 16

06:07 17 06:07 18

06:07 19

06:07 20

06.07 21 06 07 22

06 07 23

06.07 24

06.08 25

06 08

06 08 3

06:08 4

06:08

06:08 7

06.08 8

06 08 9

os os 10

06.08 11

06 08 12

06:09 13

06:09 14

06.09 15

06 09 16

06 09 17

06.09 18

06.09 19

06:09 20

06.09 21

06:09 22

06:09 23

06:09 24

06:09 25

2 80 GC

6 90:08

MR. HAHN: There's one up there on the -- in the middle --

MR. SCHMIDT: I would ask that you would state your name and address, and if you have any affiliation to a -- Also, there's cards you should sign in. We need that for the public record.

But if you have any affiliation with a municipality, a county organization, city, village, town, whatever, or DNR, other private or public organization, please state that as well and indicate that on the form.

And also, if you do not wish to publicly comment but would like to send in a comment, there are forms available for that. And we'd ask that you turn those in by the 24th of October

So would anybody like to comment? Nobody has any general comments? If you have

BROWN & JONES REPORTING, INC.

SEWRPC HEARING, 10/15/2007

specific questions relating to any of the topics. you can contact Mike at the Regional Planning Commission, or Joe, Tom, and Rom and Matt. Garv will point you in the right direction as well. They're very helpful and will try and explain in detail any clarification.

No comments or concerns? If you're not sure, please take along one of the forms that you could send in if you have it. Yes, sir?

MR. MADSEN: A question, not a comment. How many places within the study area here are collecting water samples from storm water discharges and then giving you information on those things?

MR. HAHN: Wally could you just give your name and address, please?

MR. MADSEN: Oh, I'm Wally Madsen, and I live in the Town of Raymond. Business is in the City of Racine. I'm an engineer, sort of it. semiretired.

MR. HAHN: Well, Joe or Tom, you can chime in on this, but we did not -- we were not looking so much at outfall information in terms of storm sewer outfalls. We were monitoring data collected with primarily in-stream data at various

> BROWN & JONES REPORTING, INC. 414-224-9533

06 12 3

06.12 4

06:13 5

06:13

06:13

06:13 9

06:13 10

06:13 12

06 13 13

05.13 34

06 13 15

06.13 16

06:13 17

06:13 18

06:13 19

06:13 20

06:13 21

06.13 22

06 13 24

06.14 25

06.14 1

06:14 3

06.14

06:14 6

06:14

06:14 8

06 14 9

06:14 10

06 14 11

06 14 12

06:14 13

06:14 14

06.14 15

06.14 16

06:14 17

06:14 18

06 15 19

06 15 20

05:15 22

06 15 23

06:15 24

06:15 25

8

locations.

06:69

06:09

06.10

06:10 5

06:10

06:10 8

06:10 9

06:10 10

06:10 11

06:10 12

06 10 13

06.10 14

e6:10 16

06:10 17

06:10 18 06:10 19

06:10 20

06:10 21

06.10 22

06:10 23

06 10 24

06.10 25

06:11

06 11

06.11

06:11

06:11 8

06.11 10

06 13 **11** 

06:11 14

06 11 15

06 12 16

96.12 17

06:12 18

06:12 19

06:12 20

06:12 22

06:12 23

08:12 24

06.12 25

21

9

13

15

06.00 2

And I think we certainly -- we certainly took into account whatever data we knew of in terms of, for example, the issues that have come up as far as the fecal coliform bacteria counts coming out of the storm sewer outflow, and that certainly informed the decisions we made in terms of crafting the recommended plan.

But we weren't really looking at that kind of monitored data as closely as we were looking at the in-stream data. We did look at point sources at the outfall in terms of general characterization of the quantities of --

MR. MADSEN: One --

MR. HAHN: -- discharge.

MR. MADSEN: -- of the reasons I ask the question, Mike, was because we're doing some monitoring on the Village of Wind Point storm sewer discharges, and we have -- the City of Racine is collecting the samples and doing the chemical analysis of the stuff. And we are looking for fecal coliform, looking for phosphorus, and possibly we'll get into the nitrogen thing, too.

And they're trying to implement then

BROWN & JONES REPORTING, INC. 414-224-9533

SEWRPC HEARING, 10/15/2007

- 6

some programs within the -- not mandatory, but a program that you would follow using the no-phosphorus type fertilizers and that type of stuff. And Wind Point has been kind of blessed or -- or cursed with some of the smells that come off of the decaying vegetation on the shoreline of Lake Michigan.

MR. SLAWSKI: I would like to add something. As -- I'm Tom Slawski with Southeastern Wisconsin Regional Planning Commission staff.

When we were setting up or beginning the process of modeling and looking at loads and trying to come up with this, particularly looking at combined sewer overflow and sanitary sewer overflow numbers for input to loading to the model, we -- MMSD did have some information on first and second flush, pre and post implementation for the in-line storage system.

So we meticulously went through all that data, and some of those had pretty unique -- some were much more loaded than others in different sites, and those -- we did study those, incorporate those into the entire modeling process as well. So we do have some information, and that

BROWN & JONES REPORTING, INC 414-224-9533 06:12 1 is summarized in the technical portion of this

C6:12 2 MR. SCHMIDT: Do you have a comment?

MR. SCHMIDI: Do you have a comment.

It's Bill Krill.

MR. KRILL: I'm sorry. My name is Bill Krill. I'm an agent with -- William Krill, K-R-I-L-L, with HNTB Corporation in Milwaukee. I'm just responding to the gentleman's question and wanted to tell him that the Milwaukee Metro Sewerage District has an ongoing monitoring program for storm water, and I can grab one of my cards and tell him which person at the MMSD to talk to

They have been monitoring storm water outfalls for about four years now with compositive samplers, and maybe some of their data can help with what he's looking at. Thank you.

MR. MADSEN: Well, we're looking at developing some data for the Village of Wind Point and then implementing some things through that. We don't -- we don't put in direct collection systems. There are direct collection systems -- well, it's all ditched system, also. There's no curb and gutter in the Village of Wind Point -- well, there is some but very little.

And there we're looking to catch some of

BROWN & JONES REPORTING, INC. 414-224-9533

SEWRPC HEARING, 10/15/2007

8

that fertilizer that has flushed through the storm sewer system within the grass collection areas of the ditches. And there's small inlets within that, so we use those interim places for storm water storage.

And then the -- the gradings is not put in with solid pipe. it's put in with perforated pipe, so we get some undergrade stuff from -- which benefits our roadbeds. And that was part of the purpose of going to that type of a structure. If anybody wants to know anything about that. I can give you some information on that, too.

But we are looking at what is improving, not improving or deteriorating, and that's really what we're looking for.

MR. SCHMIDT: Thank you. Does anyone have any other comments particularly related to the plan or on the technical report?

If not, I think we can close the public hearing. If you have some questions, I'm sure Mike and the other gentlemen will try and help you for a while yet.

MR. HAHN: Sure.

MR. SCHMIDT: So I thank you all very much for attending this evening. And, like ! say.

BROWN & JONES REPORTING, INC. 414-224-9533

BROWN & JONES REPORTING, INC.

SEWRPC HEARING, 10/15/2007 STATE OF WISCONSIN COUNTY OF MILWAUKEE )

3 4 5

6

8

9

10

11

12

13

14

15

16

17

18 19 20

25

I, MARY RING, a Registered Professional Reporter and Notary Public in and for the State of Wisconsin, do hereby certify that the above hearing was recorded by me on October 15, 2007, and reduced to writing under my personal direction.

I further certify that I am not a relative or employee or attorney or counsel of any of the parties, or a relative or employee of such attorney or counsel, or financially interested directly or indirectly in this action.

In witness whereof I have hereunder set my hand and affixed my seal of office at Milwaukee, Wisconsin, this 17th day of October, 2007.

Notary Public In and for the State of Wisconsin

My Commission Expires: June 1, 2008

BROWN & JONES REPORTING, INC. 414-224-9533

SEWRPC HEARING, 10/15/2007 В concluded :: 93 concluding :: -

contact [1] - 4:2 Corporation [1]

:0 counsel(z - 10:11, 0:13

#

bacteria (\*) - 5 5 beginning (\*) -

6:12 benefits (\*) - 8.9 Bill (2) - 7.3, 7.4 blessed (\*) - 6:4 Boxhorn (\*) - 2.5 Building (\*) - 1:15 Business (\*) - 4:18

1:17 comment (7 - 3:6 3.7, 3:21, 3:24, 4:10, 7:2 comments (3 - 3:25, 4.7, 8:17 Comments (9 - 2, 8 Commission 3:4:3 6:11, 10:24 COMMISSION (1-1.3)

- 2.3 compositive (1 -7:14 concerns (1 - 4:7

adultiss [2] - 3, 12, 4 16
affiliation [9] - 3 13, 3:15
affixed [9] - 10 16
agent [9] - 7:5
analysis [9] - 5:21
announced [9] - 3

area 1: - 4:11 area; ; - 4:11 areas; ; - 8:2 attending; ; - 8:25 attorney; ; -10:11 10:12

available ::; - 3:22

#110 pt - 1:16

1 (t) - 10:24 15 (t) - 1:7, 1:16, 10:8 16 (t) - 3:3 17th (t) - 10:17

implementing (7-19)
improving [2]8-13-8-14
in-line (9--8-19)
in-stream 24-26-5-11
incorporate (1--8-19)
indirectly (11--10-14)
NEFORMATION (1--1-14)

far [1] - 5.5 feed [7] - 5.5 , \$.22 fertilizer [3] - 6.1 fertilizers [3] - 6.1 fertilizers [3] - 6.3 financially [1] - 10.13 first [7] - 6.18 flushed [7] - 8.1 flushed [7] - 8.1 flushed [7] - 8.1 flushed [7] - 8.2 following [7] - 3.2 form [9] - 3.19 forms [7] - 3.22 form [7] - 7.14 10:13 counts (t) - 5:5 county (t) - 3:16 COUNTY (t) - 10:2 crafting (t) - 5:8 curb (t) - 7:23 cursed (t) - 6:5 С - 1:4 information (5) -4:13, 4:23, 6:17, 6:25, 8:12 2 Campus (1) - 1:15 cards (2) - 3:13, 7:11 D 2007 (6) - 1:7, 1:16, 3:3, 3:4, 10:8, 10:17 6:25, 8:12 informed | r) - 5:7 infets | r) - 8:3 input | r| - 6:16 interested | r| -Daniel pt: - 2:3 data (n) - 4:24, 4:25, 5:3, 5:10, 5:11, 6:21, 7::5. 7:18 2008 | 1] - 10:24 23 | 1] - 3:3 24th | 2] - 3:23, 9:2 catch (1) - 7:25 certainly (2) - 5.2, G certify (2) - 10.7, 0.10 decaying 19 - 6.6 decisions (r - 5.7 dotail (r) - 4.6 deteriorating (r) - 8.14 developing (r) - 7.18 different (r) - 6.22 direct (r) - 7.20, 7.21 direction (r) - 4.4, 10.9 directiv (r) - 10.13 4 Gary |7, - 2:4, 4:3 Gateway |1] - 1:14 general |2| - 3:25, 5:12 :haracterization - 5:13 4 (1) - 2:9 4:30 (1) - 1:17 n - 5:13 chemical (n) - 5:21 Chief (n) - 2:3 chime (n) - 4:22 city (n - 3:16 City (n - 3:16 clarification (n) -4:6 gentleman's [1] -Joe (2) - 4:3, 4:21 7 gentlemen : ii -: 21 Joseph [1] - 2:5 June [1] - 10:24 8.21 grab (1) - 7:10 gradings (1) - 8:6 grass (1) - 8:2 Great (1) - 1:15 GREATER (1) - 1:6 gutter (1) - 7:23 7 (r) - 2.10 7:00 (r) - 1:17 K 4:6 close (1) - 8:19 closely (1) - 5:10 coliform (2) - 5:5. 8 kind (2) - 5:10, 6:4 Korb (1) - 2:4 19:9 directly [1] - 10:13 discharge [1] -5:15 discharges [2] -4:13, 5:19 5:22 collected [1] - 4:25 collecting [7] -4:12, 5:20 8:00(1) - 9.3 9 4:12, 5:20 collection [a] - 7:20, 7:21, 8.2 College [n] - 1, 14 combined [n] - 6:15 coming [n] - 5.6 commencing [n] - 1:17 4 13, 5 19
District (\*) - 7:9
ditched (\*) - 7 22
ditches (\*) - 8 3
DNR (\*) - 3:17
Drive (\*) - 1.15 Hahn (1) - 2:3 HAHN (5) - 3:9. 4:15, 4:21, 5:15. 3:23 901;:: - 1.15 L Α Lake(+): -6.7 Lake(s) (): -1.16 line(+): -6.19 live(+): -4.18 loade(+): -6.22 loading(+): -6.13 loads(+): -6.13 loads(+): -6.13 loads(+): -5.11 look(+): -5.11 look( 8.23 hand (1) - 10:16 HEARING (1) - 1.44 hearing (2) - 1:12, 8.20, 10.77 held (1) - 1:12 help (2) - 7:15, 8.21 help (2) - 7:15, 8.21 hereby (1) - 10.77 hereunder (2) - 10:15 account(r) - 5:3 action(r) - 10:14 add(r) - 6:8 address(r) - 3:12. Ε

BROWN & JONES REPORTING. INC.

Educator (1) - 2.4 employee (2) -10:11, 10:12 engineer (1) - 4:19 Engineer (2) - 2.3 entire (1) - 6:24 Environmental (1)

2:3 evening p; - 8:25 example(n; - 5:4 Expires p; - 10:24 explain p; - 4:5

0·15 HNTB (\*; - 7·6

implement | : -:25

SEWEDE HEADING 10/15/2007

M

MADSEN (5) - 4:10.

|                       | SEWRPC               | HEARING, 10/           | 15/2007               | 1:                   |
|-----------------------|----------------------|------------------------|-----------------------|----------------------|
| 4:17, 5:14, 5:16.     | OCTOBER (1) - 1:7    | - 3:1                  | s                     | systems (2, - 7:21   |
| 7:17                  | October (5 - 1.16,   | process p: -6:13.      |                       |                      |
| Madsen [1] - 4-17     | 3:3, 3:23, 10:8.     | 6:24                   |                       | T                    |
| Madsen                | 10 17                | Professional 7:        | samplers (c) - 7:15   |                      |
| :::- 2:9              | OF (3) - 3.1, 10:1.  | 1:13, 10.5             | samples 7 - 4.12      | 1                    |
| MANAGEMENT            | 102                  | program 21 - 6:2.      | 5:20                  | Technical (** - 1:14 |
| . 1.5                 | office 55 - 10 16    | 7:10                   | sanitary : 6:15       | technical :/; - 7:1, |
| mandatoryn: - 6:1     | ON (1) 1.5           | programs p. 6.1        | Schmidt 9' - 2.3.     | 8 18                 |
| MARY 12: - 1:12.      | One ::: - 5 14       | public # - 3.6.        | 3:2                   | terms (c. 4.23.      |
| 10:5                  | one is - 3.9 4.8     | 3.7. 3:14. 3:18. 8:19  | SCHMIDT 5 - 3:5.      | 54, 57, 512          |
|                       |                      |                        | 3:11, 7:2, 8:16, 8:24 | THE (1 - 1:6         |
| Matt ::: - 4.3        | 7 10                 | PUBLIC (1) - 1/4       | sealar - 10:16        | Thomas n - 2 4       |
| meeting (1) - 3.6     | ongoing [1] - 7:9    | Public (4) - 1:12.     | second: 11 - 6.18     | Tom (3) - 4:3, 4:21. |
| meetings :: - 3:3     | organization ::; ·   | : 1 13, 10:6, 10:21    |                       | 6:9                  |
| meticulously 1: -     | 3.16, 3.18           | publicly (c) - 3:20    | semiretired : -       | took::1 - 5:3        |
| 6.20                  | outfall (2) - 4:23,  | - purpose [1] - 8:10   | 4:20                  |                      |
| Metro : 1 - 7 8       | 5:12                 | put [3] - 7.20. 8:6.   | send (2) - 3 21, 4:9  | topics(*) - 4.1      |
| Michael;:: - 2.3      | outfalls (:) - 4 24. | 8.7                    | set (*) - 10:15       | town (t) - 3.17      |
| Michigan 8: - 6:7     | 7:14                 |                        | setting  : : - 6 12   | Town[1] - 4 18       |
| microphones  11 -     | outflow(:: - 5:6     | Q                      | sower (6) - 4:24.     | TRANSCRIPT::;        |
| 3.8                   | overflow z - 6:15.   |                        | 5.6. 5 19, 6.15, 8:2  | 3:1                  |
| middle (q - 3.10      | 6:16                 |                        | Sewerage (1) - 7:9    | try (2) - 4:5, 8.21  |
| Mike 2: - 4:2, 5:17.  | 4.10                 | QUALITY (1) - 1.5      | SEWRPC in - 2.2       | trying (2) - 5:25    |
|                       | Р                    | quantities ::-         | shoretine [1 - 6:6    | 6:14                 |
| 8:21                  | P                    | 5:13                   | sign (1) - 3 14       | turn (*) - 3:23      |
| MILWAUKEE (2)         |                      | questions p - 4:1.     | sites:11 - 6:23       | two:11 - 3:2         |
| 1:6, 10:2             | p.m (s) - 1:17, 9:3  | 8:20                   |                       | type(3) - 6:3, 8:10  |
| Milwaukee (3)         | Page mi - 2 8        | 1                      | SLAWSKI 19 - 5:8      | cype is, o.b, c. io  |
| 7:6, 7:8. 10:16       | part:::-8:9          | R                      | Slawski [2] - 2 4.    | Į.                   |
| MMSD :: - 6:17,       | particularly 21-     | ^                      | 6:9                   | 0                    |
| 7:11                  |                      | i                      | small (r; - 8:3       |                      |
| model:1; - 6:17       | 6:14. 8:17           | Racine (5: - 1:15,     | smells:::-6:5         | under 11 - 10.9      |
| modeling (2) -        | parties (1) - 10:12  | 1 16, 4:19, 5:20       | solid 1) - 8.7        | undergrade (1)       |
| 6:13, 6:24            | perforated [1] - 8:7 | Raymond : - 4:18       | sorry (1) - 7:4       | 8:8                  |
| monitored 1;-         | Pershing  1: - 1:15  | really (2: - 5:9, 8:14 | sort.1-4 19           | unique:1; - 6:21     |
| 5:10                  | person (*) - 7:11    | reasons (1) - 5:16     | sources (s) - 5:12    |                      |
| monitoring (4)        | personal (5 - 10 9   | recommended :: -       | SOUTHEASTERN          | up (6 - 3:9, 5 5.    |
| 4:24, 5:18, 7:9, 7:13 | phosphorus @ -       |                        | 16 - 1:3              | 6:12, 6:14, 9:1      |
| MR 1/1 - 3 5, 3 9.    | 5:23. 6:3            | 58                     | Southeastern:         | upcoming:::- 3:3     |
| 3:11. 4:10. 4:15.     | pipe (2) - 8:7 8:8   | record (s) - 3:14      | 6:10                  | UPDATE pt: - 1:5     |
|                       | places (2) - 4:11.   | recorded [1] - 10:8    |                       |                      |
| 4:17, 4 21, 5:14,     | 8.4                  | reduced 1; - 10 8      | specific (1) - 4:1    | l v                  |
| 5:15, 5:16, 6:6, 7:2, | PLAN :: 15           | REGIONAL :2] -         | SS(r) - 10:1          |                      |
| 7:4. 7:17. 8:16.      |                      | 1:3, 1:5               | Staff (2) - 2:5, 2:5  |                      |
| 8:23. 8:24            | plan ;2j - 5:8, 3:18 | Regional 3 - 24.       | staff [:] - 6:11      | various [1] - 4:25   |
| municipality [1] -    | Planner (*: - 2.4    | 4:2. 6:10              | STATE (1) - 10:1      | vegetation (1) - 6:6 |
| 3.16                  | PLANNING [1] -       | Registered (2)         | State (3) - 1:14.     | village (1) - 3:17   |
|                       | 1:3                  | 1:13, 10:5             | 10:6, 10:21           | Village 5₁ - 5:18.   |
| N                     | Planning (3) - 2:4,  | related 19 - 8:17      | state  21 - 3:12,     | 7:18. 7:23           |
|                       | 4:2.6:10             |                        | 3.18                  |                      |
|                       | Point (c - 5:18,     | relating [1] - 4 1     | storage 26 - 6.19,    | w                    |
| name (5) - 3:12,      | 6:4, 7:18, 7:23      | relative (2) - 10:11,  | 8:5                   | ***                  |
| 4.16. 7:4             | point 2: - 4.4, 5:12 | 10:12                  |                       |                      |
| need 11 - 3:14        | portion 21 - 3:6.    | report (1) - 8:18      | storm (8) - 4:12.     | Wally (2) - 4:15,    |
| next (1) - 9:1        | 7.1                  | Reporter [2] - 1.13.   | 4.24, 5:6, 5:18,      | 4:17                 |
| nitrogen : 1 - 5:24   | possibly :: 1 - 5:23 | 10.6                   | 7 10, 7:13, 8:1, 8.4  | Walter: : - 2:9      |
| no-phosphorus (1      |                      | respond : - 9:2        | stream [2] - 4:25.    | wants (1; - 8:11     |
| - 6:3                 | post (n - 6:18       | responding :           | 5 11                  | water in 4 12.       |
|                       | pre::! - 6:18        | 7:7                    | structure;r; - 8:10   |                      |
| Nobody *1 - 3:25      | pretty p: - 6:21     | RING 21 - 1:12         | study 2: - 4:11.      | 7:10, 7:13, 8:5      |
| Notary [8] - 1.13,    | primarily : - 4:25   | 10:5                   | 6 23                  | WATER   1:5          |
| 10:6, 10:21           | Principal : 1 - 2:4  | roadbeds   1 - 8 9     | stuff;3; - 5:21, 6.4. | WATERSHEDS           |
| numbers (*) - 6:16    | Printz ;*; - 2.5     |                        | 88                    | - 16                 |
|                       | private :: - 3 17    | Ron(1) - 4:3           | summarized:           | week [1] - 9.1       |
| 0                     | Proceedings          | Ronald [*] - 2.5       | 7.1                   | whereof:1: - 10:15   |
|                       | 9:3                  | Room jn - 1.16         | system;31 - 6:19.     | William 2; - 2:10,   |
|                       | PROCEEDINGS [*]      | 1                      |                       | 7:5                  |
| Oct 11 - 3:3          |                      |                        | 7:22, 8:2             |                      |

BROWN & JONES REPORTING, INC.

414-224-9533

Wind (g) = 518, 6.4.7 (8, 7.8) WISCONSIN (g) = 13, 10.1 Wisconsingli-134, 116, 610, 107, 1071, 1021 wish (g) = 320 witness (g) = 10.15 writing (g) = 10.15 years;- 7 14

BROWN & JONES REPORTING, INC. 414-224-9533

# SEWRPC REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS PUBLIC INFORMATION MEETING/PUBLIC HEARING

#### Downtown Transit Center - Milwaukee October 16, 2007

| Name              | Representing        | Address                                                    | Telephone Number/E-Mail Address |
|-------------------|---------------------|------------------------------------------------------------|---------------------------------|
| Trene Brown       |                     | 3250 S. Leny                                               | 414-483-3862                    |
| Lisa Calz         | tout Cont RC+D      | 5/6 for labelle Dive<br>Depinava W: 53066                  | 262-567-5947                    |
| Gugara (Bira      | citizen             |                                                            | of birdawi veron                |
| HEVIN HALEY       | MILWANNEE CO. PARKS | 9460 WATERTOWN POADS<br>WANWATOSA, WI 53226                | 414-257-6242                    |
| Karen Sands       | Earth Tech          | 1020 N. Broadway<br>Milw. 53202                            | 4/4-22515175                    |
| Jennifer Runquist | LWVMC               | 3002 E.Ken wood Blue<br>til WI 53 211<br>7526 W FIRST None | 414-332-5067                    |
| CURT BOLD         | C of GREWFIED       | Grangas WE 53220                                           | (414)329 8322                   |
| Chenyl Nenn       | FMR                 | MU WI SZZOZ                                                | (414)287-0207 x29               |
| Muke Muthin       | MMOD                |                                                            |                                 |
| ·                 |                     |                                                            |                                 |
|                   |                     |                                                            |                                 |
|                   |                     |                                                            |                                 |

#131636 V1 - RWQMPU PUBLIC MTG SIGN IN SHEET

# SEWRPC REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS PUBLIC INFORMATION MEETING/PUBLIC HEARING

#### Downtown Transit Center - Milwaukee October 16, 2007

| / Name                      | Representing                   | Address                                                      | Telephone Number/E-Mail Address |
|-----------------------------|--------------------------------|--------------------------------------------------------------|---------------------------------|
| Kee Donland                 | RiverPulse feograt  Earth Tech | 3625 N 864-54. 53222                                         | S88-0617<br>KdonleufDaol Com    |
| Kee Donland<br>Jaren Hiller | Earth Tech                     | 1020 N. Broadway, Milw, 5320.                                |                                 |
| MARTY WALL                  |                                | 5705 W TRENSON PD 13                                         | 448-3115                        |
| MARY WALL Vivian Corres     | concerned citizen              | 5705 W TRENTO- BD 33<br>MILWSTZOZ<br>1707 N. Braggeet Auotts | D corresvomi waccen             |
|                             |                                | ·                                                            | - '                             |
|                             |                                |                                                              |                                 |
|                             |                                |                                                              |                                 |
|                             |                                |                                                              |                                 |
|                             |                                |                                                              |                                 |
|                             |                                |                                                              |                                 |
|                             |                                |                                                              |                                 |
|                             |                                |                                                              |                                 |
|                             |                                |                                                              |                                 |

#131636 V1 - RWOMPU PUBLIC MTG SIGN IN SHEET

SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION PUBLIC INFORMATION HEARING
ON REGIONAL WATER OUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKE WATERSHEDS
OCTOBER 16, 2007

Public hearing held before KATHLEEN E. CARTER, a Certified Realtime Reporter, Registered Merit Reporter and Notary Public in and for the State of Wisconsin at the Downtown Transit Center, Harbor Lights Room, 909 East Michigan Street, Milwaukee, Wisconsin, on October 16, 2007, commencing at 4:30 p.m. and concluding at 7:00 p.m.

