

- Water quality samples were available for the period 1952 through 2016 from 46 sites on 7 streams
 - Mainstem Oak Creek—28 sites
 - North Branch Oak Creek—10 sites
 - Mitchell Field Drainage Ditch—4 sites
 - Four tributary streams—I site each

• Sites differ in the amount of available data

- Bacteria used to judge suitability of water for human contact
 - Two groups used
 - -Fecal coliform bacteria a group of bacteria species found in the guts of warm blooded animals
 - -E. coli one species of fecal coliform bacteria
 - These do not generally cause disease
 - High concentrations may indicate the presence of contamination by fecal wastes which can carry disease-causing organisms

Water Quality Monitoring

 Fecal wastes may come from sanitary sewage, agricultural and barnyard wastes, domestic pets, and wild animals

Water Quality Monitoring

- Water quality standards for bacteria:
 - Fecal coliform bacteria
 - -Geometric mean of concentrations in samples not to be higher than 200 cells per 100 ml
 - -Single sample concentrations not to be higher than 400 cells per 100 ml
 - E. coli
 - -Geometric mean of concentrations in samples not to be higher than 126 cells per 100 ml
 - -Single sample concentrations not to be higher than 410 cells per 100 ml

Lower concentrations at upstream stations which may reflect low flows,

drop structures, sediment, and discharges from stormwater outfalls

43

- Dissolved oxygen concentrations are very low in the Mitchell Field
 - Concentrations are below the 5.0 mg/l standard in over half the samples taken during 2007-
 - Possible causes include aircraft deicing compounds, degradation of organic matter in sediment behind beaver dams, discharges of unknown substances into this

gure 4.X Dissolved Oxygen-8 rbid Blue Water in the Mitchell Field Drai mber 29, 2017

48

- Chloride Naturally present at low concentration
 - Not decomposed, altered, or removed by natural processes
 - Highly soluble \rightarrow goes where the water goes
 - Too much imparts salinity to water and can be harmful to organisms
 - Sources include deicing salts, water softening, chemical fertilizers, sewage, and animal wastes

- Total suspended solids (TSS) Particles of sand, silt, clay; planktonic organisms; and fine organic and inorganic debris suspended in water
 - Kept suspended by flow
 - When flow slows down, larger and heavier particles settle out
 - Can cause sedimentation, reduced water clarity
 - Other materials such as nutrients, organic molecules, metals, and microorganisms can adsorb to these particles

- Complete the rest of Chapter 4 text
- Receive comments on new Chapter 4 text from the Advisory Group and Stakeholders in early 2020

