Attachment 3

### Responsible Options for an Affordable Green Future



Scott Thistle Brookstone Homes

## Outline

- Options for Building and Developing Affordable Green Subdivisions
- Affordable Green Home Construction Options
- Affordable Green Development Options
- What are the Costs Associated with Each Option
- Case Studies
- Which has a Greater Impact?
- Advanced Energy Features

### Context Setting

### **Two Questions:**

### What is Affordable? What is Green?

## What is Affordable?

#### Median Household Income & Housing Value 2008

- State of Wisconsin \$48,000
- Milwaukee County \$38,000 / \$145,700 = 3.83
- Racine County \$50,000 / \$157,800 = 3.15
- Kenosha County \$53,000 / \$165,500 = 3.12
- Waukesha County \$69,000 / \$235,700 = 3.41
- Ozaukee County \$74,000 / \$243,400 = 3.28
- Washington County \$60,000 / \$207,200 = 3.45

## What is Green?

#### **Good Question!**

- Types of Programs
  - Green Built Home (Wisconsin Environmental Initiative)
  - Energy Star Certification
  - NAHB Green Home Certification
  - LEED (US Green Building Council)
- House Construction vs. Development
- Which has the Biggest Impact on the Environment?

### Green Home Construction

- Site Options
- Energy Star Certification (10% Annual)
- OVE Framing (10% Energy Savings)
- Energy Heel Truss (25% Better)
- Mechanical Systems (T-Stat 10-15%)
- Windows (50% Heat Gain/loss)
- Electrical (20% Lighting -75% Better)
- Plumbing (20,000 Gal + Annually)

### What Does it All Cost?

Energy Star Certification \$400 OVE Framing \$500 Energy Heel Truss \$ 175 Mechanical Systems \$580 Windows \$ 100 (Low-E) Electrical \$ 155 (\$5-\$7 per bulb) Plumbing \$ 500

### What Does it All Cost?

- 1400 Square Foot House at \$65 per/foot Cost
  Bricks & Sticks Cost About \$91,000
- Minimum Green Improvements \$ 2500 or 2.47%
- This Premium Adds About \$17.00 per/month and About \$6000 Over the Life of a 30 Year Mortgage

### Advanced Green Features

|                                    | Contract of the second |          |                         |                        |                |                 |         |          |
|------------------------------------|------------------------|----------|-------------------------|------------------------|----------------|-----------------|---------|----------|
|                                    |                        | Focus on |                         |                        | Standard       | "Green"         | Yearly  |          |
|                                    |                        | Energy   |                         | <b>"Green"</b> Product | product        | product         | savings | Buy      |
| Green Feature                      | Price                  | Rebate   | <b>Standard Product</b> | saving feature         | yearly usage   | savings (unit)  | (\$)    | back     |
| Low flow                           | \$160                  | \$0      | 2.2 gpm faucet/2.5      | 1.5 gpm faucet/1.75    | 8212 gallons   | 1058 gallons    | \$116   |          |
|                                    |                        |          |                         |                        |                |                 |         |          |
| faucets/showers                    |                        |          | gpm shower              | gpm shower             |                |                 |         | 1 year   |
| Dual flush toilets                 | \$350                  | \$0      | 1.6 g/flush             | .8 g/flush/1.6         | 6752 gallons   | 3760 gallons    | \$415   |          |
|                                    |                        |          |                         | g/flush                |                |                 |         | 1 year   |
| Energy Star rating light           | \$1,700                | \$360    | non-energy star         | use 75% less           | \$90           | \$67.50         | \$68    | 10000000 |
| fixtures                           |                        |          | rated                   | energy                 |                |                 |         | 25 years |
| Solar 1.2 kW PV Module             | \$16,500               | \$2,845  | none                    | produces 1563 kW-      | 10,000         | 1563 kw-hr/year | \$187   |          |
| System                             |                        |          |                         | hr/year                | kwhr/year      |                 |         | 88 years |
| Solar Hot Water System             | \$13,250               | \$3,000  | 40 gallon power         | heats 80% of hot       | 212 therm/year | 153 therm of    | \$180   |          |
| - 80 gallon                        |                        |          | vented tank             | water usage            |                | gas             |         | 73 years |
|                                    |                        |          |                         |                        |                |                 |         |          |
| *estimated price for solar pa      | not reflect FOE        | rebate   |                         |                        |                |                 |         |          |
| *all number based on 2.5 bath home |                        |          |                         |                        |                |                 |         |          |
| Carlor Bart                        |                        |          |                         |                        |                |                 |         |          |
| TOTALS:                            | \$31,960               | \$6,205  |                         |                        |                |                 | \$966   |          |

Notes

| Notes           |       |  |                            |  |  |  |  |
|-----------------|-------|--|----------------------------|--|--|--|--|
| 4 family home   |       |  |                            |  |  |  |  |
|                 |       |  | one Therm =<br>100,000 Btu |  |  |  |  |
| Therms per year | 1450  |  | cost = \$1.18/therm        |  |  |  |  |
| kW-hr/year      | 10000 |  | cost = \$.12 Kwhr          |  |  |  |  |
| water usage     | 39785 |  | cost = \$.11/gallon        |  |  |  |  |