735 North Water Street. Suite M185 Milwaukee, Wi 53202 (414) 224-9533 (800) 456-9531

PUBLIC HEARING, 10/16/2007

#### APPEARANCES 2 FOR SEWRPC: Michael G. Hahn, Chief Environmental Engineer Daniel Schmidt, Commissioner Gary K. Korb. Regional Planning Educator Thomas Slawski, Principal Planner Joseph Boxhorn, Staff Ronald Printz, Staff 3 4 6 \* \* \* \* \* 8 INDEX 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BROWN & JONES REPORTING, INC. 414-224-9533

TRANSCRIPT OF PROCEEDINGS

06.07 2

06.07

06.07 3 06:07 4

06:07 6

06:07 8

06.07 10

06:07 11

06.07 12

06:07 13

06.07 14

06:08 15

06.08 16 06:08 17

06:08 18

06:08 19 06.08 20

06:08 21

06:08 22

06:08 23

06.08 24 06:08 25

06:08 1

06 - D8 2

06:08 5

90-90

06:08 6

06:08

06:09 9

06:09 10

06:09 12

06:09 13

06:09 14

06:09 15

06:09 16

06:09 17

06:09 18

06:09 19

06:09 20

06:09 21

06:09 22

06:10 23

06:10 24

06:10 25

11

3

7 06 07

9

MR. SCHMIDT: Good evening. My name's Daniel Schmidt. I'm a SEWRPC commissioner, and I serve as chairman of the Technical Advisory Committee that reviewed the information that Mike just went through

This will be the beginning of the public comment portion, public hearing. And as Mike indicated, this is the second of three such programs

Before getting into that, I just want to note that I'm just one of 32 members on the Technical Advisory Committee, and we've been meeting for four years currently. And those people are very dedicated, interested in what they're looking at and reviewing. We have a fantastic staff at SEWRPC that's been providing us the information, along with MMSD, the DNR, and so forth.

At those meeting, and we've been meeting almost monthly, or at least every other month, occasionally missing one, but we've been averaging a 66 percent attendance ratio at those meetings, so it's fantastic the commitment that these members have.

BROWN & JONES REPORTING, INC.

PUBLIC HEARING, 10/16/2007

In reference to the public comment portion of this meeting, I would ask -- I'm going to lay the mike over here at the table, and I would ask that you identify yourself by giving your name for our stenographer, as well as your address.

If you're affiliated with a municipality, county, private or public agency, I would ask that you also give us that information for the record And we'll begin with that comment portion.

Oh, also, if you wish to just comment, you know, in a written format, you may do so. There's forms in the back. That needs to be submitted by the 24th of October. If you want to speak, there are also forms back there that, you know, would provide us your name, and address, and so forth.

And, again, we need the information by the 24th because we are under a strict deadline.

I'll leave the mike on, so you don't have to mess with any buttons.

Does anyone have any public comment that they would like to make?

MS. NENN: I'll come.

 $\label{eq:MR.SCHMIDT:Fine.Come up, Cheryl.} \ensuremath{\mathsf{MR.SCHMIDT:}} \ensuremath{\mathsf{Fine.}} \ensuremath{\mathsf{Come}} \ensuremath{\mathsf{up}}, \ensuremath{\mathsf{Cheryl.}} \ensuremath{\mathsf{Cheryl.}}$ 

MS. NENN: It's a small group. Just grab

BROWN & JONES REPORTING, INC. 414-224-9533

this.

2 3

08:10 6 06:10

06.10

06:10

06:10

06:10 8

9 06:10 10 06:10 06:10 11

06:10 12 06:10 13

06:10 14 06:10 15

06:10 16 06:10 18

06:10 19 06:10 20 06:10 21

06:11 22

06:11 23

06:11

06:11

06:11

06:11

06:11

06:11

06:11

06:11 10

06:11 12

06:11 13

06:11 14

06:11 16

06:11 17

06:11 18

06:12 19

06:12 20

06:12 21

06:12 22

06:12 23

06:12 24

06-12 25

2

06:11 24 06:11 25

MR. SCHMIDT: Start out with your name. MS. NENN: Sure. I'm Chervl Nenn. I'm with Friends of Milwaukee's Rivers, and I'm also a

member of the Technical Advisory Committee for the plan, so been participating in meetings for several vears.

We're planning on submitting detailed written comments as well, but I just wanted to say that in general we're very supportive of the plan, with a couple of major concerns.

And those are -- We're still really concerned about the five-year level of protection for MMSD in particular. We really feel that the proposed five-year level of protection is illegal under federal and state law, and that MMSD, as well as all the other treatment plants in the basin, must eliminate SSOs, and have that as a goal, as well as addressing both point and nonpoint sources of pollution

We -- Let's see here. You know, we're also -- we're very concerned about sanitary sewer overflows. We feel that planning for them as part of the Regional Water Quality Plan is unacceptable.

We certainly acknowledge that there's

BROWN & JONES REPORTING, INC.

PUBLIC HEARING, 10/16/2007

special extreme wet weather conditions that cause overflows at times. However, we agree with the USEPA, and others, that prohibit affirmative defenses for SSOs. And what that means is it instead gives the state and federal government enforcement discretion to deal with these special circumstances that happen and cause sewage to be dumped in those situations

And we feel that the law really exists to create a level playing field out there, and we're concerned about the potential regional and statewide precedents of allowing the five-year level of protection.

And we also feel it's unfair to the other treatment plants within the basin who are complying with the law and making the necessary expenditures to keep their sewage systems well-maintained, although, obviously, MMSD is a special situation.

We also realize that eliminating SSOs is a very costly endeavor, billions of dollars as Mike was mentioning. However, we -- you know, we feel strongly that the Clean Water Act does not allow for overflows in the name of cost effectiveness, and that zero overflows still need to remain the goal.

BROWN & JONES REPORTING, INC. 414-224-9533

And while we certainly agree that costs 06:12 need to be factored in when prioritizing our future 06:12 2 06:12 3 actions, we don't feel that they can be an excuse to continue to violate the law and pollute the 5 06:12

6

8

06:12

06:12 7

06:12 10

06:12 11

06:12 12

06:12 13

06:12 14

06:12 15

06:12 16

06:12 17

06:12 18

06:13 19

06:13 20

06:13 21

06.13 22

06:13 23

06:13 24

06:13 25

06-13 1

06.13 2

06:13

06:13

06:13 5

06:13

06:13 9

06:13 10

06:13 11

06 13 12

06:13 13

06:13 14

06:13 15

06:13 16

06:14 17

06:14 18

06:14 19

06:14 20

06:14 21

06:14 22

06:14 23

06:14 24

06 14 25

6

8

And we feel that we shouldn't have to choose between safe and clean drinking water and adequate sewage treatment, or between having sewage in our basements or sewage in our rivers. These are false choices, and we need to do what we have to do.

And just really quickly, we also would like to -- we feel that holding the line on the inflow and infiltration is not enough, and that we must go after the inflow and infiltration more aggressively to achieve reductions.

Preventing those increases is of the utmost importance in dealing with regional sewer capacity issues. We encourage the future efforts and ongoing efforts to allocate funds for illicit discharge detection and elimination, detection of cross-connections and human fecal contamination, such as the work that's been started by MMSD and Sandra McClellan, as well as implementing new technologies to seal up the cracks and leaks in the

BROWN & JONES REPORTING, INC.

PUBLIC HEARING, 10/16/2007

sewers.

We hope that MMSD, as well as other municipalities, move beyond holding the line on inflow and infiltration and move to aggressively decreasing it through regulations, incentives and enforcement actions.

We also -- While we definitely support increased secondary capacity at both South Shore and Jones Island, we continue to believe that sewage blending is unacceptable. We feel that blending or diversion around any stage of sewage treatment presents a threat to human health.

Although we understand that currently MMSD blends sewage, that they're in compliance with their permit, we feel the permit doesn't have standards for parasites, and viruses, and other bacteria that can make people sick.

At present blending is not allowed at South Shore, and we would be against any permit modifications allowing this to occur in the future

We sincerely hope the physical chemical treatment pilot project is successful. However, if it's not successful, we don't agree that the next logical option should be sewage blending.

We support all the water course

66:14

06:14

06:14 3

06:14

06:14

06:14

06:14

10 06:14

06:14 11

06:14 12

06:14 13

06:14 14

06:14 15

06:14 16

06:15 18

06:15 19

06:15 20

06.15 21

06:15 22

06:15 23

06.15 24

06:15 25

06:15

06 15 2

06:15

06:15 5

06:15 6

06:15

06:15 9

06:15 10

06:15 12

06:15 13

06:16 14

06:16 17

06:16 18

06:16 19

06:16 20

06:16 21

06:16 22

06.16 24

06:16 25

23

06:16 16 improvements that Mike mentioned, the dam removal, the removal of concrete lining, impediments to fish migration. We're very strongly supportive of that, as well as all the collaborative efforts that are being talked about right now to implement the SEWRPC plan.

And we also encourage SEWRPC in their initial recommendations to come up with a more concrete recommendation on how to address the illicit discharges, as well as how to deal with problem outfalls that are discharging into our waterways

And there are many of those where we're having a really hard time finding where the illicit connections are coming in because they're draining huge surface areas of the city. And so we feel that we need to actually look at some end-of-the-pipe treatment systems and other emerging technologies that are out there.

That was something that SEWRPC initially recommended as part of the plan. However, in the Technical Advisory Committee there was significant concern on the part of municipalities about how much that would cost and -- However, we really feel that it's important to look at those

BROWN & JONES REPORTING, INC.

PUBLIC HEARING, 10/16/2007

10

end-of-the-pipe treatment systems, which have been successful in many other communities, and, you know, perhaps starting some pilot projects to look at that type of technology and whether it's worth looking at in the future

And I think that's about it. We support all the nonpoint efforts in the plan. As Mike mentioned, full, you know, implementation of those parts of the plan are unlikely, based on the lack of state funding for NR 151, so we strongly support, you know, the state funding for the nonpoint initiatives and looking at more innovative sources of funding, to make sure, in particular, the agricultural component of the NR 151 is implemented.

The town utility district concept which Mike mentioned, to deal with private on-site systems, inspections of septic systems in the rural areas, there's pretty much very little funding right now and is very important

And supporting all of the fertilizer reductions, co-ag reductions, et cetera, as well as protection of the primary environmental corridors.

So thanks for listening. I felt that someone needed to speak, so I figured I'd just do

BROWN & JONES REPORTING, INC. 414-224-9533

my little stumpage but -- Thanks 06:16 Cheryl, C-H-E-R-Y-L, Nenn, N-E-N-N, and 06:16 2 I'm with Friends of Milwaukee's Rivers. Thank you. 06:16 3 MR. SCHMIDT: Thank you, Cheryl. Do we 5 have anybody else that would like to make a public 06.16 comment at this time? Again, you do have the 06:16 6 option to do it in writing and get it to us. Yes, 06.17 8 MS. CORRES: Haven't filled this out yet but --06:17 10 MR. SCHMIDT: So long as you do before 06-17 11 you leave. Give your name and address. 06:17 12 MS. CORRES: Hi. My name is Vivian 06:17 13 Corres. C-O-R-R-E-S. I live in Milwaukee 06:17 14 And I just want to say that I support the 06:17 15

06:17 16

06:17 17

06:17 18

06:17 19

06:17 20

06:17 21

06:17 22

06:17 23

06:18 24

06:18 25

06:18 1

06.18 2

06.18

06:18 5

06:18 6

06:18

06:18 9

06:18 10

06:18 11

06:18 12

06:19 13

06:19 14

06:19 16

06:19 17

06:19 18

06.19 19

06:19 20

06:19 21

06:19 22

06:19 23

06:19 25

24

3

position of Milwaukee's -- Friends of Milwaukee's Rivers. And this summer the Friends of Milwaukee's Rivers held a program, an educational program, for seniors. I think we were about 50 in the program. And even though there's not many of us here tonight who participated in that program, and I came late because I was at a class, you should know that there are a lot of us as concerned citizens who do approve of the kinds of things that the Friends of Milwaukee's Rivers do.

BROWN & JONES REPORTING, INC.

PUBLIC HEARING, 10/16/2007

12

And I think the strength is, if we're going to have any kind of viable society, that public officials need to work and listen to these public citizen volunteer groups, and maybe some people get a little bit of money because they have to live, and then there's a whole slew of us who are volunteers who support the few people that are working in these citizen-based groups

And if you listen, things can be done We're not at odds against each other. So I would highly recommend that you listen and take back the comments from Friends of Milwaukee's Rivers, because they're our citizens.

I'll be taking fifth graders out to count little creepy-crawlies next week with the Urban Economy Center. There are lots of things that we do. And we promote among our friends, and rain barrels, and all these other kinds of things.

So listen to us. And we're all on the same side, if you listen

Thank you very much.

MR. SCHMIDT: Thank you, Vivian. Anybody else care to comment this evening? (No response.)

MR. SCHMIDT: Again, if you're not

commenting tonight, I would encourage you to do so by the 24th. As Mike indicated, we have a tight deadline to comply with.

06:19

06:19

06:19 3

06:20

06:20

06:20

06:20 10

06:20 11

06:20 12

06:20 13

06:20 14

06:20 15

06:20 16

06:20 17

18

19 20

21

22

23

24

25

2

And I do appreciate all of you attending tonight. We have another meeting scheduled for next Tuesday evening at the Riveredge Nature Center on the Ozaukee/Washington county line. If you think of something you want to say, and you want to say it out loud, you're welcome to come there.

I believe, if you have any questions, our staff will be staying around briefly after the meeting, until close to 7:00 o'clock, or thereabouts. Feel free to ask any one of them a

So thank you all for your participation and hope to see you at upcoming meetings. Thank

. . . . .

BROWN & JONES REPORTING, INC. 414-224-9533

STATE OF WISCONSIN ) SS: 2

3

6

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

I, KATHLEEN E. CARTER, a Certified Realtime Reporter, Registered Merit Reporter and Notary Public in and for the State of Wisconsin, do hereby certify that the above proceedings were recorded by me on October 16, 2007, and reduced to writing under mypersonal direction.

I further certify that I am not a relative or employee or attorney or counsel of any of the parties, or a relative or employee of such attorney or counsel, or financially interested directly or indirectly in this action.

In witness whereof I have hereunder set my hand and affixed my seal of office at Milwaukee, Wisconsin, this 19th day of October, 2007.

Notary Public
In and for the State of Wisconsin

My Commission Expires: March 16, 2009.

BROWN & JONES REPORTING, INC. 414-224-9533

# SEWRPC REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS PUBLIC INFORMATION MEETING/PUBLIC HEARING

#### Riveredge Nature Center - Newburg October 23, 2007

| Name                     | Representing                        | Address                      | Telephone Number/E-Mail Address    |
|--------------------------|-------------------------------------|------------------------------|------------------------------------|
|                          | Village of                          | 329 Windell 5300             | 920.533-4282                       |
| Pat Twoking              | Village of<br>Campbellsport         | Compbellspond WI             | Partioling Cyahoo.com              |
| 71                       |                                     | 2433 W Hawthorne DR          | 1 . O & Lorescondo                 |
| GINNY Plumeau            | CEBARBURG Science                   | Sankville WI 53080           | g prome a calceaus seg             |
| 11                       |                                     | 6757 Eastwood Trail          | Kskuldt@nconnect. net              |
| Karon Skuldt             | Watershik watchers                  | West Bend WI 53090           | l i                                |
|                          |                                     | 11155 Min St.                | 262-335-5/22                       |
| Mark Pretrance           | City of West Bond                   | West Bend, WI 53095          | protrium @ ci. west bend will      |
| ROSE HASSLEIDER          | DZAUKEE COUNTY<br>LAND CONSERVATION |                              | 920-994-4448                       |
| Kose THEST LET DELL      | LAND CONSTRUCT                      |                              |                                    |
| MARSHA BUKTYNSKI         | WAUR                                | 2300 N. MLKING VR. Dr        | 414-263-8708                       |
| promotify salesting surj |                                     | MICW W153172                 | MAKSHA BUKZMENOW, GOV              |
| TINA (T)                 | 0100118                             | 1115 S. Main Street          | 262-335-5130                       |
| Judith A. Pleu           | City of West Bond                   | West Bend, W 53095           | citying acinest-bend wi            |
|                          | 1 = 1                               | 260 W. Seeboth St.           | 414-225-2156                       |
| TimBate                  | MMSA                                | Milweller, WI 53204          | Hoste @ mmsd.com                   |
| 1 0                      | Ø.                                  | 121 W. MAIN STEER            | 212 730 8270                       |
| ANDREW STRUK             | DEMURERE CO-PLANNING & PA           | KS ROBOX 994 PORT WASHONGTON | VF 57074 43 machecolo oznahez Nive |
|                          |                                     | 7                            | 7                                  |
|                          |                                     |                              |                                    |
|                          |                                     |                              |                                    |
|                          |                                     |                              |                                    |
|                          |                                     |                              |                                    |
|                          |                                     |                              |                                    |
|                          |                                     | l                            | J.,,                               |

 $\pm 131636~\mathrm{VI}$  - RWQMPU PUBLIC MTG SIGN IN SHEET

## SEWRPC REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS PUBLIC INFORMATION MEETING/PUBLIC HEARING

#### Riveredge Nature Center - Newburg October 23, 2007

| Name            | Representing  | Address                                                 | Telephone Number/E-Mail Address |
|-----------------|---------------|---------------------------------------------------------|---------------------------------|
| Harylyn John    |               | WESTBEND                                                | 262-675-6725                    |
| CARL JOHN (2)   | SE2F          | 1061 TUSCOLA LN                                         |                                 |
| Timothy John    | 17            | 1061 TUSCOLA LA<br>707 N. Lake Rd.<br>OCONOMOWOC, 53066 | 414 475-7500<br>work            |
| Eric Ryer       | T. Cadwhang   | ,                                                       | 262-371-4509                    |
|                 | V             | P. 4 Bax 994                                            |                                 |
| ANDY HOLSCHBACH | OZANKA CA     | PORT WASHINGTON, WI                                     | 112 284-8371                    |
| None Pelkonthe  | - Ros citizin | 24518 Sandy Point D                                     | c 262-                          |
|                 |               | / ·                                                     |                                 |
|                 |               |                                                         |                                 |
|                 |               |                                                         |                                 |
|                 |               |                                                         |                                 |
|                 |               |                                                         |                                 |
|                 |               |                                                         |                                 |
|                 |               |                                                         |                                 |
|                 |               |                                                         |                                 |

#131636 VI - RWQMPU PUBLIC MTG SIGN IN SHEET

PUBLIC INFORMATION MEETING AND HEARING ON REGIONAL WATER
QUALITY MANAGEMENT PLAN UPDATE
FOR THE GREATER MILWAUKEE
WATERSHEDS

Proceedings taken before ANDREA STEWART, a Registered Professional Reporter and Notary Public in and for the State of Wisconsin, at Riveredge Nature Center, 4458 West Hawthorne Drive, Newburg, Wisconsin, on October 23, 2007, commencing at 4:30 p.m. and concluding at 7:00 p.m.

MILWAUKEE 414-224-9533 RACINE 262-637-4960 (414) 224-9533 (800) 456-9531

PUBLIC INFORMATION MEETING, 10/23/2007

TRANSCRIPT OF PROCEEDINGS.

MR. SCHMIDT: Good evening, my name is Daniel Schmidt. I'm the chairman of the Advisory Committee for the Milwaukee River Watershed.

06:07

06:07

06 07

06 08

06:08 8 06:08

06.08

06:08

06:08 16

06 08 17

36 08 19

os os 20 06.08 21

06:09 23

06:09 24

06:09 25

o6 c8 12

06:08 13 14

5

6

9

10

Just a brief -- long history on that committee. We have been meeting since 2003. The committee consists of 32 members. And I would indicate that we have met once a month or once every other month since the beginning of this committee and there's a couple committee members here that can attest to that

At those meetings over the last four years, we've had about a two-thirds attendance at those meetings. So, when you're looking at a committee of 32 and that type of attendance. I think it speaks highly of all of those members.

As Mike indicated, this is going into the public common portion of the meeting, and I will do that in just a minute. But, what we would ask, if you haven't, you can sign a comment sheet and put your comments down in writing. You can state them publicly, we will get to that in just a moment, and the court reporter will take those You can also submit them online or in writing to SEWRPC. But we ask that that be accomplished by

> BROWN & JONES REPORTING, INC 414-224-9533

APPEARANCES 1 2 Southeastern Wisconsin Regional Planning Commission: 3 Mr. Gary K. Korb, Regional Planning Educator Mr. Michael G. Hahn, Chief Environmental Engineer 5 Mr. Dan Schmidt. 6 Chairman of Technical Advisory Committee and SEWRPC Commissioner. 7 8 Mr. Ron Printz, Principal Engineer 9 Mr. Joe Boxhorn, Senior Planner. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BROWN & JONES REPORTING, INC.

PUBLIC INFORMATION MEETING: 10/23/2007

06.09

06:00 2

06 09

06 09

08:09 6

06:09 9

06:09 10

06:09 11

06.09 12

06 10 13

06:10 14

06:10 17

06:10 18

06 10 19

06:10 20

06:10 21

06 10 22

06 10 23

06.10 24

06:10 25

16 06.10

3

5

8 06.09

tomorrow afternoon. As Mike indicated we have some strict deadlines we're trying to make and we ask for your cooperation regarding that.

We will go into the public comment portion now. I would ask that if you wish to comment, you first state your name clearly, and please stand up when you're doing that, as well as your address. And if you are affiliated with any unit of government, county, any public or private agency, please state that as well. It will help us tremendously. So, I open it up for public comment at this point.

MS. ROSE HASS LEIDER: Well, since no one wants to comment, I will. I'm notorious for

> MR. SCHMIDT: Please state your name. MS. ROSE HASS LEIDER: My name is Rose.

second name, H-A-S-S, third name, L-E-I-D-E-R. I'm an Ozaukee County Supervisor for District No. 2 which has unincorporated villages and many rural people and a great deal of the farming area. parts of three different townships, the rural ones

And for many years, I sat on Great Lakes boards, and especially representing Lake Michigan,

BROWN & JONES REPORTING. INC.

and when I hear them talk tonight and we're
talking water quality, maybe somewhere in the
future or before this is done, I think you should
do something to protect the Great Lakes out there,
Lake Michigan. That's part of the lifeline of the
people. No water, no life.
And I'm telling you, when they talk
about selling the water away, that could be a heck

06 10

06 10

DE 10

06:10

06.10

06 - 11

06:11

06:11 10

06 21 11

06:11 12

06:11 13

06:11 14

06.11 15

06:11 16

06:11 17

96:11 18

06:11 19

06:11 20

06:11 21

06 11 22

06 11 23

06.11 24

96 11 25

06:12

06 13 2

06:13

26 13 4

06:13

06:13 6

06 13

06:13

06:13 9

06:13 10 06:13 11

06:13 12

06.13 13

06:13 14

06:13 16

06:13 18

06:13 19

06:13 20

ne-13 21

06 14 22

06.14 23

06.14 24

06:13

8

about selling the water away, that could be a heck of a disaster for the people that live in the Midwest. And I'm sure SEWRPC somehow can tell you the amount of water and usage and all that type of thing because they certainly are involved with doing surveys and mapping and that type of thing.

And because I think the Great Lakes are the greatest thing we have, our asset for life here, I'm asking that maybe you can address that in here, or isn't that allowed?

MR. HAHN: Well, we certainly will address your comment and we appreciate those comments. This plan is intended to address the quality of the Great Lakes as it relates to the near shore Lake Michigan area.

In terms of the quantity, that's a soparate planning effort that we're working on right now, there's a regional water supply plan

BROWN & JONES REPORTING, INC. 414-224-9533

#### PUBLIC INFORMATION MEETING, 10/23/2007

Kids swim in it. People swim in it. We eat the fish. In fact, you can't even get chubs anymore. They're gone. You have to import them to smoke them. And I think it's a shame, a downright shame that for years and years, the raw sewage is there.

And I sit here and look at a map on that screen, "Oh, we're doing better, we're doing better." Yeah, when I got a cold, if I take a lot of medicine, I'm doing better, but it's probably back in another month. There's no reason why they can't address it and do something.

Yeah, I know it takes money. But a fine doesn't cost much, so we let it go and then come back next year and say, "Well, we did a little better." And I know Milwaukee Metropolitan Sewer District is there and trying to come up with some ideas, but I can't see why they can't do something and protect that lake from the raw sewage.

Because I think it's all political.

Thanks, guys. But maybe I'm counting on you to do something and not just tell me that it's getting better. Thank you.

 $\label{eq:mr.schmidt:mark you, Rose.} \mbox{Would}$  someone else -- yes, ma'am.

BROWN & JONES REPORTING, INC

going on, and that would address some of those other issues that you mentioned.

06.11

06 12 2

06 12 3

06 12 4

06:12 5

8

06:12 6

06.12 7

06 12

06 12 10

ne 12 11

06:12 12

06 12 13

06:12 14

06:12 17

06:12 18

06:12 19

08:12 20

06.:2 21

06:12 22

06.12 23

06:12 24

06:12 25

08:14 1

06:14 2

06.14

06:14

06:14 5

06:14 6

06:14

06 14 8

06.14 9

06 14 10

06 14 11

06.14 12

06:14 13

06.14 14

06.14 16

06.14 17

06 15 18

06:15 19

06:15 20

ns-15 21

06:15 22

06:15 23

06:15 24

08:15 25

So, on those two fronts, we're addressing them. This plan is limited primarily to water quality issues and water quality in the streets and the near shore area of Lake Michigan

 $\label{eq:MS_ROSE_HASS_LEIDER:} \mbox{ That would be}$  another study?

MR. HAHN: There's a regional water supply plan that's being conducted right now.

MR. SCHMIDT: That's being conducted in -- I believe I'm correct, that should start winding to the point of public hearings and so forth next spring.

06:12 15 MR. HAHN: Yeah, sometime next year, 06:12 16 yes.

MS. ROSE HASS LEIDER: And the other part of my comment you're probably not going to like very well, that's subject number two, is the raw sewage going into Lake Michigan. For years, it's been my pet peeve, because you blame the cows and the farmers for everything, and I think the raw sewage is the most disasterous of anything you can put in that lake because we need that water for drinking and a lot of purposes.

BROWN & JONES REPORTING, INC. 414-224-9533

#### PUBLIC INFORMATION MEETING, 10/23/2007

MS. MARILYN JOHN: Yes, I read some -MR. SCHMIDT: Excuse me. State your

MS. MARILYN JOHN: Marilyn John.
Watertech Washers (phonetic). I read some of the report on the web, and I got a sense that there was a great deal of contamination in the water and that it was affecting fish. And this kept going throughout the pages that I read, and I know there's more to it than what I read, but I was a little discouraged with that.

And I was wondering what the plan is to correct this because we also have a lot of wetlands that are being destroyed. And there's an article in the paper where -- was it Mr. Lieder (phonetic) -- who was concerned about the number of wetlands that were being destroyed and they were really upset about this. Well, the rest of us are upset about this, too.

So, with all of this great planning and we see all this reporting, what is -- I know that there is an implementation. But is this going to take care of some of these problems, or is it just another big show and nothing is going to really come of all of this?

BROWN & JONES REPORTING, INC 414-224-9533

06:16

06:16 2

08 18 3

06.16

06:16

ns 17 7

06:16 5

ea.17 10

as-37 11

06:17 12

06:17 13

06:17 14

06:17 15

06 17 16

06.17 17

06.17 18

66.17 19

06.17 20

06:17 21

06:17 22

06:17 23

06.17 24

06:17 25

06:19 1

06 19

06.19 3

36:19

06:19

06.19

06:19 8

06:19 9

06.19 11

06 19 12

06:19 13

06:19 15

06 19 16

05 19 17

06:19 18

06:19 19

06:20 20

06:20 21

06 20 22

06 20 23

06 20 24

06 20 25

6

8

MR. SCHMIDT: I'll try and address a 06:15 2 fittle bit of it, and Mike can maybe jump in. 06:15 06 16 3 We're hopeful that this will take care of some of that. But as Mike also indicated, we want and 96.15 need all 88 municipalities and nine counties to 06:15 6 support those recommendations that are before us 06-15 7 And as Rose indicated, money is always a 06:15 8 very strong factor in everything and, you know,

06 15 70

06:16 11

05:16 12

06:16 13

06:16 14

06.16 15

06:16 18

06 16 19

06.16 20

06.16 21

06:16 22

06.16 23

06 15 24

06 16 25

06 1/ 1

06:17 2

06.17

06:17 5

05:18

05 18

06.18 9

06:18 10

06:18 11

06:18 12

06 18 13

06-18 14

06:18 16

00:18 17

06 18 18

06.18 19

06:18 20

06.18 21

06.18 22

06:19 24

06:19 25

6

8

06:16 16

06:16

very strong factor in everything and, you know, we're trying to put in a list of grant information out there. We've had people, you know, from the DNR on the committee. Everybody is bringing their knowledge forward. And we're very hopeful that we can help and improve the situation. Mike, did you

MR. HAHN: Sure. The plan is intended to address the kind of problems that you talk about. Now, it's not probably going to be talked about and addressed quite as fully as we might like at this point, but we have come up with a good approach to achieving improvement in water quality.

The difficult part is implementation.

It always had been implementation. And since the
1979 plan was issued, a lot has been done in terms
of implementation to improve water quality by

BROWN & JONES REPORTING, INC.

#### PUBLIC INFORMATION MEETING, 10/23/2007

this was just kind of an overview.

MS. MARILYN JOHN: Well, I read it and I didn't get the sense that it was anything imminent. You know, there are a lot of contaminants out there that -- they're in the streams and they're in the lakes and they're going to be in our bodies, eventually.

MR. SCIMIDT: Again, as far as the specifics, you would have to go back to the report. We're trying to summarize something that's very detailed in a very small amount of time. And if -- one of the hurdles is if we don't have the recommended plan -- and that's what it is, a recommended plan put forward by this Advisory Committee to the Regional Plan Commission.

And as indicated earlier, the Plan Commission is the agency that is looked at for their recommendations and that's how the grants and funds will be made. If we wouldn't have that plan, those grants wouldn't be forthcoming to any one of our 88 communities or nine counties.

MR. HAHN: And I just might say that we will -- it's our intention, all of the formal comments made at this public hearing portion and

BROWN & JONES REPORTING, INC. 414-224-9533 controlling point sources and an additional amount has been done for not-point sources. This just carries that even further.

And as Dan mentioned, it will be a challenge coming up with the funding necessary to meet these goals. But we have laid out a roadmap, any way, as to how to get there and we will be pursuing implementation in the future.

MS. MARILYN JOHN: So the funding is the barrier here?

MR. HAHN: Yeah, it's a huge impact.
certainly.

MS. MARILYN JOHN: What has been done to get some the funding in the past and in the future? Because this is a very serious subject.

And I haven't even gotten to the wetlands yet.

But I would like to know what is going to be done about the contaminants in the water, to start with.

MR. HAHN: Well, I can't give you a short answer. We'll try and address it a little bit more. The whole report says what's going to be done about contaminants and what I just presented said what would be done about contaminants. It's detailed in the report, but

BROWN & JONES REPORTING, INC. 414-224-9533

PUBLIC INFORMATION MEETING, 10/23/2007

12

also any written comments we receive, we will address those in the plan. So, I'm doing my best to do it now, but I think the best place is in the summary and conclusion section of the plan. We will address the comments, and then we can cite directly, maybe, toward specific parts of the plan with the issues that you phrase.

 $\label{eq:MS-MARILYN-JOHN: Can we also send in comments?} \label{eq:MS-MARILYN-JOHN: Can we also send in comments?}$ 

MR. SCHMIDT: Yes. But we would ask that you try and get that in no later than tomorrow because we are on a very strict time table. Yes. Sir.

MR. TIMOTHY JOHN: I'm Timothy John and I'm a member of Milwaukee Rivers, and I'm working on a book to try and understand and explain some of these things.

Have you done much work trying to determine what, let's see, a pre-settlement river looked like? You know, let's say we could and we will continue to clean, clean, clean. Well, there are some minerals and oxygen levels, I'm sure, fluctuating from season to season. But is that -- has anything been done to establish what would be a perfect scenario that is agreeable to different

06:21

26 21 2

06 21 3

06 21 4

06.21 5

9

06:21 B

06.21 7

06.21

06.21 10

06.21 11

06:21 12

06 21 13

36-22 14

06:22 15

06:22 16

06 22 17

06 22 18

06.22 19

06.22 20

06 22 21

06 22 22

06.22 23

06 22 24

06.22 25

1

2

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

experts?

35.20

06:20 2

06:20

06:20

ns-20 6

06.20

06.20 10

06 20 11

c6:20 14

06.20 15

96 21 18

06 21 19

06 21 20

06 21 21

05 21 22

06 21 23

06 21 24

06 21 25

06-99 1

06.22

06:22 4

96.22

06.22

06 22 8

06:22 9

06 22 10

06:23

06.23 12

06:23 13

06:23 14 06:23 15

06:23 16

17

18

19

20

21

22

23

24 25

2

6

06-20 16 06-20 17

06 20 12 66 20 13

9

06.20 3

MR. HAHN: That's a very good point, and that was also raised by our Advisory Committee, and it has not been done, it wasn't part of this study, but it would be an interesting exercise to try and represent those kinds of conditions.

Now, to what degree of certainty we can represent them, I'm not sure. Because it would be difficult to really turn back the clock in terms of even knowing what process these might have been working back at that time in a physical nature.

And if you look, there's a display board, not one of ours, actually, but one of Riveredge's in the back of the room, that shows just the way the stream system evolved over time and it's been highly modified in certain areas.

So, it would be difficult to reproduce that, but it would be very instructive to know what kind of a background level would be.

MR. SCHMIDT: Just as a note, we do have a member on our committee from Friends of Milwaukee Rivers. Cheryl (phonetic) is on it. Yes, ma'am.

MS. ROSE HASS LEIDER: I have just one more thing. Rose Leider again. And this is

BROWN & JONES REPORTING, INC.

#### PUBLIC INFORMATION MEETING, 10/23/2007

 $$\rm MR.\ SCHMLDT\colon\ Thank\ you.\ }$  And Andy is also one of the 32 on the committee and he's been very active.

MS. MARILYN JOHN: That's an example of implementation and I think that's excellent.

MR. SCHMIDF: Do you have any other comments? Well, on my behalf, as well as SEWRPC's. I would like to thank you all very much for attending this evening. And the court stenographer will stay for a while, as well as the gentlemen, and try to answer any questions privately you have, or if you want to comment privately and record it, you can still do that. I appreciate you coming very much. It's been a four-year process to get to this point, and we appreciate it, all of us. Thank you.

(Proceedings concluded at 7:00 p.m.)

BROWN & JONES REPORTING, INC

positive for what's going on. And I have to thank
-- Andy Hulsbuck (phonetic) is the head of our
land conservation in Ozaukee County, and him and
his crew do a very good job.

And one of the things they have been pushing the last ten years is for -- I have farms and a fine herd of cattle, and what they're pushing is the manure storage so that it can be controlled and not put out on the fields during winter when it runs in the streams.

Well, we listened to Andy, and we put in the harvester and manure storage and took the milk house waste and ran it into the harvester, and it's probably the best thing we have ever done on the farm, Andy. You talked us into it, it's working wonderful, and it's helping the environment.

And I compliment land conservation in Ozaukee County. I'm on that board, too. But I'm telling you, they're out there trying to do their job well, and I personally know it worked.

Because that's, like, five years, and we really, really know that it's helping the environment. It was worth every cent it cost. So, that's a plus for what you're talking --

BROWN & JONES REPORTING, INC.

PUBLIC INFORMATION MEETING, 10/23/2007

16

STATE OF WISCONSIN )
COUNTY OF MILWAUKEE )

I, ANDREA STEWART, a Registered
Professional Reporter and Notary Public in and for the
State of Wisconsin, do hereby certify that the above
meeting was recorded by me on October 23, 2007, and
reduced to writing under my personal direction.

I further certify that I am not a relative or employee or attorney or counsel of any of the parties, or a relative or employee of such attorney or counsel, or financially interested directly or indirectly in this action.

In witness whereof I have hereunder set my hand and affixed my seal of office at Milwaukee. Wisconsin, this 24th day of October, 2007.

Notary Public In and for the State of Wisconsin

My Commission Expires: May 17, 2009.

BROWN & JONES REPORTING, INC. 414-224-9533

| 1                                           | 11:18                                 | certify z - 16.7,                  | 14:9                         | during jrj - 14 9     |
|---------------------------------------------|---------------------------------------|------------------------------------|------------------------------|-----------------------|
| ~~~~                                        | agreeable : : -                       | 16:10                              | controlling:                 | -                     |
| 17:::- 16:22                                | 12 25                                 | chairman (*; - 3:3                 | 10:1                         | ; E                   |
| 1979 1: - 9.24                              | aflowed (1) - 5:17<br>amount 3 - 5:11 | Chairman (1) - 2 6                 | cooperation::;-              |                       |
| 1070(), 5.2.1                               |                                       | challenge :: - 10:5                |                              | eatr - 7.2            |
| 2                                           | 10:1, 13:11<br>AND m - 1:2            | Cheryl ; 1 - 13:22                 | correct [2] - 6:12,          | Educator: -23         |
|                                             | ANDREA 12 - 19,                       | Chief (*; - 2:5<br>chubs (*) - 7.2 |                              | effort *: - 5:24      |
|                                             | 16:5                                  |                                    | cost <sub>1</sub> 2; - 7:14, | employee 2; -         |
| 2 [1] - 4:20                                | . Andy (4) - 14.2,                    | cite (1) - 12:5                    | counsel 21 - 16:11.          | 16:11, 16:12          |
| 2003; 9 - 3:6                               | 14:11, 14:15, 15.1                    | clean (3) - 12:21                  | 16:13                        | Engineer 2 - 2.5      |
| 2007 pg - 1:13.                             | answerp; -10:21,                      | clearly; 9 - 4.6                   | counties 31 - 9.5.           | 2:8                   |
| 6:8, 16:17                                  | 15.11                                 | clock (1; - 13:9                   | 11:22                        | environment 21 -      |
| 2009 [1] - 16 22                            | appreciate [3] -                      | cold (1) - 7:9                     | counting 11 - 7 21           | 14:17, 14:23          |
| 23(2) - 1:13, 16:8                          | 5:19, 15:14, 15:16                    | coming (2; - 10:5.                 | COUNTY 1: - 16 2             | Environmental :       |
| 24th (r) - 16:17                            | approach :: - 9:20                    | 15:14                              | county in - 4.9              | - 2-5                 |
|                                             | approach 1 - 9.20<br>area (3 - 4:21.  | commencing (1) -                   | County 11: 4.9               | especially (1) -      |
| 3                                           | 5:22. 6:6                             | 1:13                               | 14:3. 14:19                  | 4:25                  |
|                                             | areas:11 - 13:16                      | comment (s) -                      |                              | establish (1) -       |
|                                             |                                       | 3.20, 4:4, 4:6, 4:12,              | couple [1] - 3:10            | 12:24                 |
| 32 (2) - 3.7, 3:15.                         | article (1) - 8:15                    | 4:14, 5:19, 6:18,                  | court [2] - 3:23.            | evening [2] - 3.2,    |
| 5:2                                         | asset(1) - 5:15                       | 15:12                              | 15:9                         | 15:9                  |
|                                             | attendance [2]                        | comments ::-                       | cows 1] - 6:21               | eventually re-        |
| 4                                           | 3.13. 3:15                            | 3:21, 5:20, 11:25,                 | crew(*) - 1414               | 11:7                  |
|                                             | attending (*; - 15.9                  | 12 1. 12.5, 12.9,                  |                              | evalved pg - 13.15    |
| 4458 n t 12                                 | attest (1; - 3:11                     | 15:7                               | D                            | example   15:4        |
| 4:30   - 1:13                               | attorney (2)                          | Commission #: -                    |                              | excellent[1] - 15.1   |
| 4.00 (1, 1.10                               | 16:11, 16:12                          | 2:2. 11:16, 11:18.                 | Dan 2 - 26, 104              | Excuse::1-8:2         |
| 7                                           | ļ                                     | 16:22                              | Daniel: 1 - 3:3              | exercise (1) - 13:5   |
| - /                                         | В                                     | Commissioner [1]                   | deadlines :1 - 4:2           | experts [1] - 13:1    |
|                                             |                                       | - 2:7                              | deat 12: - 4:21 8:7          | Expires (1) - 16:22   |
| 7:00 (2) - 1 14.                            | background p; -                       | committee  s  -                    |                              |                       |
| 5:17                                        | 13:19                                 | 3:6, 3.7, 3:10, 3:15.              | degree [1] - 13:7            | explain (1) - 12.16   |
|                                             |                                       | 9:11, 13:21, 15:2                  | destroyed (2) -              |                       |
| 8                                           | barrier o 10.10                       | Committee 4 -                      | 8:14, 8:17                   | F                     |
|                                             | beginning:::-39                       | 2 6, 3:4, 11:15, 13 3              | defailed (2) - 10:25,        |                       |
|                                             | behalf pr - 15-7                      | common [1] - 3:18                  | 11:11                        | fact::1 - 7.2         |
| 88[2] - 9:5. 11:22                          | hest [3] - 12:2.                      | communities p: -                   | determine(1)                 | factor:::-9:8         |
|                                             | 12:3, 14:14                           | 11:22                              | 12:19                        | far [1] - 11 8        |
| Α                                           | better(6) - 7/8, 7/9.                 | compliment (1) -                   | different (2) - 4:22.        | farmje: - 14 15       |
|                                             | 7:10, 7:16, 7:23                      | 14:18                              | 12.25                        | farmers 1: - 6:22     |
|                                             | big [1] - 8.24                        | concerned:1;-                      | difficult [3] - 9:22,        | farming :1 - 4:21     |
| accomplished :1; -                          | bit (2) - 9:2 10:22                   | 8:16                               | 13:9. 13:17                  |                       |
| 25                                          | błame [1] - 6:21                      | concluded 1:                       | direction (*) - 16:9         | farms (1) - 14:6      |
| achieving : 1 - 9:20                        | board (2) - 13:13,                    | 15:17                              | directly (2) - 12:6.         | fields : 1 - 14.9     |
| action (1) - 16:14                          | 14 19                                 | concluding 11-                     | 16:13                        | financially [1] -     |
| active (1) - 15:3                           | boards;:  - 4:25                      | 1:13                               | disaster (1) - 5:9           | 16:13                 |
| additional [1] -                            | bodies ;*; - 11;7                     | conclusion (*)                     | disasterous  1  -            | fine (2) - 7:13, 14:7 |
| 0.1                                         | book (1) - 12.16                      | 12:4                               | 6.23                         | first 1; - 46         |
| address (11) - 4 8.                         | Boxhorn [1] - 2:9                     | conditions 1:-                     | discouraged :1 -             | fish 2; - 7:2. 8 8    |
| 16. 5.19. 5 20,                             | brief (1) - 3:5                       | 13.5                               | 8:11                         | five ;; - 14:22       |
| 1, 7:12, 9.1, 9:16,                         | bringing [1] - 9:11                   | conducted 12                       | display (1) - 13:12          | fluctuating [1] -     |
| 0:21, 12.2, 12:5                            |                                       | 6:10 6:11                          | District (2) - 4:19.         | 12:23                 |
| addressed (1; -                             | С                                     | conservation 2:-                   | 7:17                         | FOR:1-14              |
| 18                                          | <u> </u>                              | 14:3, 14:18                        | DNR p: - 9:11                | formal(*) - 11.24     |
| addressing (*) -                            |                                       | consists:11 - 3:7                  | done:11  - 5:3,              | forth [1] - 6:14      |
| 4                                           | care (z) - 8:23, 9:3                  | contaminants o                     | 9:24, 10.2, 10.13.           | forthcoming :: -      |
| Advisory (q - 2:6,                          | carries (1) - 10:3                    | 10:18, 10:23, 10:25,               | 10:17, 10:23, 10:24,         | 1121                  |
| 3, 11:15. 13:3                              | cattle (*) - 14*7                     | 10:18, 10:23, 10:25,               | 12:18, 12:24, 13:4,          | forward (2) - 9:12,   |
| affecting [: - 8:8                          | cent :0 - 14.24                       | contamination in -                 | 14.14                        | 11:14                 |
| affiliated (1 - 4:8                         | Center (1) - 1.12                     | 8:7                                | down: - 3.21                 | four (2) - 3:12.      |
| affixed 11 - 16:16                          | certain;1; - 13:16                    |                                    | downright; - 7.5             | 15 15                 |
|                                             | certainly [3] - 5:12,                 | continue (1)                       | drinking m - 6.25            | four-year [1]         |
| afternoon in - 4:1                          |                                       |                                    |                              |                       |
| sfternoon (*; - 4; 1<br>sgency (/; - 4, 10, | 5:18, 10:12                           | 12.21<br>controlled 11-            | Drive :: - 1 12              | 15:15                 |