# What is the use of a fine house if you haven't got a tolerable planet to put it on?

### -Henry David Thoreau

## Wisconsin Trends

#### Trends

- Population 21.4% Increase from 1970-2000
- 2030 Population Estimated to be 6.42 Million
- Household Size Should Decrease from 2.5 to 2.3
- 88% of Americans Drive to Work
- 79.5% of Wisconsinites Drive Alone to Work
- Farm Land 18% Decrease from 1975-2000
- Number of Farms 25.5% Decrease from 1975-2000
- Water Conservation
- Climate Change
- Renewable Energy
- Availability of Land

## Sprawl Causes

- Low Suburban Land Prices
- Low Transportation Costs
- Demographics
- Record Low Mortgage Rates
- Government Regulations

### Impacts of Sprawl

- Higher Rates of Driving & Vehicle Ownership
- Greater Risk of Fatal Auto Accidents
- Increased Levels of Green House Gas Emissions
- Depressed Rates of Walking & Alternative Transportation Use (Mass Transit)
- Greater Loss of Public Open Space
- Risk to Wildlife Habitat and Endangered Species
- Health and Physical Activity

## My Assumptions

- More Opinion Less Fact
- Development Strategies Can Have Larger Impact
- Urban Sprawl is "Not Good"
- Government Regulations & Zoning Play a Large Role
- Development & Growth is The Answer....Not The Problem
- Being Against Sprawl Does not Mean Being Against Growth

### Benefits Of "Smart" Growth

- Reduction of Greenhouse Gas Emissions
- Better Management of Rivers & Lakes
- Less Energy Consumption
- Preservation of Farm Land & Native Areas
- Utilization of Public Transportation Increases
- Increase of Public Park Space
- Wildlife Protection

## Public Opinion?

 Poll Taken by the National Association of Realtors Found that 57% of Voters Would be More Likely to Purchase Close to Green Space or Park

 50% Said They are Willing to Pay 10% More for this Amenity

## Case Study

- 90 Lot Subdivision that Brookstone Homes Built in 2005
- Major Southeastern Wisconsin City
- Minimum Lot Size 80' x 120' (9662 sq ft)
- Entryway 100' Pavement to 80' Pavement
- All Other Roads Were 66'
- Original Density was 2.25 Units per/acre

## What Was Done?

- Reduced Lot Size to 60' X 100'
- Reduced all Roadway Size to 28' and 25'
- Reconfigured Street Layout
- Assumed an Average of 2467 Square Feet of Impervious Surface per Lot
- Increased Density from 2.25 to 2.77

### The Results

#### **Original 90 Lot Layout**

- Density 2.25
- Centerline 6392'
- Impervious 10.9 ac
- Street Impervious 8.9 ac
- Open space 5.2 ac
- Pond Size 139,473 sq ft

#### New 111 Lot Layout

- Density 2.77 (23%)
- Centerline 6833' (7%)
- Impervious 10.2 ac (-6.5%)
- Street Impervious 3.9 ac (-56%)
- Open space 11.6 ac (122%)
- Pond Size 156,968 sq ft

### What About Tax Dollars?

#### 90 Lots

- Lot Cost \$58,771
- Home & Lot Selling Price (25%) \$235,082
- Assessment Ratio 102.08
- Assessed Value \$241,664
- Mill Rate 15.77
- Annual Tax Per Home \$3,811
- Total Annual Community Tax \$342,994

#### 111 Lots

- Lot Cost \$47,944
- Home & Lot Selling Price (25%) \$191,777
- Assessment Ratio 102.08
- Assessed Value \$197,147
- Mill Rate 15.77
- Annual Tax Per Home \$3,109
- Total Annual Community Tax \$345,100

## Summary

- Density Increase 23% (Only 21 Lots)
- Decreased Impervious Road Pavement 56% (5 Total Acres)
- Overall Impervious Surface Decreased 6.5%
- Open Space Increased 122% (6.4 Acres)
- Tax Revenue Neutral





### Is It Affordable?

 Conservative Estimates put Home and Lot Cost at 20% Less

20% on a \$235,000 Home is \$47,000
 — That's about \$300.00 per/month

### Will it Work?

- University of Southern California Study shows that Baby Boomers (1946-1964) have an increased preference for more compact, walkable neighborhoods with a greater sense of community.
- Yankelovich Consultants found that Generation X (1960's-early 80's) buyers have a stronger commitment to traditional neighborhood relationships and more highly value sidewalks and nearby recreational facilities.
- A 2002 Housing Preference Study (Atlanta) found that 40% of those surveyed would trade a larger lot for a smaller lot to obtain amenities such as: sidewalks, narrower connected streets, shops & services, parks, and sense of community.

### Another Interesting Case Study

#### Low Density

- 191 Acres
- 110 Homes
- Average Housing Price \$400,000 +
- Zero Public Open Space
- Zero Schools, Shopping, or Work Locations
- Automobile Use Required
   100%

#### **High Density**

- 191 Acres
- 610 Homes
- Average Housing Price \$185,000
- 75 Acres or 40% of Total
- Multiple Schools, Shopping, and Work Locations Nearby
- Automobile Use Optional
   Much of the Time





## Consider This

- The Green Housing Movement is Much More Than Building Green Homes
- Energy Demand in The United States is a Runaway Train (Oil Consumption in US is More Than China, Japan & India Combined)
- Do You Really Believe There Will Always be More?
   Oil
  - Land & Open Space
  - Clean Water
- It is Time For a Paradigm Shift in Wisconsin!