BROWN & JONES REPORTING, INC. 414-224-9533

PUBLIC INFORMATION MEETING, 10/23/2007

Hulsback (t) - 14(2 hurdles (t) - 11(12 | 9 12 | Korb (t) - 2/3

| 10:9. 10:14                                              | 1 1                                                  |                                   | 7.16                                     | number p; - 6:19.     |
|----------------------------------------------------------|------------------------------------------------------|-----------------------------------|------------------------------------------|-----------------------|
| funds (*) - 11.20                                        |                                                      | - L                               | Michael (*) - 2:4                        | 8:15                  |
| future [2] - 5:3                                         | ideas 11 - 7:18                                      |                                   | Michigan [5] - 4:25.                     |                       |
| 10:8, 10:15                                              |                                                      |                                   | 5:5. 5:22. 6.6. 6:20                     | 0                     |
|                                                          | imminent (1) - 11:4                                  | L-E-I-D-E-R ;*]-                  | Midwest (1 - 5:10                        | l                     |
| G                                                        | impact (1) - 10:11                                   | 4:18                              | might   \$ - 9 18,                       |                       |
|                                                          | implementation :                                     | laid : - 10:6                     | 11:23. 13.10                             | October 3j - 1:13.    |
|                                                          | - 8 22, 9 22, 9 23,                                  | lake p: - 6.24, 7.19              | Mike 6: 3:17, 4.1.                       | 16.8, 16.17           |
| Gary (1) - 2:3                                           | 9:25, 10:8, 15:5                                     | Lake [5] - 4:25, 5:5,             | 9:2. 9.4. 9:13                           | OF (3) - 3:1, 16.1,   |
| gentlemen [1]                                            | Import : 7 - 7.3                                     | 5:22, 6.6. 6:20                   | milk 1 - 14 12                           | 16.2                  |
| 15.11                                                    | improve (2: 9.13.                                    | lakes (*; - 11:6                  | MILWAUKEE 12:                            | office: ii - 16:16    |
| goals:::- 10:6                                           | 9.25                                                 | Lakes 14 - 4:24.                  |                                          | ON #1: - 1.3          |
| government                                               | improvement ::-                                      | 5:4, 5:14, 5:21                   | 1:4, 16:2                                | once 2  - 3/8         |
| 4.9                                                      | 9:20                                                 | land (2 - 14.3)                   | Milwaukee (5) -                          | one is: - 4:14.       |
|                                                          |                                                      | 14 18                             | 3:4, 7.16, 12:15,                        |                       |
| grant :- 1 - 9.9                                         | indicate ( ) - 3:8                                   |                                   | 13.22, 16:16                             | 11:12, 11:22, 13:13,  |
| grants (2) - 11:19,                                      | indicated [5]                                        | last ⊋ - 3:12, 14:6               | minerals (*) -                           | 13:24. 14:5. 15:2     |
| 11:21                                                    | 3:17. 4:1. 9:4. 9:7                                  | LEIDER [5] - 4:13.                | 12.22                                    | ones ; ij - 4:22      |
| great (#) - 4:21.                                        | 11:17                                                | 4:17. 6:7. 6:17.                  | minute <sub>(1)</sub> - 3:19             | onfine (1) - 3 24     |
| 8:7, 8 20                                                | Indirectly (1) -                                     | 13 24                             | modified 11 -                            | open (1) - 4:11       |
| Great [6] - 4:24.                                        | 16:14                                                | Leider [1] - 13:25                | 13:16                                    | overview [1] - 11.1   |
| 5:4. 5:14, 5:21                                          | INFORMATION ::                                       | level [1] - 13:19                 | moment[1] - 3:23                         | oxygen :: - 12:22     |
| GREATER (1) - 1.4                                        | - 12                                                 | levels:1: - 12 22                 |                                          | Ozaukee [3] - 4.19,   |
| greatest [1] - 5:15                                      | information (1)                                      | Lieder (* - 8:15                  | money 2; - 7.13,                         | 14:3, 14:19           |
| guys (1) - 7:21                                          | 9.9                                                  | life '21 - 5:6, 5:15              | 97                                       | 1                     |
| guystil - 7.21                                           | instructive (1) -                                    | lifeline (1) - 5.5                | month (3) - 38.                          | p                     |
|                                                          | 13:18                                                | limited tr - 6:4                  | 3:9. 7:11                                |                       |
| н                                                        |                                                      |                                   | most [1] - 6:23                          | !                     |
|                                                          | intended (2) - 5:20.                                 | list (1) - 9:9                    | MR [20] - 3:2, 4:16.                     | p.m. 3 - 1:13, 1:14.  |
| Hahn m - 2:4                                             | 9:15                                                 | listened [1] - 14:11              | 5.18, 6:9, 6:11,                         | 15:17                 |
|                                                          | intention [4] -                                      | live (*) - 5:9                    | 6.15, 7:24, 8:2, 9.1,                    |                       |
| HAHN (8) - 5:18.                                         | 11:24                                                | look 21 - 7 7. 13:12              | 9.15, 10.11, 10:20,                      | pages(1) - 89         |
| 619, 6:15, 9:15.                                         | interested                                           | looked (2) - 11.18,               | 11:8, 11:23, 12:10,                      | paper[1] - 8.15       |
| 10:11. 10:20. 11:23,                                     | 16:13                                                | 12:20                             | 12:14, 13.2, 13:20.                      | part [4] - 5:5, 6:18, |
| 13.2                                                     | interesting (1) -                                    | looking (s) - 3:14                | 15:1 15:6                                | 9 22. 13 4            |
| hand (1) - 16.16                                         | 13:5                                                 | looking it, oliv                  |                                          | parties: : - 16:12    |
| harvester [2] -                                          | invalved p: - 5 12                                   | M                                 | MS [12: - 4:13.                          | parts (4 - 4:22.      |
| 14:12, 14:13                                             | issued (1) - 9:24                                    | į IVI                             | 4:17 6:7, 6:17, 8.1,                     | 12:6                  |
| HASS (6) - 4 13,                                         |                                                      |                                   | 8:4. 10:9. 10:13.                        | pastm - 10:14         |
| 4:17. 4:18, 6:7,                                         | issuos (3) - 6:2.                                    | ma'am (2) - 7:25.                 | 11:2, 12:8, 13:24,                       | peeve:n - 6:21        |
| 6 17, 13.24                                              | 6:5, 12:7                                            | 13:23                             | 15:4                                     | People n - 7:1        |
| Hawthorner:                                              |                                                      | MANAGEMENT:                       | municipalities [1] -                     | people 4 - 4:21,      |
| 1:12                                                     | J                                                    |                                   | 9.5                                      |                       |
|                                                          |                                                      | -13                               |                                          | 5:6, 5:9, 9:10        |
| head [1] - 14.2                                          |                                                      | manure (2) - 14:8.                | N                                        | perfect   1 - 12 25   |
| hear(1) - 5:1                                            | job (2) - 14:4, 14:21                                | 14:12                             |                                          | personal (1) - 16:9   |
| hearing (1) - 11.25                                      | Joe [1] - 2:9                                        | map (1) - 7:7                     |                                          | porsonally (1) -      |
| HEARING (* - 1:3                                         | JOHN % - 8:1, 8:4,                                   | mapping 11 - 5:13                 | name (7 - 3:2, 4:6,                      | 14.21                 |
| hearings pri - 6 13                                      | 10'9, 10:13, 11:2,                                   | MARILYN 71 8:1.                   | 4:16. 4 17, 4:18. 8:3                    | pet:n - 6:21          |
| heck:11 - 5:8                                            | 12'8, 12:14 15:4                                     | 8:4. 10:9. 10:13.                 | Nature ::   - 1:11                       | phonetic 3; - 8:16,   |
| help  2 - 4 10, 9:13                                     | John (2) - 8:4,                                      | 11:2. 12:8, 15:4                  | nature : 1 - 13:11                       | 13 22, 14:2           |
| helping p: - 14:16.                                      | 12:14                                                | Marilyn :: 1 - 8:4                | near >: - 5:22, 6:6                      | phonetic):::- 8.5     |
| 14:23                                                    | jump :15 - 9 2                                       | medicine;:[-7:10                  |                                          | phrase 11 - 12.7      |
|                                                          | James 11 2 2                                         |                                   | necessary (%)                            |                       |
| herd (1) - 14:7                                          | К                                                    | meet ;1 - 10 6                    | 10.5                                     | physical : 1 - 13:11  |
| hereby (1) - 16:7                                        | r.                                                   | MEETING: 1 - 1:2                  | need p: - 6 24, 9:5                      | place (1) - 12:3      |
| hereunder [1] -                                          |                                                      | meeting (3) - 3:6,                | Newburg (1) - 1 12                       | plan (13; + 5.20;     |
| 16:15                                                    | kept (:) - 8 8                                       | 3 18, 16 8                        | next [a] - 6:14.                         | 5:25: 6.4: 6:10,      |
|                                                          |                                                      | meetings  2  -                    | 6:15, 7:15                               | 8:12, 9:15, 9.24,     |
| highly [2; - 3 16.                                       | Kids (1) - 7:1                                       | 3:12, 3.14                        | nine p - 9 5, 11:22                      | 11 13, 11;14, 11:21,  |
| highly [2], - 3 16.<br>13:16                             |                                                      |                                   | north;1-4:23                             | 12 2 12 4 12 6        |
| 13:16                                                    | kind (3, - 9.16,                                     | member:vi -                       |                                          |                       |
| 13:16<br>history (1) - 3:5                               | kind (3, - 9.16,<br>11:1, 13:18                      | member;# -                        |                                          | Plants: 11 15         |
| 13:16<br>history (ij = 3:5<br>hopeful (z) = 9:3.         | kind (3, - 9.16,                                     | 12 15, 13 21                      | not-point (g - 10:2                      | Plan (2) - 11 15,     |
| 13:16<br>history (1) = 3:5<br>hopeful (2) = 9:3.<br>9:12 | kind (3, - 9.16,<br>11:1, 13:18                      | 12 15, 13 21<br>members at - 3.7. | not-point (1 - 10:2<br>Notary (2 - 1:10. | 11.17                 |
| 13:16<br>history (ij = 3:5<br>hopeful (z) = 9:3.         | kind (1), - 9.16,<br>11:1, 13:18<br>kinds (1) - 13:6 | 12 15, 13 21                      | not-point (g - 10:2                      |                       |

BROWN & JONES REPORTING, INC. 414-224-9533

| planning  z - 5.24,<br>3:20 | R                             | rural (9) - 4 21,<br>4:22 | specifics(*) - 11:9<br>spring(*) - 6:14 | toward p; - 12.6<br>townships (c) |
|-----------------------------|-------------------------------|---------------------------|-----------------------------------------|-----------------------------------|
| Planning [2] - 2/2.         |                               |                           | SS(1) - 16:1                            | 4:22                              |
| 2:3                         | raised (1) - 13 3             | <b>\$</b>                 | stand :: - 4.7                          | TRANSCRIPT [1] -                  |
| plus :   - 14:24            | ran (* - 14 13                |                           | start 2: - 6:12.                        | : 31                              |
| point (7: - 4.12.           | raw [4] - 6:26, 6:23.         |                           | 10.18                                   | tremendously                      |
| 3:13. 9:19, 10:1            | : 7:5. 7:19                   | sat (1) - 4:24            | state 4 - 3 22, 4.6.                    | 4:11                              |
| 10:2. 13 2. 15:15           | read (5) - 8.1, 8:5,          | scenario (i)              | 4:10. 4:16                              | try (6: - 9:1, 10:21,             |
| political v - 7:20          | 8:9, 8,10, 11:2               | 12:25                     | STATE : - 16:1                          | 12:11, 12:16, 13:6,               |
|                             | really (c) - 8 18.            | SCHMIDT 11                | Stateses 1:11.                          | 15.11                             |
| portion (3) - 3.18,         | 8:24, 13:9, 14:22,            | 3:2. 4:16. 6 11.          |                                         |                                   |
| 1:5, 11.25                  | 3:24, 13:9, 14:22,<br>; 14:23 | 7:24, 8:2, 9:1, 11 8.     | 8:2 16.7, 16:20                         | trying (6) - 4:2.                 |
| positive [1] - 1411         |                               | 12:10. 13:20, 15:1.       | stay (i) - 15:10                        | 7:17, 9:9, 11,10                  |
| pre (I) - 12:19             | reason (9 - 7:11              | 15.6                      | stenographer(*)-                        | 12:18, 14:20                      |
| pre-settlement [1]          | receive (t) - 12.1            |                           | 15:10                                   | turn (1) - 13 9                   |
| 12 19                       | recommendation                | Schmidt 7: - 2:6.         | STEWART (2) - 1:9,                      | two [3; - 3.13, 6:3,              |
| presented                   | Sizi - 9:6, 11:19             | 3.3                       | 16.5                                    | 6:19                              |
| 10.24                       | recommended ::: -             | screen (1) - 7.8          | still n; - 15:13                        | two-thirds 1'-                    |
|                             | 11:13:11:14                   | seat :: - 16.16           |                                         | 3.13                              |
| primarily ::: - 6:4         | record::: 15:13               | season :2 - 12:23         | storage 🖂 - 14:8.                       |                                   |
| Principal [1] - 2.8         |                               | second 1; - 4:18          | 14:12                                   | type (3) - 3 15.                  |
| Printz (1) - 2.8            | recorded [1] - 16:8           | section 11 - 12/4         | stream;: - 13:15                        | 5:11, 5:13                        |
| private p - 4 9             | reduced [1] - 16 9            |                           | streams (2) - 11:6,                     | -                                 |
| privately ::                | regarding (1) - 4:3           | see [3] - 7.18, 8:21,     | 14.10                                   | U                                 |
| 15:12, 15:13                | regional (2) - 5:25.          | 12:19                     | streets; 6.6                            |                                   |
|                             | 6.9                           | selling (1) - 5:8         | strict 2 - 4.2.                         | İ                                 |
| problems (2) -              | REGIONAL:11-                  | send 1st - 12.8           |                                         | under: : - 16:9                   |
| 3 23. 9:16                  |                               | Senior pr - 2 10          | 12:12                                   | unincorporated:                   |
| Proceedings (2) -           | 1:3                           | sense (2) - 8:6.          | strong (*) - 9:8                        | - 4:20                            |
| 1.9. 15:17                  | Regional (3) - 2:2.           | 11:3                      | study (2, - 6:8, 13:5                   | unit::1 - 4:9                     |
| PROCEEDINGS :11             | 2:3, 11:15                    |                           | subject [2] - 6:19.                     |                                   |
| 3.1                         | Registered (2 -               | separate (1) - 5 24       | 10:15                                   | up [5] - 4:7, 4:11.               |
| process (2) -               | 1:10, 16:5                    | serious (1) - 10.15       | submit(:) - 3:24                        | 7.17. 9:19. 10.5                  |
| 3:10, 15:15                 | relates (1) - 5 21            | set (1) - 16:15           | summarize n                             | UPDATE ::   - 1:3                 |
|                             | retative p; - 16:11           | settlement : -            |                                         | upset [2] - 8:18.                 |
| Professional [2] -          | 16:12                         | 12:19                     | 11:10                                   | 8 19                              |
| 1:10. 16:6                  |                               | sewage (4) - 6:20,        | summary [1] - 12:4                      | usage[1] - 5:11                   |
| protect (2) - 5:4.          | report ;4 8:6.                |                           | Supervisor (*) -                        | usuge; q - 3.11                   |
| .19                         | 10:22, 10:25, 11 10           | 6:23, 7:6, 7:19           | 4:19                                    | 1,                                |
| PUBLIC: 1:2                 | reporter (1) - 3.23           | Sewer (*) - 7 16          | supply (2) - 5.25,                      | V                                 |
| public is: - 3:18.          | Reporter pt - 1.10.           | SEWRPC (3) - 2:7.         | 6:10                                    |                                   |
|                             | 16.6                          | 3:25, 5:10                |                                         |                                   |
| 4, 4:9, 4.11, 6.13.         |                               | SEWRPC's III -            | support (1) - 9:6                       | viRages [1] - 4:20                |
| 11:25                       | reporting (*) - 8:21          | 15:8                      | surveys (* - 5:13                       |                                   |
| Public (3) - 1:10,          | represent [2] -               |                           | swim (2) - 7:1                          | W                                 |
| 6:6, 16:19                  | 13:6, 13:8                    | shame (2) - 7'4, 7.5      | system:1, - 13 15                       |                                   |
| publicly :11 - 3:22         | representing [1] -            | sheet (1) - 3.20          |                                         |                                   |
| purposes   - 6:25           | 4:25                          | shore p: - 5:22.          | T                                       | wants (q - 4:14                   |
| pursuing (1) - 10:8         | reproduce (* ·                | 6:6                       |                                         | Washers II - 8:5                  |
|                             | 13:17                         | short (:: - 10:21         |                                         | waste (** - 14:13                 |
| pushing [2] - 14.6,         | rest[::-8:18                  | show: 1 - 8:24            | table   1; - 12 13                      | WATER::-13                        |
| 4:8                         |                               | shows m - 13.14           | Technical 11 - 26                       |                                   |
| put 6: 3'21. 6:24.          | river (1) - 12:19             |                           |                                         | water  1:3  - 5:2,                |
| 9. 11:14, 14:9.             | River :1 - 3:4                | sign (1) - 3.20           | ten (1) - 14:6                          | 5.6, 5:8, 5:11, 5:25,             |
| 4.11                        | Riveredge (1) -               | sit (1 - 7:7              | terms (3) - 5:23,                       | 6:5. 6:9. 6:24. 8.7.              |
|                             | 1:11                          | situation p; - 9:13       | 9:24. 13:9                              | 9:20, 9:25, 10:18                 |
| Q                           | Riveredge's ; * -             | small(:): - 11:11         | THE (6) - 1.4                           | Watershed **: - 3.4               |
| u                           | 13:14                         | smoke (1) - 7:4           | third (s) - 4:18                        | WATERSHEDS                        |
|                             |                               | someone (4 - 7:25         | thirds (5 - 3:13                        | - 1:4                             |
| quality (6: - 5:2.          | Rivers (2) - 12 15.           |                           |                                         |                                   |
| 21, 6:5, 9:21, 9:25         | 13:22                         | sometime (t) -            | three[1] - 4:22                         | Watertech (1: - 8:5               |
|                             | roadmap = ; - 10 6            | 6:15                      | throughout n -                          | web;::-8:6                        |
| QUALITY() - 1:3             | Ron   17 - 2.8                | somewhere [1] -           | 8:9                                     | West (i) - 1:12                   |
| quantity (r - 5 23          | room(1) - 13:14               | 52                        | TIMOTHY 11                              | wetlands pg - 8:14                |
| questions :: -              | ROSE (9) - 4:13.              | sources (2" - 10 1,       | 12:14                                   | 8:17, 10:16                       |
| 5:11                        | 4.17, 6:7, 6:17,              | 10.2                      | Timothy ::   - 12:14                    | whereofy   - 16 15                |
| quite;+; - 9:18             |                               | Southeastern;:-           | tomorrow(2 - 4:1.                       |                                   |
| dereglii. 9:10              | 13:24                         |                           |                                         | whole [1] - 10:22                 |
|                             | Rose (4) - 4:17,              | 2.2                       | 12:12                                   | winding (: ; - 6.13               |
|                             | 7.24, 9:7, 13.25              | speaks (1) - 3:16         | tonight(1) - 5:1                        | winter: 14 10                     |
|                             |                               | specific (1) - 12.6       | took :1: - 14:12                        | Wisconsin (6' -                   |

BROWN & JONES REPORTING, INC. 414-224-9533

PUBLIC INFORMATION MEETING, 10/23/2007

year [q - 6 15. 7:15, 15:15 years [q - 3 13, 4:24, 6 20, 7:5. 14:6, 14:22

BROWN & JONES REPORTING, INC. 414-224-9533









October 24, 2007

Mike Hahn Chief Environmental Engineer SEWRPC W239 N1812 Rockwood Drive P.O. Box 1607 Waukesha, WI 53187-1607

Dear Mike.

On behalf of Friends of Milwaukee's Rivers (FMR) and our partners at the Sierra Club Great Waters Group, the Milwaukee County Conservation Coalition, and the Natural Resources Defense Council, thank you for the opportunity to comment on the findings and recommendations in the Southeastern Wisconsin Regional Planning Commission's (SEWRPC) Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds (Plan). This Plan includes recommendations pertaining to land use, surface water quality and groundwater quality in the Greater Milwaukee Watersheds and nearshore areas of Lake Michigan. This Plan was prepared in partnership with the Milwaukee Metropolitan Sewerage District's (MMSD) 2020 Facilities Plan, which identifies the facilities, programs, operational improvements, and policies (PPOPs) required by the year 2020 to meet the existing regulatory framework and permitting requirements in the State of Wisconsin.

FMR appreciates the opportunity to serve on SEWRPC's Technical Advisory Committee, and we submit the following comments in a spirit of cooperation to ensure that SEWRPC's Regional Water Quality Management Plan protects our water quality, wildlife habitat, public health, and quality of his to the greatest extent possible.

Comment: The proposed 5-Year Level of Protection for Sanitary Sewer Overflows (SSOs) is illegal under Federal and State law. MMSD (and other treatment plants) must eliminate SSOs and address both point and non-point sources of pollution affecting our waterways.

As stated in Plan documents for both the MMSD 2020 Facilities Plan as well as the SEWRPC Plan, MMSD is setting forth ongoing investments and facilities improvements to be made in order to provide a 5-year target level of protection (LOP) for sanitary sewer overflows (SSO) and "adequate freatmen" under the projected 2020 population and land use conditions. This essentially states that sanitary sewer overflows of sewage will continue to occur and can not be eliminated in the next 20 years, nor will striving for this be a goal of this water quality plan. Sanitary sewer overflows are clearly illegal under the Clean Water Act and prohibited under State permits designed to protect our public health and environment. Planning for SSOs as part of the MMSD Facilities Plan and related Regional Water Quality Plan is unacceptable. While we acknowledge that there may be special extreme weather conditions that cause SSOs, we agree

with recent US FPA guidance that prohibits affirmative defenses for dumping sewage, instead giving our State and Federal regulatory agencies appropriate enforcement discretion to deal with these special circumstances. Furthermore, the law exists to create a "level" playing field, and we are concerned about the regional and statewide precedence of illegalty allowing MMSD to have a 5-year level of protection. This is also not fair to the other treatment plants in southeastern with the flaw and making the necessary expenditures to keep their sewerage systems well maintained.

Comment: Cost effectiveness can be used to prioritize future actions but not to justify continuing pollution of our waterways.

Although we realize that eliminating SSOs is a costly endeavor, the Clean Water Act does not allow for overflows in the name of cost effectiveness, and zero overflows need to remain the goal. While we agree that costs should be factored in when prioritizing future actions, cost cannot be used as an excuse to continue to violate the law and pollute our waterways. Citizens should not have to choose between safe and clean drinking water and adequate sewage treatment or between having sewage in our basements and sewage in our rivers. These are false choices.

Comment: We encourage SEWRPC to set more concrete water quality goals, which allow agencies and organizations to focus time and attention on addressing specific problems, as well as ensure that we all remember the ultimate goal of improving water quality.

As currently written, the ultimate goal of the SEWRPC Plan is to develop a watershed based plan that addresses water pollution sources cost-effectively and meets designated water use objectives and water quality standards to the degree possible. This is vague and uninspiring. Establishing more outcome focused or performance driven goals (e.g. Milwaukee River swimmable by 2010), provides some context for where agencies should focus their efforts, and performance based goals also better resonate with the public as they are clear and easy to understand. Such goals would also give us a way to continually communicate our progress and be a stronger motivator for action.

Comment: The SEWRPC Regional Water Quality Plan (208 Plan), must comply with Clean Water Act fishable and swimmable goals, and address antidegradation requirements regardless of cost-effectiveness.

The Regional Water Quality Plan does address both watercourse and habitat components, which along with physical/chemical water quality and compliance with discharge permits collectively influence the quality of our surface waters. However, given the vaguences of the Plan and the lack of concrete objectives for water quality improvements, as mentioned above, it seems doubtful that this Plan will adequately address fishable/swimmable goals and antidegradation requirements (e.g. backsliding or deteriorating water quality is prohibited under the law) under the Clean Water Act. There are no concrete goals, objectives, or timelines for ensuring that our waterways don't further degrade nor improve to meet fishable/swimmable goals. Last week, the Clean Water Act turned 35 years old, and we are still far from fishable/swimmable waters.

The waters of the Milwaukee River Basin have not been protected as envisioned under the Clean Water Act, and decisions have been made over the years by the regulatory agencies such that the goal requirements of the Clean Water Act have not been met. Although many of those decisions were logical and sound at the point in time they were made, we are left with rivers that do no

meet fishable/swimmable requirements and current water quality standards that do not protect fishable/swimmable uses as they should. In addition, many of our local waterways have "variance" standards, which provide them with much lower levels of protection than baseline State water quality standards. This is in stark contrast to all our available data that shows the waters of the Milwaukee River Basin are being increasingly used for all forms of recreation: fishing, canoeing, kayaking, sculling, and in some areas, wading, swimming, and water sking,

We will never meet fishable/swimmable standards without looking comprehensively at both point source and non-point source controls, as well as a mix of "soft" or "green" approaches and "grey" or "infrastructural" approaches. The SEWRPC Plan has made a good effort to identify both point and non-point source solutions; however, acknowledging that there is currently little funding to deal with many of these problems. Coupled with lack of clear goals, it seems that there are little incentives or disincentives to push us away from the status quo. In order to manage both non-point and point source controls to meet fishable/swimmable standards, we will need to increase sources of funding and find more innovative solutions to improving water quality. We realize that this is politically unpopular: however, pretending that we can improve water quality by shifting money from infrastructural projects to non-point demonstration projects without raising additional funding levels is unrealistic. Again, we cannot practice an "either/or" approach to pollution (e.g. spend all our money on non-point pollution to get more "bang for our buck") and expect to meet fishable/swimmable standards throughout both our rural and urban waterways. We must strive to meet general use recreational standards in all of our waterways, and work to upgrade our stream health and not continue to meet only variance standards. This will require creative funding and policy mechanisms, which have not been identified or recommended in the Plan.

We understand that MMSD has been talking about watershed permitting, watershed trading, and other mechanisms, which could improve water quality. Given the role of SEWRPC in planning for regional water quality, it would seem appropriate that SEWRPC analyze existing models in use throughout the country and make some solid recommendations of crucial policy and technical components that should be part of these types of efforts.

Comment: Holding the line on inflow and infiltration (I/I) is not enough. We must go after I/I more aggressively and achieve reductions.

Preventing increases in infiltration and inflow (I/I) of our sewerage infrastructure (e.g. leaky pipes, manholes, etc.) is of the utmost importance in dealing with our regional sewer capacity issues. We encourage future efforts to allocate funds for illicit discharge detection and elimination, detection of cross-connections and human feeal contamination of stormwater (e.g. Great Lakes Mater Institute work on F. backeroider monitoring, etc.), as well as implementing new technologies to seal up cracks and leaks in our sewers through the use of "liners" and other new practices. However, we hope that MMSD and other municipalities could move beyond "holding the line" on I/I and move to decreasing I/I through increased regulations, incentives, and enforcement actions. MMSD's 2010 Facilities Plan called for a 5% decrease in I/I, and the goal for I/I reductions for the 2020 Plan and SEWRPC Plan should be even more stringent. Given the probability of increasingly vlotalite storms with global warning, we need to do much more than "hold the line" on I/I if we hope to have enough existing sewer capacity to deal with wet-weather events.

3

Comment: While we support increasing secondary capacity at South Shore Treatment Plant, sewage blending is unacceptable.

We encourage additional secondary treatment capacity at both Jones Island and South Shore Treatment Plants to eliminate the need for sewage blonding. Blending or diversion around any stage of sewage treatment presents a threat to human health. We understand that when MMSD "blends" sewage at Jones Island that they are in compliance with their State WPDES permit; however, this permit does not have standards for parasites, viruses, and other bacteria that can make people sick. At present, blending is not allowed at South Shore Treatment Plant and we would be against any permit modifications allowing this to occur. We hope that the physical chemical treatment pilot project currently being proposed is successful. However if it is not successful, we do not agree that the next option should be blending based on cost-effectiveness

Comment: We do not support the efforts of MMSD and customer communities to obtain regulatory recognition of the integrated nature of the MMSD system.

We understand that the effort by MMSD and some customer communities to obtain regulatory recognition of the integrated nature of the MMSD system by EFA is to ultimately lead to possible climination of the distinction between tunnel-related SSOs and CSOs. This effort fails to recognize the very different nature of SSOs and CSOs, as well the fact that SSOs are illegal under existing federal law, and it is very unlikely that the Clean Water Act would be changed for southeastern Wisconsin. If during rain events, the physical-chemical constituent elements of SSOs and CSOs is similar as suggested by local consultants, than that just stresses the very dire state of our current infrastructure. allowing excessive inflow and infiltration into our separate sewer system, and likewise the need to address this I/I.

On a related note, there has been extensive emphasis on focusing on feeal coliform as a parameter of concern in both the SERWPC and MMSD Plans and models, as well as graphs created showing that feeal is mostly coming now from non-point and not point sources. These graphs are meant to illustrate that we are much better off spending our "next dollar" on non-point sources of pollution instead of point sources of pollution. However, this focus on feeal coliform and interpretation of the data is in many ways disingenuous and completely off target. While we realize that non-point pollution is a significant source of pollution, we can not fail to recognize several things. First, that feeal coliform as an overall parameter of water quality and public health is not ideal. It is ubiquitous in the environment, and not normally indicative of human health risk. For this reason, EPA has been mandated to come up with a new parameter for measuring beach health, and researchers such as Sandra McClellan (with support by MMSD) have been researching better bacterial indicators that are more indicative of human health risk. Second, just focusing on feeal coliform and the predominant non-point sources of this bacteria do not address the fact that SSOs and CSOs, while a smaller piece of the "pie" as far as sources, contribute other bacteria, viruses, and parasites that make people sick. Furthermore, much of the feeal coliform and pollution in the "non-point" urban and rural stormwater is likely coming from failing sewerage infrastructure in the urban areas, and failing septic in the rural areas, so is not without human influence. It seems clear that spending more money on typical non-point BMP projects, while sorely needed, will not address our bacterial loads if we fail to deal with these so-called "nonpoint" sources that are really point sources of pollution. This approach will also not

### Comment: We support watercourse improvements to improve physical-chemical water quality as well as fishable/swimmable goals.

Although some people don't feel that the costs of watercourse improvements such as concrete channel removal and dam removal warrant the minimal improvements in water quality, we disagree. Removal of concrete channel and other related stream restoration projects to naturalize our urban streams, improves water temperature and water quality, provides resting places and habitat for fish, and makes our streams less dangerous to adjacent communities especially during flooding events. We support funding for watercourse improvements identified in the SFWRPC plan, as well as recommendations on eliminating barriers to fish migration where possible such as dams, perched culverts, etc.

#### Comment: We support collaborative efforts to implement solutions to non-point runoff and other sources of pollution as identified in SEWRPC's Regional Water Quality Manazement Plan.

We encourage SEWRPC and MMSD to continue to work collaboratively with the community toward establishing a region-wide commission (e.g. Milwaukee Regional Partnership Initiative) to help plan and implement solutions for non-point runoff and other sources of pollution that affect water quality and quantity in southeastern Wisconsin's watersheds. However, we encourage these agencies to meaningfully involve the public at early stages of subsequent planning efforts, whether it be more specific sub-watershed plans restead as a follow-up to the current planning effort or a TMDL planning process. Moving forward, it is recommended that the public be allowed the opportunity to review how the models are set up, specifically data (both depth and breadth) that are being used as inputs to these models, data gaps, model assumptions, etc. We would also recommend external peer review of these new modeling efforts to ensure that we are doing everything we can to protect our surface waters and capitalize on successes and learning experiences of others.

Comment: We encourage SEWRPC to come up with more concrete recommendations on how to more aggressively deal with illicit discharges to our waterways, as well as how to deal with problem outfalls discharging into our waterways where illicit discharges can not be detected. These may include end of the pipe treatment systems and other emerging technologies.

Although many municipalities are understandably concerned about the costs of such stomwater treatment technologies, we feel that it is appropriate to conduct research and/or implement demonstration project(s) locally that could help determine the effectiveness of end of the pipe treatment systems, which have been very successful in other communities with failing infrastructure where illicit connections or infrastructure problems can not be detected due to the large drainage areas connected to these pipes. Our extremely high bacteria levels in many of our urban streams, coupled with low funding levels for detecting illicit discharges, warrant more examination of these technologies.

Comment: SERWPC has provided solid evidence that orthophosphate, which was added to the water treatment systems of many area communities in the late 90s as an anti-corrosion inhibitor for drinking water pipes, is causing demonstrable spikes in phosphorus in many of our area rivers. We stand by SEWRPC's recommendation that municipalities

5

using this inhibitor look for alternatives to orthophosphate that still protect our drinking water supply as well as minimize nutrient pollution of our rivers and Lake.

Increasing levels of phosphorus from a variety of sources, including fertilizer use and anticorrosion inhibitors (added to limit leaching of lead from pipes into drinking water), are likely
contributing to algal blooms of Cladophora affecting our beaches. These blooms are being
exacerbated by zebra mussels, which are contributing to increased clarity of the water and
cycling of nutrients, which create conditions for this algal growth. Even though orthophosphate
is not the greatest source of phosphorus to our rivers, we need to look at easy ways and "quick
wins" to reduce nutrients in our rivers, as well as legislative and policy avenues, which could
include phosphorus bans in fertilizers, dishwashing and laundry detergents, etc.

### Comment: We support the proposed protection of both Primary Environmental Corridors and Agricultural Buffers as proposed in the land use element of the Plan.

Given the large component that non-point runoff from both urban stormwater and agriculture play in polluting our waterways, it is appropriate to recommend the protection of our riparian corridors in the Plan. Furthermore, it is appropriate that agricultural buffers be at least 75 feet wide, which is consistent with both State Shoreland Development Rules (NR115) as well as scientific consensus on the buffer width needed to adequately protect our waterways. We would encourage SERWPC to prioritize where these buffers should be created, if possible, based on information from our models and taking in consideration crodibility of area soils, slope of riparian areas, land use, etc. This would be a great tool for area land trusts and agencies that acquire land in the area—and could target properties whose conservation would be most protective of water quality.

### Comment: We support SEWRPC recommendations to create town utility districts to deal with inspection, and possibly repair, of private onsite treatment systems or septic systems.

Given lack of funding for inspection of private onsite treatment systems throughout Wisconsin and the high probability that many of these systems within the area are old and potentially failing, it is prudent that towns and municipalities with residential septic systems create a mechanism, similar to stormwater utility districts that are being employed throughout the area (e.g. Milwaukee, Elm Grove, etc.), to provide a source of funding for inspection, and perhaps maintenance, of septic systems. Given the high bacterial levels in our local rivers, we must do a better job of identifying and eliminating bacteria both in our urban areas (with more illicit discharge detection) and in many rural areas (with control of septic releases and agricultural ruro.)

### Comment: We urge SEWRPC to recommend state regulations and local ordinances to more effectively deal with both urban and rural non-point pollution.

We support SEWRPC's efforts to recommend the reduction of fertilizer use and road salt that impair our local waterways with nutrients and chloride respectively, as well as their efforts to promote best management practices to limit land use practices that cause runoff that pollutes our waterways. SEWRPC did recommend ordinance changes in areas where runoff is currently affecting inland lakes, although stopped short of advocating for a phosphorus ban in all fertilizers. We would encourage SEWRPC to readdress these recommendations and recommend that all municipalities, with discharges to either our inland lakes or rivers, consider ordinances

banning phosphorus from fertilizers, as well as encourage the use of road salt alternatives, which are friendlier to our waterways

Likewise, we support SEWRPC recommendations relating to fuller implementation of NR 151 runoff rules, manure and nutrient management, controls on barnyard runoff, managing milking center wastewater, and restricting livestock access to streams. We would recommend that SEWRPC recommend state rules or country ordinances to restrict livestock access to streams, as there are currently no rules to deal with this situation. We have had problem farmers in the past brought to our attention, and if the counties do not provide cost-share funding or don't think these farms are a priority given their limited funding levels, farmers are unwilling to restrict access to streams of their livestock. Not only do these livestock and their waste add to our significant bacterial loads in our rivers, they also cause extensive disturbance of the streambanks and riparian habitat, contributing sedimentation to our waterways.

### Comment: SEWRPC should propose more specific management measures and monitoring to deal with emerging pollutants of pharmaccuticals and personal care products if possible.

While the Plan does address these emerging pollutants in a general sense as well as provides the limited information that we do have on detection and levels of some of these products in our waterways, it falls short of offering recommendations to deal with these emerging pollutants, other than the recommendation to conduct pharmaceutical and personal care product collection programs. There is already considerable science showing the effects these pollutants are having on aquatic organisms that are exposed to a spectrum of substances that persist in treated effluent from sewage facilities. Given that IPA estimates that sewage treatment only removes roughly 60% of pharmaceuticals and personal care products, while acknowledging that treatment can span the spectrum of complete treatment for some substances to nonexistent for others, we would urge SIEWRPC to make recommendations for sewage treatment facilities on how to more effectively address these contaminants, where possible. Likewise, these substances are also showing up in some of our area groundwater, presumably coming from leaky septic systems and sludge spread on the land (both from sewage treatment plants and livestock waste). We understand that little is known on this subject, but would recommend that SEWRPC make recommendations where possible. We also advocate for increased monitoring for substances of particular concern, both in our surface waters as well as effluent of our treatment plants and influent waters for our drinking water facilities.

#### Comment: We support SEWRPC recommendations to more aggressively identify and address local sources of beach contamination.

Given recent monitoring information that much of our beach contamination comes from local sources and stormwater runoff, it is prudent to recommend more comprehensive monitoring to identify and address sources of beach contamination, especially of bacteria. If local municipalities can not find the sources of bacterial contamination, they should ensure that these beaches are closed when they are not safe for the public to use. While many local beaches in Milwaukee are monitored extensively, there are many others that are only monitored weekly or less along the lakeshore, and residents should know that these beaches are not being monitored or frequency of monitoring through signage or another means so they can make their own decisions about beach use. Furthermore, if bacteria sources can not be found, municipalities

7

should be urged to provide end of the pipe stormwater treatment systems and stormdrain filters that would remove considerable amounts of bacteria before it can contaminate local beaches.

### Comment: Upgrade citizen based monitoring programs and continue to support existing monitoring by agencies and expand monitoring efforts into local tributaries.

We support the SEWRPC recommendation to continue existing MMSD, WDNR, and USGS monitoring programs, and to continue to upgrade citizen based monitoring programs. These programs, besides providing useful data, connect local residents to their water resources and educate them about their personal impacts on water quality. We also support efforts to modify or expand existing monitoring programs to include more extensive monitoring on our area tributaries, as well as to add fishery and macroinvertebrate monitoring stations along our waterways. These are also programs where citizens could provide much needed monitoring support. The paucity of fishery and macroinvertebrate data for many of our waterways was surprising, and increasing monitoring of these organisms is especially important as we monitor our progress towards fishable and swimmable waters and implement this Plan.

Thank you for your consideration of these comments. Please feel free to call with any questions at (414) 287-0207 ext. 29.

Sincerely,

Cheryl Nenn Milwaukee Riverkeeper Friends of Milwaukee's Rivers

Rosemary Webnes Midwest Representative Sierra Club Great Waters Group

Peter McKeever Chair Milwaukee County Conservation Coalition

Ann Alexander Senior Attorney Natural Resources Defense Council

6

#### WRITTEN COMMENT

PUBLIC INFORMATION MEETING AND PUBLIC HEARING

REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

October 16, 2007 Downtown Transit Center, Harbor Lights Room 909 E. Michigan Street Milwaukee, Wisconsin

| Name Ur         | lian Corres                                                                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | oncerned Citizen                                                                                                                                                                            |
| Mailing Address | 1707 N Prospect Ave #83<br>Milw 52202-1909                                                                                                                                                  |
| Comment         | T support the comments of FRIENDS OF MILWAUKEE'S RIVERS!                                                                                                                                    |
|                 | To participated in a training for seniors this summer organized by For the Even there are few there are few of us here trainight, be as sived that there are many of us who support for use |

Add sheets as needed and leave at the registration table or give to a SEWRPC staff member. Or, send following the meeting to the Southeastern Wisconsin Regional Planning Commission.

Southeastern Wisconsin Regional Planning Commission W239 N1812 Rockwood Drive - D.O. Box 1607 Waukesha, Wisconsin 53187-1607 Phone: 262-547-6721 Fax: 262-547-1103

Regional Water Quality Management Plan E-mail:mbahn@sewrpc.org www.sewrpc.org

#### WRITTEN COMMENT

PUBLIC INFORMATION MEETING AND PUBLIC HEARING

REGIGNAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

October 16, 2007
Downtown Transit Center, Harbor Lights Room
909 E. Michigan Street

| Milwankee, Wisconsin

Name Cregary F. Bird

Affiliation GHZM

Mailing Address 2220 S. Woodkhop ST. Mangarate, W153207

gtbirdewi.vr.com

Comment - evapored ACC opto an tive next as his because of party next who hap a gracine was beautiful next as the superior of male and of gracine of a party of a par

Southeastern Wisconsin Regional Planning Commission W239 N1812 Rockwood Drive P.O. Box 1607 Waukesha, Wisconsin 53187-1607 Phone: 262-547-6721 Fax: 262-547-1103

Regional Water Quality Management Plan E-mail:mbabn@sewrpc.org www.sewrpc.org

#### WRITTEN COMMENT

#### PUBLIC INFORMATION MEETING AND PUBLIC HEARING

### REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

October 16, 2007 Downtown Transit Center, Harbor Lights Room 909 E. Michigan Street Milwaukee, Wisconsin

| Name Cop       | Total Town                                                                                     |
|----------------|------------------------------------------------------------------------------------------------|
| Affiliation    | 'y Cronfied                                                                                    |
| Mailing Addres | s 7925 W. Fores North<br>Copposition (N.E. 5522)                                               |
| Comment        | THE DOS THOMBS SHOWS SE COMSTROCKS                                                             |
|                | TO THE CONTROLS OF THE WAR TO THE WAR THE                  |
|                | HURSDICTION OF THESE TRICLIPACES TO LOVE PROBLEMS SHOWN BE EXTENSIONED ALLOWS, THE COMMUNITIES |
|                | 77187 TOD 1912 THE THE 120 25.75                                                               |
|                |                                                                                                |
|                |                                                                                                |
|                |                                                                                                |

Add sheets as needed and leave at the registration table or give to a SEWRPC staff member. Or, send following the meeting to the Southeastern Wisconsin Regional Planning Commission.

Southeastern Wisconsin Regional Planning Commission W239 N1812 Rockwood Drive P.O. Box 1607 Waukesha, Wisconsin 53187-1607 Phone: 262-547-6721 Fax: 262-547-1103

Regional Water Quality Management Plan E-mail:mbahn@sewrpc.org www.sewrpc.org

Oct 24 07 04:25p Al Runquist

414-967-9240

p.

.

(1)

#### WRITTEN COMMENT

#### PUBLIC INFORMATION MEETING AND PUBLIC HEARING

REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

October 16, 2007 Downtown Transit Center, Harbor Lights Room 909 E. Michigan Street Milwaukee, Wisconsin

| Name Dr. Jennifer A. Runquist                                                                 |
|-----------------------------------------------------------------------------------------------|
| Affiliation League of Women Voters Milwankee County                                           |
| Mailing Address 3002 E. Kenwood Blvd.                                                         |
| Milwankee WI 537.11                                                                           |
| 414. 332-5067/ arunquist @ ameritach. net                                                     |
| Comment                                                                                       |
| See page 2                                                                                    |
| I was a member of the CAC 2005-200. Attended Oct le Public Meeting at Dewnton Transit Center. |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |

Add sheets as needed and leave at the registration table or give to a SEWRPC staff member. Or, send following the meeting to the Southeastern Wisconsin Regional Planning Commission.

Southeastern Wisconsin Regional Planning Commission W239 N1812 Rockwood Drive P.O. Box. 5607 Wauksaha, Wisconsin 53187-1607 Phone: 262-547-6721 Fax: 252-547-1103

Regional Water Quality Management Plan E-mail:mhahn@sewrpc.org www.sewrpc.org Oct 24 07 04:25p Al Runquist 414-967-9240 p.2

#### (2)

#### Public Comment from the League of Women Voters Milwaukee County

- The Regional Water Quality Management Plan Update is a good structure for coordinating community efforts towards improving water quality using the Watershed Approach. Importantly MMSD and SEWRPC have developed much data so that efforts can be targeted towards real pollution sources.
- 2. It is unfortunate to allow CSOs or SSOs into our drinking water and recreational waters. The League of Women Voters of Wisconsin was active in state implementation of the federally mandated Safe Drinking water amendments of 1986 and 1996 to clean up WT's waters sufficiently to reach the federally mandated "swimmable, fishable waters" standard. We think that I/I should be aggressively reduced. Lets not just "hold the line" on I/D but reduce it. Service communities need to do their part in reducing excess rainwater coming into the sewerage collection systems of that sewerage systems handle sewerage, not rainwater and, hopefully, CSOs and SSOs can be eliminated.
- Communities need to be responsible for eliminating Illicit Discharges (human sewerage) into the storm water system which drains into rivers and Lake Michigan. We commend the effort, which allows us to distinguish between human waste and other waste in our storm water management system.
- 4. State funding is not adequate for inspections and grants to abate water pollution due to agricultural practices or urban runoff. In 2003 the League Women Voters of WI determined that the dedicated revenue sources for water quality programs were insufficient and proposed that new or reallocated funds should be combined with General Purpose Revenues to meet WI's needs for management of its water resources.
- Monitoring for viruses and parasites in streams and lakes should be required, not just for E. coli, oxygen, phosphorus, etc., although these parameters are also important indicators of water quality.
- 6. We have concerns about sewerage blending, which means disinfecting sewerage faster than normal way with perhaps chlorine. in the slower digestion method followed by drying, all biological entities are removed whether we test for them or not. Faster methods may not destroy all pathogens present. Further, in the case of chlorine, which evidently is subsequently removed, are other molecules chlorinated and then discharged with the water?

(This page intentionally left blank)

### Appendix X

# PRESENTATION FOR PUBLIC INFORMATION MEETINGS/PUBLIC HEARINGS OCTOBER 2007







### REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE (RWQMPU or 208 Plan)

- SEWRPC is State-designated and Federally-recognized areawide water quality planning agency
- RWQMPU prepared pursuant to Section 208 of the Federal Clean Water Act
- Areawide water quality planning is watershed-based
- Plan provides:
  - Recommendations to abate water pollution
  - Basis for local eligibility for Federal and State sewerage system loans and grants
  - Basis for issuance by WDNR of Wisconsin Pollutant Discharge Elimination System (WPDES) permits
  - Basis for public and private sanitary sewer extension approvals



# REGIONAL WATER QUALITY MANAGEMENT PLANNING IN SE

- Initial 1979 Regionwide Plan
- Amended by SEWRPC Milwaukee Harbor Estuary Study in 1987
- 1995 SEWRPC Report Documented Status of Implementation of 1979 Plan
- Continuing Program is Ongoing—WDNR & SEWRPC Cooperative Program with U.S. EPA Support (sewer service areas, environmental corridor protection, etc.)
- 2003-2007 RWQMPU for Greater Milwaukee Watersheds



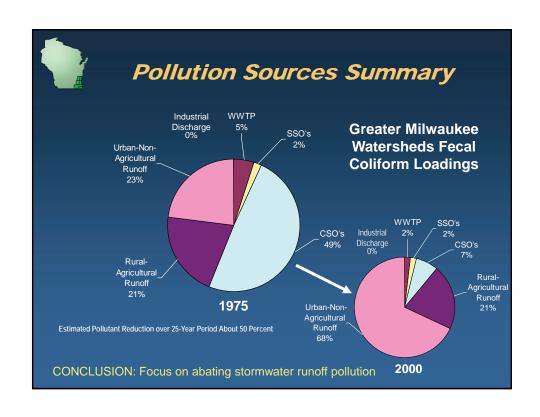

### 208 Plan Objectives

- Develop a watershed-based plan
  - Holistically address all water pollution sources
  - Cost-effectively improve water quality
  - Meet designated water use objectives and water quality standards/criteria to the degree possible
  - Consider alternatives to simply meeting current regulations for point source control if a greater improvement in water quality can be achieved costeffectively



### SEWRPC Regional Water Quality Management Plan Update / MMSD 2020 Facilities Plan (2020 FP)

- ➤ Parallel, coordinated planning processes
  - Both utilize the same watershed-based water quality models
  - Joint Citizens Advisory Council and Watershed Officials Forum
- SEWRPC RWQMPU also has:
  - Technical Advisory Committee
  - Modeling Subcommittee








# SEWRPC Regional Water Quality Management Plan Update

- > SEWRPC is Preparing Two Reports:
  - Planning Report No. 50, A Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds
  - Technical Report No. 39, Water Quality Conditions and Sources of Pollution in the Greater Milwaukee Watersheds
  - View preliminary draft chapters at sewrpc.org under "Water Quality Management Plan" and "Plan Chapters"





# Conditions Simulated in Water Quality Models

- Existing Year 2000
- Planned Year 2020

#### SCENARIOS: "BOOKEND" CONDITIONS BUILT ON THE FUTURE SITUATION

1A: No Sanitary Sewer Overflows (SSO) and No Combined Sewer Overflows (CSO) with Sewer Separation in MMSD Combined Sewer Service Area (CSSA).

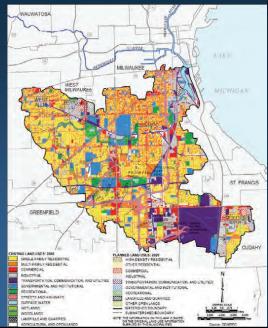
CAPITAL COST=\$5.1 BILLION

- 1B: No SSOs and No CSOs No Sewer Separation in CSSA. CAPITAL COST=\$5.8 BILLION
- 1C: No SSO with Increased Level of Protection (LOP) for CSO. CAPITAL COST=\$2.2 BILLION
- 1D: No SSO based on I/I Reduction with Increased LOP for CSO. CAPITAL COST=\$7.7 BILLION
- ➤ 2: High Level of Best Management Practices. CAPITAL COST=\$2.0 BILLION

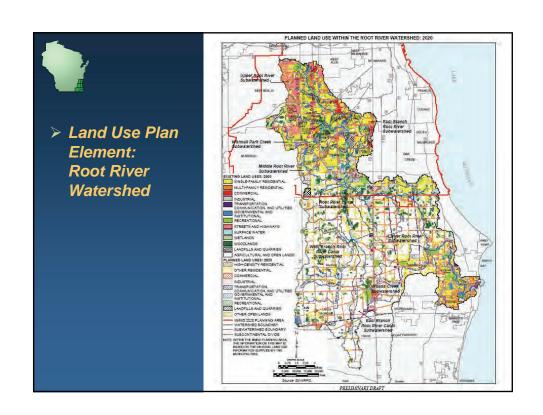


# CONCEPTUAL ALTERNATIVE PLANS

- No Action Future 2020 Condition
- Regulatory Alternatives
  - B1 Meet Point and Nonpoint Source Discharge Regulations
  - B2 Operate MMSD System to Minimize Overflows, Meet Nonpoint Source Discharge Regulations
  - BOTH HAVE CAPITAL COST OF \$2.0 BILLION
- Watershed-Based Alternatives
  - C1 Goal is Compliance with Receiving Water Quality Standards. CAPITAL COST OF \$2.6 BILLION
  - C2 Goal is Compliance with Receiving Water Quality Standards Plus "Green" Components Directed Toward Water Quality Improvement. CAPITAL COST OF \$2.2 BILLION




# Recommended Plan Components


- Land Use Plan Element
- Surface Water Quality Element
  - · Urban and rural nonpoint source pollution abatement
  - Point source pollution abatement measures in areas outside the MMSD planning area
  - Includes MMSD 2020 Facilities Plan recommendations except for increase in South Shore WWTP capacity through addition of physicalchemical treatment
  - Instream water quality measures
  - Inland lake measures
  - Auxiliary surface water quality measures
- > Groundwater Management Plan Element

# Land Use Plan Element: Kinnickinnic River Watershed

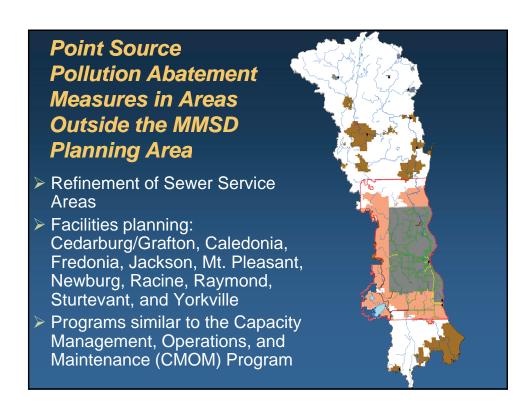
- Conveyance facilities sized using year 2020 population and land use based on community-supplied information and
- MMSD regional storage and treatment facilities sized using 2020 population and land use based on 2035 regional land use plan



# Conveyance facilities sized using year 2020 population and land use based on community-supplied information and MMSD regional storage and treatment facilities sized using 2020 population and land use based on 2035 regional land use plan






## **Urban and Rural Runoff Control**

- ➤ Nonpoint Source Control Component
  - Address urban and rural stormwater runoff pollution
  - Incorporate environmental restoration measures
  - Recognize Federal and State rules regarding urban and rural stormwater management













# Other Surface Water Quality Measures

- Water quality monitoring recommendations:
  - Continue current MMSD, WDNR, and USGS monitoring programs
  - Continue to upgrade Citizenbased programs
  - Modify, or expand, existing programs to include monitoring on tributaries
  - Add fishery and macroinvertebrate monitoring at long-term stations
  - Add habitat monitoring stations
  - Monitoring organizations should standardize 1) quality assurance and control and 2) sampling protocols and analyses





#### Recommended Plan

- Does not call for upgrading MMSD's South Shore WWTP through provision of physical chemical treatment
  - Potential capital cost saving of \$97 to \$152 million (Might apply cost saving to additional, targeted nonpoint source controls)
- Calls for
  - · Studies of system capacities at Jones Island and South Shore WWTPs
  - Monitoring actual population and land use changes
  - Evaluating the success of the recommended efforts to "hold the line" on I/I
  - Continued efforts to improve and refine the MMSD real-time control strategy for the deep tunnel (variable VRSSI), including the effect of upgraded pumping capacity from the tunnel to Jones Island
  - · Demonstration project for physical-chemical treatment at South Shore
  - Continued study of blending at South Shore
- MMSD and customer communities attempt to obtain regulatory recognition of the integrated nature of the MMSD system
  - Possible elimination of the distinction between tunnel-related SSOs and CSOs
- Depending on outcome of these activities, provision of additional capacity at South Shore may not be needed



## Recommended Plan

- ➤ If, in the future, results of variable VRSSI and capacity analyses, future population trends, and I/I efforts indicate that a capacity upgrade is needed at the South Shore WWTP, and physical-chemical treatment with chemical flocculation is found to be feasible:
  - Implementation of physical-chemical treatment with chemical flocculation would be recommended at South Shore



# Integrated Watershed-Based Recommended Plan

- ➤ If, in the future, a capacity upgrade is needed at the South Shore WWTP, and physical-chemical treatment with chemical flocculation is found to not be feasible:
  - Blending would be recommended at South Shore



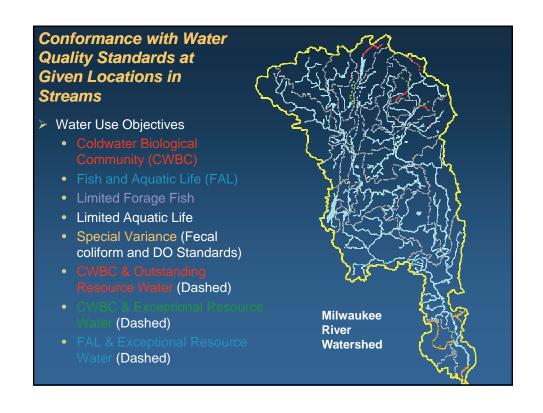
# Cost Analysis

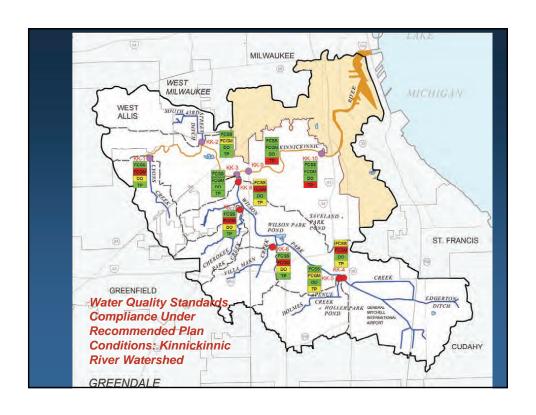
- Estimated capital cost of new measures recommended under the RWQMPU: \$1.5 billion, annual O&M cost is \$28.5 million
- ➤ Additional, estimated capital cost of associated existing, committed, and regulatory programs: \$1.2 billion, annual O&M cost is \$33.0 million. Those costs would be incurred regardless of whether full plan is implemented
- Estimated total capital cost of both components: \$2.7 billion, annual O&M cost is \$61.5 million

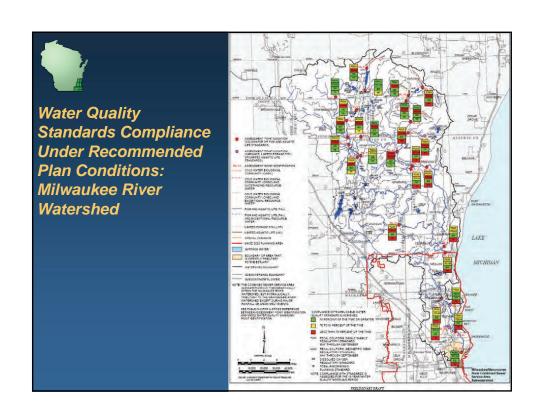


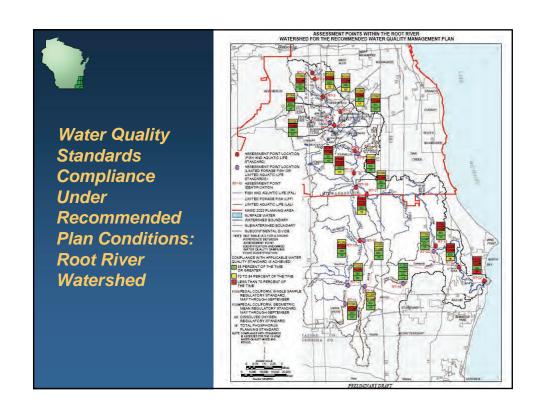
# Summary of Plan Costs

| Plan Category                             | Estimated Capital<br>Cost | Average Annual<br>Operation<br>and Maintenance Cost |  |
|-------------------------------------------|---------------------------|-----------------------------------------------------|--|
| Urban runoff pollution abatement          | \$239.0 million           | \$34.7 million                                      |  |
| Rural runoff pollution abatement          | \$244.0 million           | \$21.9 million                                      |  |
| MMSD & member communities sewerage system | \$1,962.0 million         | \$1.5 million                                       |  |
| Instream measures                         | \$180.4 million           | \$0.6 million                                       |  |
| Other sewerage systems                    | \$70.1 million            | \$0.8 million                                       |  |
| Monitoring and Other                      | \$1.0 million             | \$1.9 million                                       |  |
| Total                                     | \$2.70 billion            | \$61.5 million                                      |  |


Note: Of the total capital cost, \$1.470 billion, or 54 percent, represent new expenditures, of the total Operation and Maintenance cost, \$28.5 million, or 46 percent, represent new expenditures.


Source: MMSD, HNTB, and SEWRPC.





# Ability of Recommended Plan to Meet Water Use Objectives and Water Quality Standards

- Assessed based on:
  - Water quality modeling results for pollutants for which there are regulatory or planning standards
  - Modeled changes in instream pollutant concentrations under recommended conditions relative to existing and future conditions









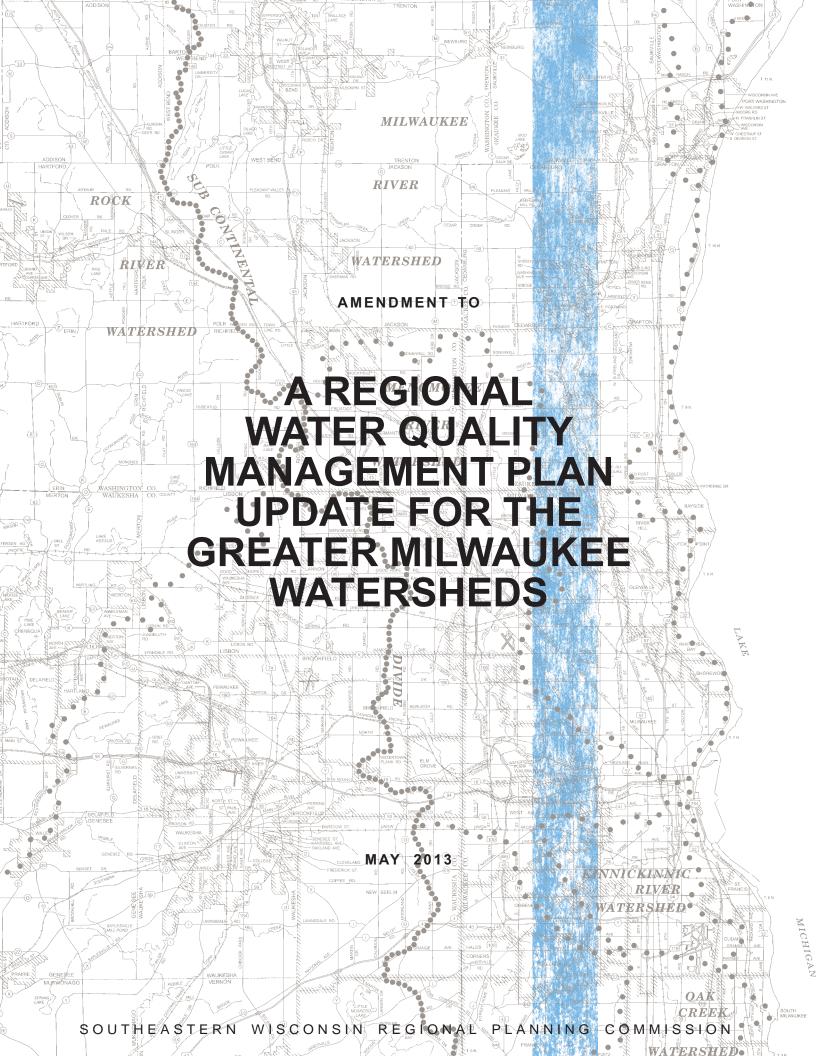


# Implementation Plan

- > Assignment of implementation responsibilities
- Costs apportioned between public and private sectors and estimated by community
- ➤ Information on grant funding programs



# Implementation Plan


- Watershed-based permit will be considered
  - Incorporate existing WPDES permits for WWTP, municipal separate storm sewer systems, and Concentrated Animal Feeding Operations (CAFOs)
  - Expanded State cost-share funding and/or water quality credit trading to provide incentives to address unpermitted agricultural/rural nonpoint sources



# Next Steps for the Regional Water Quality Management Plan Update

- Completion of Technical Advisory Committee review of planning report
- Public informational meetings
- Adoption of the plan by the Regional Planning Commission Anticipated in December 2007
- WDNR approval and Governor's certification of plan to USEPA
- USEPA approval of plan
- ➤ Endorsement of plan by counties and other local units of government

(This Page Left Blank Intentionally)



#### SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION

#### KENOSHA COUNTY

#### RACINE COUNTY

Adelene Greene, Secretary Robert W. Pitts Gilbert B. Bakke David L. Eberle Peggy L. Shumway

#### MILWAUKEE COUNTY

#### WALWORTH COUNTY

Marina Dimitrijevic William R. Drew, Vice-Chairman John Rogers Charles L. Colman Nancy Russell, Treasurer Linda J. Seemeyer

#### **OZAUKEE COUNTY**

#### **WASHINGTON COUNTY**

Thomas H. Buestrin Gustav W. Wirth, Jr.

Daniel S. Schmidt Daniel W. Stoffel David L. Stroik, Chairman

#### **WAUKESHA COUNTY**

Michael A. Crowley José M. Delgado James T. Dwyer

#### SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION STAFF

| Kenneth R. Yunker, PE      | Executive Director                     |
|----------------------------|----------------------------------------|
| Stephen P. AdamsP          | ublic Involvement and Outreach Manager |
| Nancy M. Anderson, AICP    | Chief Community Assistance Planner     |
| Michael G. Hahn, PE, PH    | Chief Environmental Engineer           |
| Christopher T. Hiebert, PE | Chief Transportation Engineer          |
| Elizabeth A. Larsen        | Business Manager                       |
| John G. McDougall G        | Geographic Information Systems Manager |
| Dr. Donald M. Reed         | Chief Biologist                        |
| Donald P. Simon, RLS       | Chief Planning Illustrator             |
| William J. Stauber         | Chief Land Use Planner                 |

#### ADVISORY COMMITTEE ON REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

| Daniel S. Schmidt, Chairman<br>Michael G. Hahn, Secretary . | SEWRPC CommissionerChief Environmental Engineer, Southeastern Wisconsin Regional Planning Commission |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Julie A. Anderson                                           | Director, Racine County Division of Planning and Development                                         |
| Michael J. Ballweg                                          | Crops and Soils Educator, University of Wisconsin-Extension, Sheboygan County                        |
| John R. Behrens                                             | Commissioner-Secretary, Silver Lake                                                                  |
| John M. Bennett                                             | City Engineer, City of Franklin                                                                      |
| Thomas J. Bunker                                            | Retired General Manager, City of Racine<br>Water and Wastewater Utility                              |
| Nathan Check                                                | City Engineer, City of Mequon                                                                        |
|                                                             | presentative, Town and Country Resource                                                              |
| Joyce A. Fiacco                                             | Conservation and Development, IncDirector, Dodge County Land                                         |
| 0 0                                                         | Resources and Parks Department                                                                       |
| Sharon L. Gayan                                             | Basin Supervisor, Wisconsin                                                                          |
| 01 0                                                        | Department of Natural Resources                                                                      |
| Shawn Graff                                                 | Executive Director, The Ozaukee                                                                      |
| 1 11 2                                                      | Washington Land Trust, Inc.                                                                          |
|                                                             | Social Science Outreach Specialist,                                                                  |
|                                                             | University of Wisconsin Sea Grant Institute                                                          |
| Andrew A. Hoiscnbach                                        | Director, Ozaukee County Land and                                                                    |
| Charles M. Kaith                                            | Water Management Department                                                                          |
| Stevan IVI. Keith                                           | Sustainability and Environmental Engineer,                                                           |
|                                                             | Milwaukee County Department of                                                                       |
| Changan Karban                                              | Transportation and Public Works Commissioner of Public Works,                                        |
| Gnassan Korban                                              |                                                                                                      |
| Lunn Mathias                                                | City of MilwaukeeCounty Conservationist,                                                             |
| Lynn Mathias                                                |                                                                                                      |
| L Coatt Mathia                                              | Fond du Lac CountySenior Director of Government                                                      |
| J. Scott Matrile                                            | Affairs, Metropolitan Builders                                                                       |
|                                                             | Association of Greater Milwaukee                                                                     |
| Charles S. Molching                                         |                                                                                                      |
| Charles 3. Welching                                         | Professor, Civil & Environmental                                                                     |
|                                                             | Engineering, Marquette University                                                                    |
| Paul E Mueller                                              | Administrator, Washington County                                                                     |
| r aur L. Mueller                                            | Planning and Parks Department                                                                        |
| Patrick A Murphy                                            | Assistant State Conservationist,                                                                     |
| Tatriok 7t. Marpriy                                         | Natural Resources Conservation Service                                                               |
| leffrey S. Nettesheim                                       | Director of Utilities,                                                                               |
| ocincy of rectosite in the second                           | Village of Menomonee Falls                                                                           |
| ludith A Neu                                                | City Engineer, City of West Bend                                                                     |
| Charles A Peters 1                                          | Director, Wisconsin Water Science Center,                                                            |
|                                                             | U.S. Geological Survey                                                                               |
| William Porter Di                                           | rector of Public Works, City of Wauwatosa                                                            |
|                                                             | Vice-President, Environmental                                                                        |
| 2.400                                                       | Department, We Energies                                                                              |
| Kevin I Shafer                                              | Executive Director, Milwaukee                                                                        |
|                                                             | Metropolitan Sewerage District                                                                       |
| Karen M. Shapiro E                                          | Executive Director, Milwaukee Riverkeeper                                                            |
|                                                             | Director, Waukesha County Parks                                                                      |
|                                                             | and Land Use Department                                                                              |
| Peter G. Swenson Branc                                      | h Chief, Watershed and Wetlands Branch,                                                              |
|                                                             | U.S. Environmental Protection Agency                                                                 |
| Sam Tobias                                                  | Director of Planning and Development,                                                                |
|                                                             | Fond du Lac County                                                                                   |
| Shawn L. Wesener                                            | Assistant Planning Director, Planning and                                                            |
| R                                                           | esources Department, Sheboygan County                                                                |
|                                                             | Director of Engineering and Public Works,                                                            |
|                                                             | City of Cedarburg                                                                                    |
|                                                             |                                                                                                      |

#### **AMENDMENT TO PLANNING REPORT NUMBER 50**

# A REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

#### Prepared by the

Southeastern Wisconsin Regional Planning Commission W239 N1812 Rockwood Drive P.O. Box 1607 Waukesha, Wisconsin 53187-1607 www.sewrpc.org (This Page Left Blank Intentionally)

#### Amendment to SEWRPC Planning Report No. 50

# A REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

May 2013

#### BACKGROUND ON THIS PLAN AMENDMENT

This amendment presents revisions to SEWRPC Planning Report No. 50 (PR No. 50)<sup>1</sup> based on changes to the watershed water quality models necessitated by findings during additional modeling efforts conducted after the plan report was issued. Those modeling efforts were conducted under a separate study directed toward evaluating the possible effects of climate change on water quality in the streams of the study area.

#### In this plan amendment document:

- New text providing background and explanations of the reasons why this plan amendment report was prepared and notes in the text indicating the location of revised sections of PR No. 50 are indicated with yellow highlighting,
- Revisions to text originally presented in PR No. 50 and subsequently revised for the reasons described below are indicated with blue highlighting, and
- Original text from PR No. 50 that is unchanged, but is provided in this plan amendment report to provide context for associated report changes, is unhighlighted.

#### **REASONS FOR THIS PLAN AMENDMENT**

In 2011, the Southeastern Wisconsin Regional Planning Commission staff, with funding from the National Oceanic and Atmospheric Administration (NOAA) Sectoral Applications Research Program (SARP), and working collaboratively with the University of Wisconsin-Milwaukee (UW-M) School of Freshwater Sciences Great Lakes WATER Institute, the UW-M Department of Civil Engineering and Mechanics, the University of Wisconsin-Madison Nelson Institute for Environmental Studies Center for Climatic Research (CCR), and Tetra Tech, Inc., began a study to evaluate the possible effects of climate change on water quality in the greater Milwaukee watersheds. That study was designed to apply statistically downscaled meteorological data representing best and worst case climate change conditions as determined from general circulation models developed by several climatology laboratories using a standard set of greenhouse gas emission scenarios developed by the Intergovernmental Panel on Climate Change. Time series reflecting climate change were developed by the Nelson Institute CCR for precipitation and air temperature, and potential evapotranspiration time series were recomputed using the parameters described in Chapter V, "Water Resource Simulation Models and Analytic Methods," of SEWRPC PR No. 50. The precipitation, air temperature, and potential evapotranspiration time series reflecting best and worst case climate change conditions were input to the calibrated and validated U.S. Environmental Protection Agency HSPF continuous simulation water quality models of the Kinnickinnic, Menomonee, Milwaukee, and Root River watersheds, and the Oak Creek watershed that were developed in conjunction with the planning effort documented in SEWRPC PR No. 50.

<sup>&</sup>lt;sup>1</sup>SEWRPC Planning Report No. 50, A Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds, Parts 1 and 2, December 2007.

Tetra Tech performed the watershed water quality modeling under the regional water quality management plan update for the greater Milwaukee watersheds documented in PR No. 50, and they also did the modeling for the NOAA SARP study. In the course of doing the NOAA SARP modeling, Tetra Tech discovered an error in the HSPF input files that affected the summation and reporting of total nitrogen (TN) and total phosphorus (TP) at some water quality assessment locations in the Kinnickinnic, Menomonee, and Root River watersheds and the Oak Creek watershed (see Attachment A). The Tetra Tech memorandum notes that "[t]he error was a result of an improper conversion factor applied to the inorganic fraction of N and P when calculating sums of TN and TP." The Milwaukee River LSPC watershed continuous simulation model and the Lake Michigan Direct Drainage area model, and the water quality results from those models, were not affected by the error.

It is important to note that the error did not represent a fundamental problem with the watershed water quality models in that it only affected how total nitrogen and total phosphorus concentrations were summarized at certain instream locations, and it did not affect:

- Model calibration/validation<sup>4</sup>
- Any load predictions
- Boundary conditions to the estuary model
- Internal calculations, and any reported results for nutrient species
- Instream statistical measures for:
  - Fecal coliform bacteria
  - o Dissolved oxygen (DO)
  - o Biochemical oxygen demand (BOD)
  - Copper
  - o Total suspended sediment (TSS)

Tetra Tech revised the continuous simulation models for the Kinnickinnic, Menomonee, and Root River watersheds and the Oak Creek watershed.<sup>5</sup>

<sup>&</sup>lt;sup>2</sup>Tetra Tech Memorandum, Nutrient Output for Milwaukee HSPF Models (Revised), March 13, 2012.

<sup>&</sup>lt;sup>3</sup>Specifically, only mean and median TN and TP concentrations and the percent of time that TP exceeds the 0.1 mg/L planning standard applied under the RWQMPU were affected at assessment locations other than those locations where water quality monitoring data were available.

<sup>&</sup>lt;sup>4</sup>Instream concentrations of TN and TP computed at the assessment points representing calibration/validation monitoring stations were not affected by the error.

<sup>&</sup>lt;sup>5</sup>That revision also corrected a relatively minor error that affected total nitrogen concentrations at some instream assessment points. When calibrating and validating the models, nitrite was not modeled because the total nitrogen concentrations reported at instream water quality monitoring stations did not include nitrite. However, when subsequent model analyses were made for existing year 2000 conditions, original and revised 2020 baseline conditions, scenarios, alternatives, the recommended plan, and the extreme measures condition, the modelers did not include nitrite in the calculation of total nitrogen. In general, the inclusion of nitrite in the computation of mean and median total nitrogen concentrations resulted in relatively small (3 percent or less) increases in total nitrogen concentrations. The exception was at assessment point OK-10 in the lower Oak Creek watershed where concentration increases were 9 percent or less.

The parts of SEWRPC PR No. 50 that were affected by the revisions include:<sup>6</sup>

- The "Comparison of Alternative Plans" subsection on pages 482 through 484 of the report,
- Figures 67 and 68, each entitled "Achievement of Recommended Total Phosphorus Planning Standard," on pages 615 and 616,
- The portion of the "Evaluation of Water Quality Modeling Analysis Results Relative to the Adopted Water Use Objectives and Water Quality Standards/Criteria," subsection related to total phosphorus on pages 617, 621, and 622 of the report,
- Appendix J, "Comparison of Water Quality Summary Statistics for Alternative Water Quality Management Plans,"
- Appendix K, "Water Quality Standard Compliance Summary Statistics for Alternative Water Quality Management Plans," and
- Appendix N, "Water Quality Summary Statistics for the Recommended Plan."

The revised sections and subsections, or portions thereof, of SEWRPC PR No. 50, Part 1, including text, tables, and figures, and the revised Appendices J, K, and N from SEWRPC PR No. 50, Part 2 are presented below. Within a report section or subsection, the revised text and figures are excerpted and some preceding and following text is included to provide proper context for the changed portions. For the three appendices, the entire revised appendix is presented.<sup>7</sup>

<sup>6</sup>As noted above, the NOAA SARP study utilized the RWQMPU continuous simulation watershed water quality models. The model error described previously was discovered during conduct of that study, was corrected, and did not adversely affect the results of that study. In addition, MMSD was conducting a third-party total maximum daily load study of the Kinnickinnic, Menomonee, and Milwaukee River watersheds at the time that the error was discovered. That study also applied the RWQMPU water quality models. The error was discovered prior to execution of those models under the TMDL study, and appropriate model revisions were made to ensure that the TMDL study results were correct.

 $^{7}$ The regional water quality management plan update for the greater Milwaukee watersheds (PR No. 50, RWOMPU) was published prior to revisions to Wisconsin's water quality standards for total phosphorus becoming effective on December 1, 2010. In the absence of a State water quality criterion for total phosphorus at the time of publication, a planning standard of 0.1 mg/l was adopted for the RWQMPU. For consistency with the RWOMPU approach, this amendment document also applies a total phosphorus planning standard of 0.1 mg/l to all streams and rivers evaluated. The revisions to the State phosphorus water quality standards are reflected in Chapters NR 102, "Water Quality Standards for Wisconsin Surface Waters," and NR 217 "Effluent Standards and Limitations for Phosphorus," of the Wisconsin Administrative Code. Section NR 102.06(3)(a) establishes a total phosphorus water quality criterion of 0.100 mg/l for designated rivers, Section NR 102.06(3)(b) calls for most other "surface waters generally exhibiting unidirectional flow" to meet a total phosphorus criterion of 0.075 mg/l, and Section NR 102.06(5)(b) calls for the nearshore waters of Lake Michigan to meet a total phosphorus criterion of 0.007 mg/l. Within the greater Milwaukee watersheds, the river reaches that are assigned a total phosphorus criterion of 0.100 mg/l are the Kinnickinnic River from its confluence with Wilson Park Creek to the Milwaukee River, the Menomonee River from its confluence with the Little Menomonee River to the Milwaukee River, and the Milwaukee River from its confluence with Cedar Creek downstream through the Milwaukee Harbor estuary and the outer harbor. Thus, in those three river reaches, the planning standard applied under the RWQMPU and herein are equivalent. In other stream reaches evaluated herein, the planning standard of 0.1 mg/l is one-third greater than the current State criterion of 0.075 mg/l.

[NOTE: The following section is a revised version of the text on pages 480 to 484 in Chapter IX, "Development of Alternative Plans: Description and Evaluation," of PR No. 50.]

# COMPARATIVE EVALUATION OF WATER OUALITY MANAGEMENT ALTERNATIVE PLANS

The preceding section of this chapter describes water quality management plan alternatives for the greater Milwaukee watersheds. This section compares the major features of those alternative plans, including economic considerations and water quality benefits. The following evaluation and comparison serves as the basis for the development of the preliminary recommended water quality management plan.

#### **Pollutant Loading Analysis**

Tabular comparisons of the various point and nonpoint source pollutant loadings for the alternative water quality management plans are presented in Appendix B. Also shown for comparative purposes are loads based on existing land use with current wastewater conveyance, storage, and treatment systems in place.

The information presented in Appendix B shows that the expected pollutant loadings under Alternative A, the future year 2020 baseline condition, are generally similar to existing conditions. The largest loading differences are in fecal coliform bacteria, which are anticipated to drop by about 21 percent relative to existing conditions, and total suspended solids, which are anticipated to increase by about 10 percent relative to existing conditions. The other indicator pollutants listed show modest differences of  $\pm 3$  percent relative to existing conditions. Although there is more development under the future condition, and thus more potential for pollutant loads, this is offset by construction of the additional committed MMSD and community facilities and implementation of the Chapter NR 151 nonpoint source pollution control rules, all of which are assumed under the future condition.

Among the remaining water quality management plan alternatives, Alternatives B1 and B2 provide similar results to one another. The major difference is in the allocation of fecal coliform point source loadings between SSOs and CSOs. Alternative B2, which calls for a change in operating procedure for the ISS, shows a lower loading from CSOs than Alternative B1, but a higher loading from SSOs. Overall, the total combined CSO and SSO fecal coliform bacteria load is higher under Alternative B2 than for Alternative B1. For the other pollutants listed, the difference between these two alternatives is negligible.

In terms of overall pollutant load reduction, Alternative C1 provides results that are similar to Alternatives B1 and B2. Alternative C2, which includes the highest level of nonpoint source controls, provides the highest overall level of pollutant load reduction among the alternative plans. For all of the alternative plans, the highest percent reductions occur for total suspended solids and fecal coliform bacteria, while the lowest percent reductions occur for total nitrogen and copper.

#### Water Quality Conditions and Ability to Meet Water Use Objectives

The water quality benefits of the alternative plans were evaluated by comparing the effects of the plan alternatives, as predicted using the mathematical simulation modeling techniques described in Chapter V of this report, upon a number of water quality indicators. Tabular comparisons of water quality conditions among alternative plans are presented in Appendix J (revised). In general, the anticipated differences in water quality conditions among alternatives are small.

#### Methodology for Comparing Alternative Plans

The effects of the alternative plans on water quality indicators were compared at 64 water quality assessment points. The locations of these assessment points are shown on Maps 57 through 62. Many of the assessment points also correspond with the location of MMSD water quality sampling sites. A cross-reference between the assessment point designations shown on the maps and the MMSD sampling site designations is provided in Table 75. A series of comparisons were made at each site using 20 indicators related to concentrations of the following six water quality parameters: fecal coliform bacteria, dissolved oxygen, total phosphorus, total nitrogen, total suspended solids, and copper. These indicators are listed in Table 77. A variety of indicators were compared for these parameters. For all six parameters, comparisons were made among the arithmetic mean concentrations predicted for each alternative plan. Similarly, comparisons were made among the median concentrations predicted for each alternative plan for all parameters except fecal coliform bacteria, where the geometric mean

Table 77
WATER QUALITY INDICATORS USED TO COMPARE ALTERNATIVE PLANS

| Parameter                                     | Indicator                                                                                                |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| Fecal Coliform Bacteria over Entire Year      | Arithmetic mean concentration of fecal coliform bacteria                                                 |  |  |
|                                               | Proportion of time fecal coliform bacteria concentration is equal to or below single sample standard     |  |  |
|                                               | Geometric mean concentration of fecal coliform bacteria                                                  |  |  |
|                                               | Days per year geometric mean of fecal coliform bacteria is equal to or below geometric mean standard     |  |  |
| Fecal Coliform Bacteria from May to September | Arithmetic mean concentration of fecal coliform bacteria                                                 |  |  |
|                                               | Proportion of time fecal coliform bacteria concentration is equal to or below single sample standard     |  |  |
|                                               | Geometric mean concentration of fecal coliform bacteria                                                  |  |  |
|                                               | Days per year geometric mean of fecal coliform bacteria is equal to or below geometric mean standard     |  |  |
| Dissolved Oxygen                              | Mean concentration of dissolved oxygen                                                                   |  |  |
|                                               | Median concentration of dissolved oxygen                                                                 |  |  |
|                                               | Proportion of time dissolved oxygen concentration is equal to or above applicable standard               |  |  |
| Total Phosphorus                              | Mean concentration of total phosphorus                                                                   |  |  |
|                                               | Median concentration of total phosphorus                                                                 |  |  |
|                                               | Proportion of time total phosphorus concentration is equal to or below the recommended planning standard |  |  |
| Total Nitrogen                                | Mean concentration of total nitrogen                                                                     |  |  |
|                                               | Median concentration of total nitrogen                                                                   |  |  |
| Total Suspended Solids                        | Mean concentration of total suspended solids                                                             |  |  |
|                                               | Median concentration of total suspended solids                                                           |  |  |
| Copper                                        | Mean concentration of copper                                                                             |  |  |
|                                               | Median concentration of copper                                                                           |  |  |

Source: SEWRPC.

concentrations were applied. For those water quality parameters for which there are regulatory or planning water quality criteria and standards (see Chapter VII of this report), comparisons were also made of the proportion of time that the parameter would be in compliance with the criteria and standards. Where special use or variance waters were identified, the applicable standards were used. All comparisons involving fecal coliform bacteria were performed both on a full-year basis and for the May to September period when the potential for body contact would be greater.

For each indicator at each assessment point, the four alternative plans other than the future baseline condition (Alternative A) were compared to one another. Alternative A was not included in the comparison since it served as the basis of the remaining four alternatives, and, thus, should always reflect the worst water quality conditions

<sup>&</sup>lt;sup>14</sup>The proportion of time in compliance estimates are based on the results of the water quality model simulation that utilized a 10-year simulation period.

among all of the alternative plans. The comparison among the remaining four alternatives was made by computing the relative deviation of the value of the indicator associated with that alternative plan from the mean value of the indicator for all four alternatives. This was computed by subtracting the mean value of the indicator for all alternatives at a given site from the value of the indicator for the alternative and dividing the result by the mean value that was subtracted. The sign of the relative deviation was adjusted for some indicators so that a positive relative deviation indicated better water quality and a negative relative deviation indicated poorer water quality. For each water quality parameter, the relative deviations from all indicators were totaled. Subtotals were also computed for each watershed. An overall score was computed by totaling the scores from each water quality parameter. Prior to totaling, the scores were adjusted to give each water quality parameter equal weight in the overall total. The scores were adjusted to give each water quality parameter equal weight in the overall total.

It is worth commenting on two properties of this method. First, this method compares the effects of alternative plans relative to one another. A higher value in the final total for an alternative plan indicates better water quality relative to the other alternative plans. Similarly, a lower value in the final total for an alternative plan indicates poorer water quality relative to the other alternatives. It is important to note that because only the alternative plans were included in this analysis, a negative value in the final total does not indicate poorer water quality than existing or future baseline conditions. Second, because greater differences among alternative plans in the values of indicators result in larger relative deviations, greater differences in the final totals for alternative plans indicate greater differences in overall effects on water quality conditions. Conversely, similar final totals for two alternatives indicate that their overall effects on water quality conditions are not very different.

#### Comparison of Alternative Plans

Watershed totals and overall totals for relative deviations of water quality indicators from mean values are shown in Table 78. This analysis indicates that the greatest overall water quality benefit is provided by Alternative C2. This alternative is followed, in decreasing order of the benefit provided, by Alternative C1, Alternative B2, and Alternative B1. In most watersheds, the relative effects of the alternative plans follow this overall pattern.

There are four important exceptions to this generalization. First, the differences in total relative deviations between Alternative B1 and Alternative B2 in the Menomonee River, Milwaukee River, and Oak Creek watersheds are small, suggesting that there is little difference between the overall water quality resulting from these two alternatives in these watersheds. Second, there is no difference in the total relative deviations between Alternative C1 and C2 in the Kinnickinnic River watershed, suggesting that there is little difference in overall water quality resulting from these two alternatives in this watershed. Third, in the Kinnickinnic River watershed,

<sup>15</sup> Because the methodology for assessing relative water quality conditions among alternatives was based on combining relative deviations computed for given indicators that are characteristic of given pollutants, it was necessary that the sign of the relative deviation relate to differences in water quality in a consistent manner. In cases where a lower concentration indicated better water quality, the sign of the relative deviation of a better than average alternative would be computed to be negative. In contrast, in cases where a higher concentration indicated better water quality the sign of the relative deviation of a better than average alternative would be computed to be positive. Therefore, to facilitate combining relative deviations in a manner that would properly represent relative water quality conditions, the sign of the relative deviation was reversed for those indicators for which a lower concentration indicated better water quality. This enabled the relative deviations from different indicators to be combined into a single index for which a larger positive value indicated better relative water quality.

<sup>&</sup>lt;sup>16</sup>This unweighting was necessary because different numbers of indicators were used to characterize different water quality parameters. For example, eight indicators were used to characterize fecal coliform bacteria. By contrast, total phosphorus was characterized by three indicators, Thus, to ensure that each water quality parameter had equal influence when the relative deviations were totaled, the sum of the relative deviations for the eight fecal coliform indicators was divided by eight and the sum of the relative deviations for total phosphorus was divided by three.

#### Table 78 (revised)

# SUMMED RELATIVE DEVIATIONS OF WATER QUALITY INDICATORS FROM THE AVERAGE VALUE FOR ALTERNATIVE PLANS B1, B2, C1, AND C2

|                     | Watershed             |                    |                    |              |               |                               |        |
|---------------------|-----------------------|--------------------|--------------------|--------------|---------------|-------------------------------|--------|
| Plan<br>Alternative | Kinnickinnic<br>River | Menomonee<br>River | Milwaukee<br>River | Oak<br>Creek | Root<br>River | Lake<br>Michigan <sup>a</sup> | Total  |
| B1                  | -0.367                | -0.666             | -0.131             | -0.738       | -0.721        | -1.377                        | -4.001 |
| B2                  | -0.400                | -0.664             | -0.131             | -0.738       | -1.156        | -0.027                        | -3.116 |
| C1                  | 0.384                 | 0.418              | -0.597             | 0.727        | -0.173        | 0.437                         | 1.195  |
| C2                  | 0.384                 | 0.913              | 0.859              | 0.750        | 2.050         | 0.967                         | 5.922  |

<sup>a</sup>Lake Michigan assessment points include sites in the Milwaukee Harbor estuary, outer harbor, and nearshore Lake Michigan areas.

Source: SEWRPC.

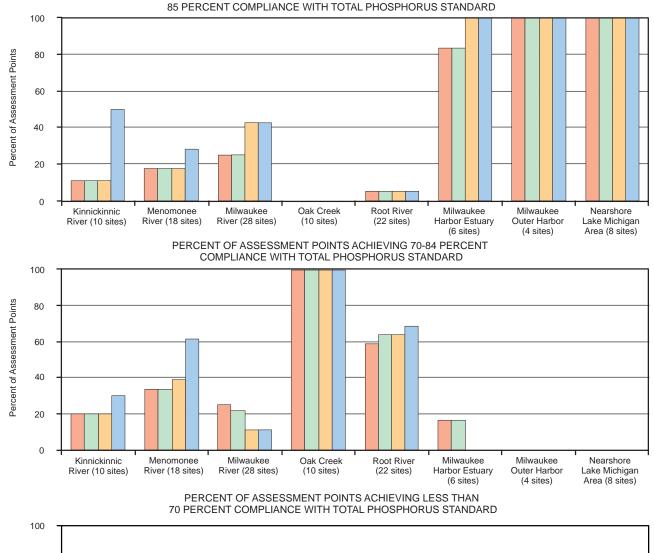
Alternative B1 provides slightly greater water quality benefits than Alternative B2. This difference from the overall result is driven by lower arithmetic and geometric mean concentrations of fecal coliform bacteria and slightly lower mean concentrations of total nitrogen and mean and median concentrations of total phosphorus for Alternative B1 at some assessment points along the mainstem of the Kinnickinnic River. Fourth, in the Milwaukee River watershed, Alternatives B1 and B2 provide greater water quality benefit than Alternative C1. These differences from the overall result are driven by Alternatives B1 and B2 resulting in lower mean concentrations of total phosphorus and total nitrogen and higher percent of compliance with the standard for total phosphorus than Alternative C1 at some assessment points.

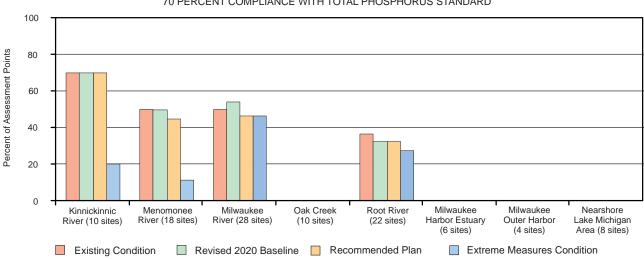
The compliance with applicable regulatory or planning water quality standards and criteria for fecal coliform bacteria, dissolved oxygen, and total phosphorus expected under the four alternative plans are summarized in Appendix K (revised). In general, only small differences in compliance with water quality standards were noted among the alternative plans.

Quantitative analyses of the water quality conditions expected to be achieved under the four alternative plans indicated that violations of the applicable regulatory standards for fecal coliform bacteria may be expected to occur in the Kinnickinnic, Menomonee, Milwaukee, and Root Rivers and Oak Creek under each alternative plan. The frequency of these violations is expected to range from occasional to frequent, with chronic violations expected to occur at a few assessment points in upstream areas of the Milwaukee River. By contrast, substantial achievement of applicable standards for fecal coliform bacteria is expected under each alternative plan at most assessment points in the estuary, outer harbor, and nearshore Lake Michigan areas. At most assessment points, the expected level of compliance with applicable standards for fecal coliform bacteria is slightly higher during the May to September swimming season than during the entire year. While differences in the expected levels of compliance among alternative plans are small, Alternative C2 provides the highest level of compliance with water quality standards for fecal coliform bacteria followed by Alternative C1, Alternative B2, and Alternative B1.

Quantitative analyses of the water quality conditions expected to be achieved under the four alternative plans indicated that each alternative would allow for substantial achievement of the applicable regulatory dissolved oxygen standards in the Kinnickinnic River, Menomonee River, Milwaukee River, Root River, estuary, outer harbor, and nearshore Lake Michigan areas. The analyses also indicate that each alternative would allow for substantial achievement of the dissolved oxygen standard for fish and aquatic life in the downstream reaches of Oak Creek. Violations of the dissolved oxygen standard for fish and aquatic life would be expected to occur occasionally to frequently in the upstream reaches of Oak Creek. The analyses indicated that there are few

In the outer harbor and nearshore Lake Michigan area, the full recreational use fecal coliform standards of a geometric mean concentration of 200 counts per 100 ml and a maximum single sample concentration of 400 counts per 100 ml were used to evaluate compliance.


differences among alternatives in the expected level of compliance with applicable dissolved oxygen standards. At assessment points where differences are expected, these differences are small.

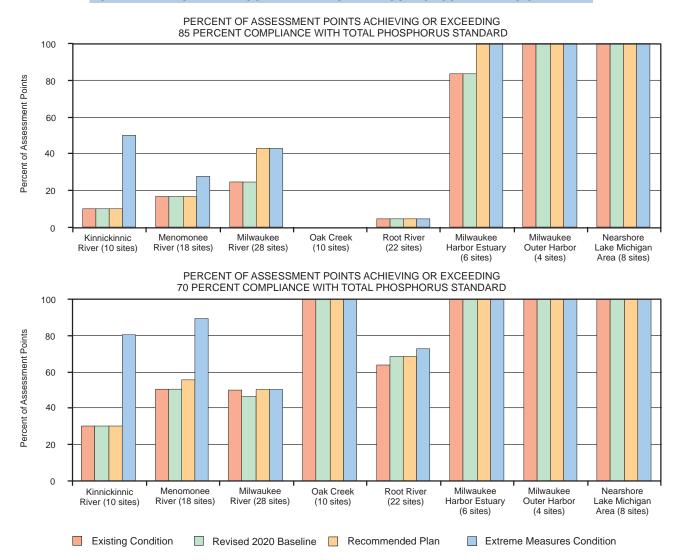

Quantitative analyses of the water quality conditions expected to be achieved under the four alternative plans indicated that violations of the recommended planning standard for total phosphorus may be expected to occur in the Kinnickinnic, Menomonee, Milwaukee, and Root Rivers; Oak Creek; and the estuary under each alternative plan. The frequency of these violations is expected to range from occasional to frequent, with total phosphorus exceeding the recommended concentration the majority of the time at all assessment points in the Kinnickinnic River watershed and most in the Milwaukee River watershed, but generally not exceeding the planning standard the majority of the time in the other watersheds. While differences in the expected levels of compliance among alternative plans are small, Alternative C1 provides the highest level of compliance with the recommended planning water quality standard for total phosphorus, followed by Alternative C2, and then by Alternatives B2, and B1, which would generally be expected to achieve the same level of compliance.

[NOTE: Figures 67 and 68 and the following text are revised versions of information set forth in Chapter X, "Recommended Water Quality Management Plan," of PR No. 50 in the section titled "Ability of the Recommended Water Quality Management Plan to Meet Adopted Objectives and Standards." The following figures and text revise information set forth on pages 615 to 622.]

#### Figure 67 (revised)

# ACHIEVEMENT OF THE RECOMMENDED TOTAL PHOSPHORUS PLANNING STANDARD PERCENT OF ASSESSMENT POINTS ACHIEVING OR EXCEEDING






NOTE: The numerical water quality standards that were applied to assess compliance are set forth in Tables N-1 through N-6 of Appendix N (revised) of this report.

Source: Brown and Caldwell; HydroQual, Inc.; Tetra Tech, Inc.; and SEWRPC.

#### Figure 68 (revised)

#### ACHIEVEMENT OF THE RECOMMENDED TOTAL PHOSPHORUS PLANNING STANDARD



NOTE: The numerical water quality standards that were applied to assess compliance are set forth in Tables N-1 through N-6 of Appendix N (revised) of this report.

Source: Brown and Caldwell; HydroQual, Inc.; Tetra Tech, Inc.; and SEWRPC.

- **Wetland/Prairie Restoration:** Increase conversion of cropland and pasture to prairie from the recommended 5 percent to 10 percent and increase conversion of cropland and pasture to wetland from the recommended 5 percent to 10 percent.
- **Septic System Management:** Increase reduction in fecal coliform bacteria from systems installed prior to 1980 from 10 percent under the recommended plan to 50 percent.
- **Fertilizer Management:** A 10 percent reduction in the phosphorus load from lawns was assumed under the recommended plan. The extreme measures condition applies targeted reductions of 50 percent from lawns in the Kinnickinnic, Menomonee, and Milwaukee River watersheds and 15 percent in the Oak Creek and Root River watersheds.
- **Phosphorus in Industrial Noncontact Cooling Water:** Assume that there is no significant phosphorus load to streams from noncontact cooling water discharges.

# Evaluation of Water Quality Modeling Analysis Results Relative to the Adopted Water Use Objectives and Water Quality Standards/Criteria

Water quality summary statistics for 106 water quality assessment points distributed along streams throughout the 1,127-square mile study area and in the nearshore area of Lake Michigan are set forth by watershed in Tables N-1 through N-6. Mean and median concentrations are set forth for the 10-year simulation period. For pollutants that have regulatory or planning standards, the percent of time is indicated that a given stream or Lake assessment point is in compliance with the applicable standard. Geometric means are presented for fecal coliform bacteria for comparison with regulatory standards.

The following general conclusions can be drawn from review of the data presented in Tables N-1 through N-6:

#### • Fecal Coliform Bacteria

- o Marked reductions in concentration may be achieved under recommended plan conditions.
- o Improvements in compliance with the applicable standards are not as pronounced because of the existing high concentrations.

#### Dissolved Oxygen

- o Compliance with the applicable standards is generally good under existing conditions.
- o Little change is projected to occur under the other conditions analyzed.

#### • Total Phosphorus

- The most significant reductions in concentration generally occur under revised 2020 baseline conditions relative to existing conditions, except in stream reaches where discharges of noncontact cooling water are significant. In reaches where there are substantive noncontact cooling water discharges, the most significant total phosphorus reductions occur under the "extreme measures" condition.
- The reductions under revised 2020 baseline conditions relative to existing conditions may be attributable to the effects of implementation of NR 151 stormwater runoff controls and construction of MMSD committed projects.
- o Increases in concentrations are projected to occur at some locations in the upper Menomonee River watershed and the Milwaukee River watershed under revised 2020 baseline conditions. Relatively small increases in concentrations could occur at three locations in the Outer Harbor and two in the nearshore Lake Michigan area.
- The recommended plan is projected to produce marked reductions in concentrations relative to revised 2020 baseline conditions in the Lake Michigan inner and outer harbor areas.
- O Under the extreme measures condition marked reductions in concentrations relative to recommended plan conditions could occur in the Lake Michigan inner and outer harbor areas and at some locations in the Kinnickinnic and Menomonee River watersheds, particularly in reaches with significant noncontact cooling water discharges.

#### Total Nitrogen

- o In the Kinnickinnic River, Menomonee River, and Oak Creek watersheds and the upper portion of the Root River watershed where urban land use predominates, the most significant reductions in concentrations occur under revised 2020 baseline conditions relative to existing conditions.
- o In the Milwaukee River watershed, the most significant reductions in concentrations occur under recommended plan conditions relative to the revised 2020 baseline conditions.
- In the Root River Canal subwatershed and the lower Root River watershed downstream of the confluence with the Root River Canal, significant reductions in concentrations occur under both revised 2020 baseline conditions relative to existing conditions and recommended plan conditions relative to the revised 2020 baseline conditions.

- o In the Lake Michigan inner and outer harbor, significant reductions in concentrations occur both under revised 2020 baseline conditions relative to existing conditions and under recommended plan conditions relative to revised 2020 baseline conditions.
- o In the nearshore Lake Michigan area little change in concentrations would be expected among the five conditions considered.

#### Total Suspended Solids

- o In the Kinnickinnic River, Menomonee River, and Oak Creek watersheds, the most significant reductions in concentrations occur under revised 2020 baseline conditions relative to existing conditions.
- These reductions may be attributable to the effects of implementation of NR 151 stormwater runoff controls and completion of MMSD committed projects.
- o In the Milwaukee River watershed, the greatest reductions in concentrations occur under recommended plan conditions relative to revised 2020 baseline conditions.
- o In the urban areas of the Root River watershed in Milwaukee County, significant reductions in concentrations are anticipated under revised 2020 baseline conditions relative to existing conditions.
- o In the remainder of the Root River watershed and in the Lake Michigan inner and outer harbor areas, reductions in concentrations would be anticipated to occur both under revised 2020 baseline conditions relative to existing conditions and under recommended plan conditions relative to revised 2020 baseline conditions.

#### Copper

- o In the Kinnickinnic River, Menomonee River, Oak Creek, and Root River watersheds and in the Lake Michigan inner and outer harbor areas, the most significant reductions in concentrations generally occur under the revised 2020 baseline conditions relative to existing conditions.
- o In most locations in the Milwaukee River watershed and the nearshore Lake Michigan area no significant changes in concentrations would be expected among the five conditions considered.

#### Compliance with Adopted Water Quality Standards

For purposes of assessing compliance with water quality standards under this regional water quality management plan update, it was assumed that a stream reach would meet the water quality standard and attain its designated use objective if the modeled water quality results indicate compliance with the standard at least 85 percent of the time.

The data on compliance with standards as set forth in Tables N-1 through N-6 are summarized in Figures 57 through 68. For a given pollutant and standard, a pair of figures indicate the degree of compliance with applicable standards among the existing, revised 2020 baseline, recommended plan, and extreme measures conditions for each watershed in the study area, the Milwaukee harbor estuary, the outer harbor, and the nearshore Lake Michigan area. The first figure in each pair presents a set of three graphical comparisons. These comparisons consist of:

- The percentage of assessment points achieving or exceeding 85 percent compliance with the standard over the 10-year water quality simulation period,
- The percentage of assessment points achieving or exceeding 70 to 84 percent compliance with the standard over the 10-year simulation period, and
- The percentage of assessment points achieving less than 70 percent compliance with the standard over the 10-year simulation period.

Thus, for the four conditions represented, these graphs facilitate determination of the degree to which 1) a water quality standard is complied with in a given watershed (defined as compliance 85 percent of the time or greater), 2) a standard is close to being complied with (compliance 70 to 84 percent of the time), and 3) a standard is unlikely to be complied with (compliance less than 70 percent of the time). The second figure in each pair presents a pair of graphical comparisons of cumulative levels of compliance for each of the conditions indicated above. The two graphical comparisons consist of:

- The percentage of assessment points achieving or exceeding 85 percent compliance with the standard over the 10-year water quality simulation period.
- The percentage of assessment points achieving or exceeding 70 percent compliance with the standard over the 10-year water quality simulation period.

The assessments in Figures 57 through 68 are evaluated below.

# Figures 57 and 58: Achievement of the Single Sample Fecal Coliform Bacteria Standard Assessed on an Annual Basis

Compliance with this standard 85 percent of the time would not be expected under existing, revised 2020 baseline, or recommended plan conditions at the assessment points in the Kinnickinnic River, Menomonee River, Oak Creek, or Root River watersheds. In the Kinnickinnic River watershed, 30 percent or less of the assessment points would be expected to achieve compliance 85 percent of the time under the extreme measures condition. In the Menomonee River, Oak Creek and Root River watersheds, none of the assessment points would be expected to achieve 85 percent compliance even under the extreme measures condition. In the Milwaukee River watershed less than 10 percent of the assessment points would be expected to achieve 85 percent compliance, or better, under all four conditions.

In the Milwaukee outer harbor and nearshore Lake Michigan area, compliance with standards was evaluated through comparison of modeled water quality results with the standards for the fish and aquatic life water use objective with full recreational use. In the Harbor estuary, compliance with the standard would be expected 85 percent of the time or more at more than 80 percent of the assessment points under the revised 2020 baseline, recommended plan, and extreme measures conditions. In the Outer harbor and nearshore Lake Michigan area 85 percent compliance with the standard would be expected at all locations.

Substantial proportions of the total numbers of assessment points in the Kinnickinnic and Menomonee River watersheds, and to a lesser degree the Root River watershed, would be expected to achieve compliance in the 70 to 84 percent range. Large proportions of the total numbers of assessment points in the Milwaukee River, Oak Creek, and Root River watersheds, would be expected to achieve compliance less than 70 percent of the time.

Overall, in all riverine reaches, a low degree of compliance with this standard would be expected under all conditions considered. However, a high degree of compliance would be expected in the estuary, outer harbor, and nearshore Lake Michigan area.

# • Figures 59 and 60: Achievement of the Geometric Mean Fecal Coliform Bacteria Standard Assessed on an Annual Basis

Compliance with this standard 85 percent of the time would not be expected at a large number of assessment points in any of the watersheds under the four conditions analyzed, although, somewhat greater compliance would be expected under the extreme measures condition in the Kinnickinnic River watershed. That indicates that, if expenditures on additional point source controls could be foregone as might be possible under the recommended plan, additional resources directed toward control of nonpoint source pollution could achieve measurable improvements in water quality in that watershed.

In the Oak Creek and Root River watersheds, none of the assessment points would be expected to achieve compliance 85 percent of the time under any of the four conditions. With the exceptions of the Kinnickinnic River watershed under the extreme measures conditions only, compliance with this standard would be expected less than 70 percent of the time at a large proportion of the assessment points in all of the watersheds. In the estuary, the majority of assessment points would be expected to achieve 85 percent compliance, or better, under the revised 2020 baseline, recommended plan, and extreme measures conditions. All assessment points in the outer harbor and nearshore Lake Michigan area would be expected to achieve at least 85 percent compliance under all four conditions.

Overall, in all riverine reaches, a low degree of compliance with this standard would be expected under all conditions considered. However, a relatively high degree of compliance would be expected in the estuary and a high degree of compliance would be expected in the outer harbor, and nearshore Lake Michigan area.

# • Figures 61 and 62: Achievement of the Single Sample Fecal Coliform Bacteria Standard Assessed on a May to September Basis

In comparison to the previously-evaluated single sample standard assessed on an annual basis, much better compliance with this standard would be expected at assessment points in the Kinnickinnic and Menomonee River watersheds, and somewhat better compliance would be expected in the Milwaukee River watershed where implementation of the recommended plan would be expected to achieve a significant improvement relative to the revised 2020 baseline condition. For all four cases in the Root River watershed, 10 percent or fewer of the assessment points would be expected to achieve compliance 85 percent, or more, of the time. In the Oak Creek watershed, none of the assessment points would be expected to achieve compliance 85 percent of the time under any conditions except the extreme measures case, when about 10 percent of the assessment points would achieve 85 percent compliance. In the estuary, all assessment points would be expected to achieve 85 percent compliance, or better, under the revised 2020 baseline, recommended plan, and extreme measures conditions. In the outer harbor, and nearshore Lake Michigan area, all assessment points would be expected to achieve 85 percent compliance, or better, under all four conditions.

Overall, a relatively high degree of compliance with this standard would be expected in the Kinnickinnic and Menomonee River watersheds under the recommended plan and extreme measures conditions. In comparison to the single sample standard assessed on an annual basis that was evaluated above, assessment points in the Milwaukee and Root River watersheds would achieve higher levels of compliance with the standard under the recommended plan and extreme measures conditions, although those levels fall well short of what would be considered substantial compliance. Once again, the Oak Creek watershed would not be expected to achieve compliance 85 percent of the time under any conditions analyzed, except at 10 percent of the sites under the extreme measures condition. A high degree of compliance would be expected in the estuary, outer harbor, and nearshore Lake Michigan area under all conditions considered.

# • Figures 63 and 64: Achievement of the Geometric Mean Fecal Coliform Bacteria Standard Assessed on a May to September Basis

In comparison to the previously-evaluated geometric mean standard assessed on an annual basis, much better compliance with this standard would be expected in the Kinnickinnic and Menomonee River watersheds, and somewhat better compliance would be expected in the Milwaukee River watershed. In the Menomonee and Milwaukee River watersheds, implementation of the recommended plan would be expected to result in improved water quality relative to the revised 2020 baseline condition. While not quite as pronounced as for the geometric mean standard assessed on an annual basis, for this condition there are still large percentages of assessment points in the Kinnickinnic River, Menomonee River, Milwaukee River, Root River, and Oak Creek watersheds that would be expected to achieve less than 70 percent compliance with the standard under recommended plan conditions. In the estuary, outer harbor, and nearshore Lake Michigan area, all assessment points would be expected to achieve 85 percent compliance, or better, under all four conditions.

Overall, a relatively high degree of compliance with this standard would be expected at assessment points in the Kinnickinnic River watershed under the extreme measures condition and in the Menomonee River watershed under the recommended plan and extreme measures conditions. In comparison to the geometric mean standard assessed on an annual basis that was evaluated above, assessment points in the Milwaukee and Root River watersheds would be expected to achieve higher levels of compliance with the standard under the recommended plan and extreme measures conditions, although those levels fall well short of what would be considered substantial compliance. No assessment points in the Oak Creek watershed achieve compliance 85 percent of the time except under the extreme measures condition where 30 percent of the points would be expected to achieve compliance. A high degree of compliance would be expected in the estuary, outer harbor, and nearshore Lake Michigan area under all conditions considered.

### • Figures 65 and 66: Achievement of the Dissolved Oxygen Standard

In general, 85 percent compliance with this standard, or better, would be expected under existing, revised 2020 baseline, recommended plan, and extreme measures conditions at the assessment points in the Menomonee, Milwaukee, and Root River watersheds, as well as the estuary, outer harbor, and nearshore Lake Michigan area. A somewhat lesser, but relatively high, degree of compliance would be expected in the Kinnickinnic River watershed, and a lower level of compliance would be anticipated in the Oak Creek watershed. However, at the assessment points in the Kinnickinnic River and Oak Creek watersheds, general compliance with the standard would be expected 70 percent or more of the time. Many of the assessment points in the Oak Creek watershed that are in the 70 to 84 percent of time compliance range fall in the higher end of that range.

Overall, a high degree of compliance with this standard would be expected under all conditions considered. As noted above, compliance within the Oak Creek watershed is somewhat better than indicated by Figure 65, because, although significant percentages of the Oak Creek watershed assessment points fall in the 70 to 84 percent of time compliance range, many of the points fall in the higher end of that range.

#### Figures 67 and 68: Achievement of the Recommended Total Phosphorus Planning Standard

Compliance with the planning standard would be expected eighty-five percent of the time or more at:

- About 10 percent of the assessment points in the Kinnickinnic River watershed for the existing, revised 2020 baseline, and recommended plan conditions, and about 50 percent of the points under the extreme measures condition:
- Fifteen to 20 percent of the assessment points in the Menomonee River watershed for the existing, revised 2020 baseline, and recommended plan conditions, and about 25 percent of the points under the extreme measures condition;
- Twenty-five percent of the assessment points in the Milwaukee River for the existing and revised 2020 baseline conditions, and at about 40 percent of the points under the recommended plan and extreme measures conditions;
- No assessment points in the Oak Creek watershed. (However, the Oak Creek watershed is the
  only one where all of the assessment points would be expected to meet the planning standard 70
  percent, or more, of the time.); and
- Five percent of the assessment points in the Root River watershed under all four conditions.

In the estuary, over 80 percent of the assessment points would be expected to achieve compliance with the planning standard 85 percent of the time or more under existing and revised 2020 baseline

conditions. All assessment points would be expected to achieve 85 percent compliance, or better, under the recommended plan and extreme measures conditions. All assessment points in the outer harbor and nearshore Lake Michigan area would be expected to achieve at least 85 percent compliance under all four conditions.

Overall, with respect to the 85 percent of time bench mark, a relatively low degree of compliance with this standard would be expected in all of the watersheds under all four conditions. The assessment points in the Oak Creek watershed would be expected to achieve compliance with the planning standard more than 70 percent of the time for all four conditions. About half of the points in the Milwaukee River watershed and 60 to 70 percent of those in the Root River watershed would be expected to comply with the planning standard 70 percent or more of the time under all four conditions. About 30 percent of the assessment points in the Kinnickinnic River watershed would be expected to comply with the planning standard 70 percent or more of the time under the existing, revised 2020 baseline, and recommended plan conditions, and 80 percent of the points would comply 70 percent or more of the time under the extreme measures condition. About 50 to 55 percent of the assessment points in the Menomonee River watershed would be expected to comply with the planning standard 70 percent or more of the time under the existing, revised 2020 baseline, and recommended plan conditions, and about 90 percent of the points would comply 70 percent or more of the time under the extreme measures condition. A high degree of compliance with the planning standard would be expected in the estuary, outer harbor, and nearshore Lake Michigan area.

Comparison of Water Quality Conditions: Revised 2020 Baseline vs. Revised 2020 Baseline with Five-Year Level of Protection Against SSOs from MMSD System

The water quality assessment points in, or downstream from, the MMSD planning area that are indicated on Maps N-1 through N-6 are the only assessment points that could be affected by SSOs from the MMSD system. Outside of those locations, there is no difference in the water quality statistics between the revised 2020 baseline condition and the revised 2020 baseline with a five-year level of protection (LOP) against SSOs from the MMSD system. Comparison of the water quality conditions tabulated in Appendix N (revised) with and without the five-year LOP (at those locations where there could be SSOs from the MMSD system) indicates no significant difference in water quality under the two conditions. That conclusion supports the observation that has been stated previously in this report that further reductions in point sources of pollution would be expected to have no significant effects on water quality.

### Appendix J (revised)

## COMPARISON OF WATER QUALITY SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS

[NOTE: These page numbers match those in PR No. 50.]

link to revised Appendix J

### Appendix K (revised)

## WATER QUALITY STANDARD COMPLIANCE SUMMARY STATISTICS FOR ALTERNATIVE WATER QUALITY MANAGEMENT PLANS

[NOTE: These page numbers match those in PR No. 50.]

link to revised Appendix K

### Appendix N (revised)

## WATER QUALITY SUMMARY STATISTICS FOR THE RECOMMENDED PLAN

[NOTE: These page numbers match those in PR No. 50.]

link to revised Appendix N

(This Page Left Blank Intentionally)

### **Amendment to SEWRPC Planning Report No. 50**

# A REGIONAL WATER QUALITY MANAGEMENT PLAN UPDATE FOR THE GREATER MILWAUKEE WATERSHEDS

**May 2013** 

### Attachment A

### TETRA TECH MEMORANDUM

(This Page Left Blank Intentionally)

3200 Chapel Hill-Nelson Hwy, Suite 105 • PO Box 14409 Research Triangle Park, NC 27709 Tel 919-485-8278 • Fax 919-485-8280



### Memorandum

To: Michael Hahn (SEWRPC) and

Tim Bate (MMSD)

From: Scott Job, Kevin Kratt,

Jon Butcher

Nutrient Output for Milwaukee Subject: HSPF Models (Revised)

Date:

100-CLE-T27944 Proj. No.

March 13, 2012

cc:

# **Nutrient Output Processing Error**

While post-processing results for the Milwaukee Climate Change Risk Modeling Project, we discovered an error in the HSPF input files that affected the summation and reporting of total nitrogen (TN) and total phosphorus (TP) used in the development of the RWQMPU. The error did not involve the parameterization or water quality calibration of the models, but it did affect reported output for TN and TP from the second-tier set of assessment points, specifically for concentration-based statistical measures.

The models simulate ammonia-N, nitrate-N, organic-N, orthophosphate-P, and organic-P individually and were calibrated for these nutrient species. The error was a result of an improper conversion factor applied to the inorganic fraction of N and P when calculating sums for TN and TP. The lines in the UCI model files containing the improper factor were added following the calibration of the models to provide text file output of simulation results for assessment points not covered by water quality calibration sites. Assessment results coincident with the calibration sites had output stored in the project WDMs, and these locations had the proper factors. Text file output was used to prevent the model WDM from becoming overly large.

It is important to distinguish what was and was not affected in the results:

#### Not Affected

- The Milwaukee River model
- Model calibration/validation
- All load predictions
- Boundary conditions to the estuary model
- Direct drainage areas
- Internal calculations, and any reported results for nutrient species
- Statistical measures for

- o Fecal coliform bacteria
- Dissolved oxygen
- o BOD
- Metals
- Sediment
- Statistical measures for TN and TP reported at the initial set of analysis locations (co-located with calibration monitoring stations)

#### Affected

- Kinnickinnic River, Menomonee River, Oak Creek, and Root River models only
- TN and TP statistical measures for assessment points other than those at monitoring stations, for:
  - o Mean and median TN and TP
  - Percent of time TP exceeds the 0.1 mg/L criterion

Specific stations affected are listed below.

| Watershed  | PR-50 Map ID# | Model Reach |
|------------|---------------|-------------|
| Root River | RT-5          | 620         |
| Root River | RT-6          | 817         |
| Root River | RT-7          | 819         |
| Root River | RT-8          | 850         |
| Root River | RT-9          | 837         |
| Root River | RT-11         | 866         |
| Root River | RT-12         | 870         |
| Root River | RT-13         | 883         |
| Root River | RT-14         | 856         |
| Root River | RT-15         | 860         |
| Root River | RT-16         | 897         |
| Root River | RT-18         | 120         |
| Root River | RT-19         | 125         |
| Root River | RT-20         | 128         |
| Root River | RT-21         | 132         |
| Root River | RT-22         | 140         |
| Oak Creek  | OK-2          | 240         |
| Oak Creek  | OK-5          | 52          |
| Oak Creek  | OK-6          | 130         |

| Watershed    | PR-50 Map ID# | Model Reach |
|--------------|---------------|-------------|
| Kinnickinnic | KK-1          | 831         |
| Kinnickinnic | KK-2          | 801         |
| Kinnickinnic | KK-3          | 710         |
| Kinnickinnic | KK-4          | 828         |
| Kinnickinnic | KK-5          | 830         |
| Kinnickinnic | KK-6          | 820         |
| Kinnickinnic | KK-7          | 19          |
| Kinnickinnic | KK-8          | 818         |
| Menomonee    | MN-1          | 6           |
| Menomonee    | MN-2          | 803         |
| Menomonee    | MN-3          | 812         |
| Menomonee    | MN-4          | 820         |
| Menomonee    | MN-6          | 834         |
| Menomonee    | MN-7          | 841         |
| Menomonee    | MN-8          | 855         |
| Menomonee    | MN-10         | 861         |
| Menomonee    | MN-11         | 871         |
| Menomonee    | MN-13         | 890         |
| Menomonee    | MN-14         | 905         |
| Menomonee    | MN-15         | 883         |
| Menomonee    | MN-16         | 914         |



The conversion factor for translating fecal coliform from mass count to concentration (8.107E-8) was used in place of the factor for lb/ac-ft to mg/L (0.368). This was applied to inorganic species in the summation of TN and TP only. As a result, the concentration in the model text output files essentially represents the organic fraction of TN and TP, which is an underestimate.

## 2 Impacts of the Error

The influence on results is variable, depending largely on the relative contribution of the inorganic fraction to the total value. Assessment points downstream of point sources with high output of inorganic nutrient mass are the most affected, since the reporting error reflected conditions in the reach. In addition, our comparisons to date have been conducted only for the climate scenario results, which (with the exception of Oak Creek) used altered meteorological inputs. Even so, a before-and-after comparison of underreported versus corrected results provides an indication of the discrepancy. Two examples are shown here. The first shows typical changes; mean TP is about 57 percent high, and mean TN is about 100 percent higher. Most stations appear to follow this pattern within a range of +/- 30 percent. The degree of change in TP percent compliance is more variable, depending heavily on how close the mean is to 0.1 mg/L. Example B shows the location with the largest change, in a small channel downstream of GE and several smaller industrial discharges. The difference is much larger (on the order of a 300 percent increase for TP), and TP percent compliance drops to a single digit once the inorganic component of TP from the discharges in this effluent-dominated watercourse is included in the accounting.

Example A - Typical Difference (OK-2: North Branch of Oak Creek)

| Parameter        | Measure                                     | Original | Corrected |
|------------------|---------------------------------------------|----------|-----------|
| Total Phosphorus | Mean (mg/l)                                 | 0.0457   | 0.0721    |
|                  | Median (mg/l)                               | 0.0243   | 0.0298    |
|                  | Percent compliance with 0.1 mg/l standard   | 88       | 80        |
|                  | Percent compliance with 0.075 mg/l standard | 83       | 76        |
| Total Nitrogen   | Mean (mg/l)                                 | 0.45     | 0.91      |
|                  | Median (mg/l)                               | 0.41     | 0.8       |

Example B - Large Difference (KK-2: S. 43rd Street Ditch)

| Parameter        | Measure                                     | Original | Corrected |
|------------------|---------------------------------------------|----------|-----------|
| Total Phosphorus | Mean (mg/l)                                 | 0.0834   | 0.3303    |
|                  | Median (mg/l)                               | 0.0721   | 0.3179    |
|                  | Percent compliance with 0.1 mg/l standard   | 85       | 2         |
|                  | Percent compliance with 0.075 mg/l standard | 65       | 1         |
| Total Nitrogen   | Mean (mg/l)                                 | 0.77     | 1.55      |
|                  | Median (mg/l)                               | 0.75     | 1.54      |



## 3 Fixing the Error in the UCI Files

As noted above, the error only affects the additional reporting stations. Within the NETWORK block there is a separate section for each new station. Each of these follows a consistent format and is labeled as "\*\*\* new station", as in the following example from the Kinnickinnic model (highlights added), except that the RCHRES, PLGTEN, COPY, and GENER numbers will change.

```
<-Grp> <-Member-><-Mult-->I'ran <-Target vols> <-Grp> <-Member->
<-Volume->
<Name>
                    <Name> # #<-factor->strg <Name>
                                                                         <Name> #
*** new station 1
RCHRES 818 OXRX
                    BOD
                                                PLTGEN
                                                                 INPUT
                                                                         MEAN
RCHRES
       818
                    PHYCLA
                            1
                                                                         MEAN
                                                PLTGEN
                                                                 INPUT
RCHRES 818
            CONS
                    CON
                                                PLTGEN
                                                                 TNPUT
                                                                         ME.AN
RCHRES
       618
                    DOX
                                                PLTGEN
                                                                 INPUT
                                                                         MEAN
            OXRX
RCHRES
       818
            GQUAL
                    RSQAL
                            4
                                                COPY
                                                                  INPUT
                                                                         MEAN
RCHRES
       818
                    RDOAL
                                                COPY
                                                                         MEAN
                                                                  INPUT
                                                        186
COPY
         86
            OUTPUT
                    MEAN
                                                GENER
                                                                  INPUT
                                                                         ONE
RCHRES 818
                                                GENER
            HYDR
                                                                  INPUT
GENER
            OUTPUT
                    TIMSER
                                 8.107E-8
                                                PLTGEN
                                                                 INPUT
                                                                         MEAN
RCHRES
        818
            NUTRX
                    DNUST
            NUTRX
                    DNUST
                                                COPY
                                                                         MEAN
RCHRES
        818
            NUTRX
                    DNUST
                            3
                              1
                                                COPY
            QUTPUT
                    MEAN
                                                PLIGEN
                                                                  INPUT
                                                                         MEAN
RCHRES
                                                PLTGEN
       818
                    DNUST
RCHRES
       818
                              1
                                                PLTGEN
                                                                 INPUT
                                                                         MEAN
            HYDR
RCHRES
       818
                    NUST
                            23
RCHRES
       818
                    NUST
                                                COPY
                                                                 INPUT
                                                                         MEAN
            NUTRX
RCHRES
       818
                                                         93
            OUTPUT
                                                GENER
                                                                 TNPUT
                                                                         ONE
RCHRES
       819
                                                GENER
RCHRES
       618
            PLANK
                    PKST3
                            4
                                                PLTGEN
                                                                 INPUT
                                                                         MEAN
                                                PLTGEN
RCHRES 818
                                                        194
            NUTRX
                                                GENER
                                                                 INPUT
                                                                         ONE
RCHRES
                                                GENER
            OUTPUT
                    TIMSER
                                                COPY
                                                                 INPUT
                                                                         MEAN
                            5
RCHRES
       818
            PLANK
            OUTPUT
                                                PLTGEN
                                                                 INPUT
RCHRES
       818
            SEDTRN
                            4
                                                PLTGEN
       818
            SEDTRN
                            4
                                                GENER
                                                                 INPUT
RCHRES
                                                                         ONE
RCHRES
                                                GENER
            OUTPUT
                                                PLTGEN
                                                                 INPUT
                                                                         MEAN
RCHRES 818
            CONS
                    CON
                                                PLTGEN
                                                                         MEAN
            OUTPUT
                    TIMSER
                                  8.107E-9
                                                PLTGEN
                                                                 INPUT
                                                                         MEAN
RCHRES
       818
            OXRX
                    DOX
                                                PLTGEN
                                                                 INPUT
                                                                         MEAN
                            1
                              1
            OUTPUT MEAN
                                                PLICEN
                                                                 INPUT
                                                                         MEAN
```

The error occurs in the multiplication factors column – specifically in the second and third non-blank multipliers, which respectively point (in this case) to PLTGEN 93 and 94. The PLOTINFO block shows that these PLTGENs are associated with file numbers 93 and 94, and that these in turn are the output for TN and TP. Specifically, the lines in question are routing (1) the concentration calculated from the sum of inorganic N storages (from NUST 1, NUST 2, and NUST 3) and (2) the concentration calculated from the PO<sub>4</sub> storage (from NUST 4) to the concentration summations for TN and TP. The lines should occur in the same order in each new station output block.

The conversion factor is to convert mass (or bacterial number) divided by volume (in AF) to concentration. The factor 8.107E-8 is the appropriate factor for producing feeal coliform concentrations in #/100 ml, and properly occurs twice in the block. The correct factor for converting mass (lbs) divided by volume (AF) to concentration in mg/L is 0.368. Each "new station" section within the NETWORK block should thus be corrected as follows:

TE TETRA TECH

| tett nev | a sta | ation 1 |        |       |   |                     |        |     |     |       |              |         |
|----------|-------|---------|--------|-------|---|---------------------|--------|-----|-----|-------|--------------|---------|
| RCHRES   |       | OXRX    | BOD -  | 1     | 7 |                     | PLTGEN | 81  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | PLANK   | PHYCLA | 1     | 1 |                     | PLTGEN | 82  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | CONS    | CON    | 1     | 1 |                     | PLTGEN | 83  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | OXRX    | DOX    | 1     | 1 |                     | PLTGEN | 84  | 85  | INPUT | MEAN         | 1       |
| RCHRES   | 818   | GQUAL   | RSQAL  | 4     | 1 |                     | COPY   | 86  |     | INPUT | MEAN         | 11111   |
| RCHRES   | 818   | GQUAL   | RDQAL  | 1     | 1 |                     | COPY   | 86  |     | INPUT | MEAN         | 1       |
| COPY     | 86    | OUTPUT  |        | 1     |   |                     | GENER  | 186 |     | INDUT | ONE          |         |
| RCHRES   | 818   | HYDR    | VOL    |       |   | Constitution of the | GENER  | 186 | 0.3 | INPUT | CWT          | 15      |
| GENER    | 186   | OUTPUT  | TIMSER | 1     |   | 8.107K-8            | PLTGEN | 86  | 87  | INPUT | MEAN         | 111     |
| RCHRES   | 818   | NUTRX   | DNUST  | 2     | 1 |                     | PLTGEN | 88  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | NUTRX   | DNUST  | 1     |   |                     | COPY   | 89  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | NUTRX   | DNUST  | 3     | 1 |                     | COPY   | 89  |     | INPUT | MEAN         | 1       |
| COPY     | 89    | OUTPUT  | MEAN   | 3 1 4 |   |                     | PLTGEN | 89  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | NUTRX   | DNUST  |       | 1 |                     | PLTGEN | 90  | 200 | INPUT | MEAN         | 1 1 1 1 |
| RCHRES   | 818   | HYDR    | RO     | 1     | 1 |                     | PLTGEN | 91  | 92  | INPUT | MEAN         | 1       |
| RCHRES   | 818   | NUTRX   | NUST   | 12    | 1 |                     | COPY   | 93  |     | INPUT | MEAN<br>MEAN | 1       |
| RCHRES   | 818   | NUTRX   | NUST   |       | 1 |                     | COPY   | 93  |     | INPUT | MEAN         | 1       |
| COPY     | 93    | OUTPUT  | MEAN   | 3     | T |                     | GENER  | 193 |     | INPUT | ONE          | -1      |
| RCHRES   | 818   | HYDR    | VOL    | +     |   |                     | GENER  | 193 |     | INPUT | TWO          |         |
| RCHRES   | 818   | PLANK   | PKST3  | 4     | 1 |                     | PLIGEN | 93  |     | INPUT | MEAN         | 7       |
| GENER    | 193   | OUTPUT  | TIMSER | 4     |   | 0.368               | PLTGEN | 93  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | NUTRX   | NUST   | 4     |   | Distriction.        | GENER  | 194 |     | INPUT | ONE          | -       |
| RCHRES   | 818   | HYDR    | JOV    | ,     |   |                     | GENER  | 194 |     | INPUT | TWO          |         |
| GENER    | 194   | OUTPUT  | TIMSER |       |   | 0.368               | COPY   | 94  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | PLANK   | PKST3  | 5     | 1 |                     | COPY   | 94  |     | INPUT | ME:AN        | 1 1 1   |
| COPY     | 94    | OUTPUT  | MEAN   | 14    |   |                     | PLTGEN | 94  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | SEDTRN  | SSED   | 4     | 1 |                     | PLTGEN | 95  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | SEDTRN  | SSED   | 4     | 1 |                     | GENER  | 196 |     | INPUT | ONE:         |         |
| RCHRES   | 818   | HYDR    | RO     | 1     | 1 |                     | GENER  | 196 |     | INPUT | TWO          |         |
| GENER    | 196   | OUTPUT  | TIMSER |       |   | 1.0                 | PLTGEN | 96  |     | INPUT | MEAN         | 1       |
| RCHRES   | 818   | CONS    | CON    | 2     | 1 | Tal-2507 W          | PLTGEN | 97  |     | INPUT | MEAN         | 1       |
| GENER    | 186   | OUTPUT  | TIMSER |       |   | 8.107E-8            | PLTGEN | 78  |     | INPUT | MEAN         | 1 1 1   |
| RCHRES   | 818   | OXRX    | DOX    | 1     | 1 |                     | PLTGEN | 79  |     | INDUL | MEAN         | 1       |
| COPY     | 94    | OUTPUT  | MEAN   | 1     | 1 |                     | PLTGEN | 80  |     | INPUT | MEAN         | 1       |

Note that this block is in column-sensitive, fixed format. Therefore, the user should ensure that (1) the new factor begins in column 32, and (2) the following PLTGEN or COPY key word continues to begin in column 44.

TE TETRATECH

5