

SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION

KENOSHA COUNTY

Anita M. Faraone Adelene Greene, Secretary Robert W. Pitts

MILWAUKEE COUNTY

Brian Dranzik William R. Drew, Treasurer John F. Weishan, Jr.

OZAUKEE COUNTY

Thomas H. Buestrin William E. Johnson Gus W. Wirth, Jr.

RACINE COUNTY

Susan S. Greenfield Mary A. Kacmarcik Michael J. Miklasevich

WALWORTH COUNTY

Richard A. Hansen, Vice-Chairman Gregory L. Holden Nancy Russell

WASHINGTON COUNTY

John M. Jung Daniel S. Schmidt David L. Stroik, Chairman

WAUKESHA COUNTY

James T. Dwyer Anselmo Villarreal Paul G. Vrakas

SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION STAFF

Kenneth R. Yunker, PE
Stephen P. Adams Public Involvement and Outreach Manager
Nancy M. Anderson, AICP Chief Community Assistance Planner
Michael G. Hahn, PE, PH Chief Environmental Engineer
Christopher T. Hiebert, PE Chief Transportation Engineer
Elizabeth A. Larsen Business Manager
John G. McDougall Geographic Information Systems Manager
John R. Meland Chief Economic Development Planner
Dr. Donald M. Reed Chief Biologist
Donald P. Simon, RLS Chief Planning Illustrator
William J. Stauber Chief Land Use Planner

ERRATA SHEET

1

PAGE No. 122 of Appendix G-4 (continued)

Lower photograph text should read:

"West view of Soil Sample Site No. 4"

MEMORANDUM REPORT NO. 189

PROPOSED NORTH LAKE BOAT LAUNCH SITE WETLAND DELINEATION WAUKESHA COUNTY, WISCONSIN

Prepared by the

Southeastern Wisconsin Regional Planning Commission

W239 N1812 Rockwood Drive P.O. Box 1607 Waukesha, Wisconsin 53187-1607 www. sewrpc.org

July 2009

(This page intentionally left blank)

TABLE OF CONTENTS

Page

INTRODUCTION	1
METHODS	1
RESULTS AND DISCUSSION	5
Description of the Site	5
Site History	5
Topography	5
Plant Communities	5
Mapped Soils	5
Hydrology Information	6
Existing Wetland Mapping	7
Previous Wetland Delineations	7
Natural Areas and Critical Species Habitat	7
Findings	8
Vegetation	8
Soils	9
Hydrology	10
Conclusions	11
Literature Cited	12

LIST OF APPENDICES

Appendix		Page
А	Past Wetland Delineation Reports	15
A-1	July 24, 2003, SEWRPC wetland delineation report	17
A-2	July 8, 2008, SEWRPC wetland delineation report	30
В	Topographic/Survey Information	45
B-1	SEWRPC large scale topographic map with 100-year floodplain	47
B-2	2007 aerial photo with topography & 100-year floodplain – Waukesha Co. website	48
B-3	SEWRPC Record of U.S. Public Land Survey Section Control Station	49
С	Aerial Photography	51
C-1	1941 – Waukesha Co. website	53

C-2	1950 – Waukesha Co. website	54
C-3	March, 1963 – Waukesha Co. website	55
C-4	April, 1970 – Waukesha Co. website	56
C-5	April, 1980 – Waukesha Co. website	57
C-6	March, 1985 –SEWRPC files	58
C-7	March, 1990 – Waukesha Co. website	59
C-8	March, 1995 – Waukesha Co. website	60
C-9	March, 2000 – Waukesha Co. website	61
C-10	April, 2005 – Waukesha Co. website	62
C-11	April, 2007 – Waukesha Co. website	63
D	Wetland Inventory Maps	65
D-1	Natural Resources Conservation Service Draft Wetland Map	67
D-2	1985 Wisconsin Wetland Inventory Map	68
D-3	2005 Wisconsin Wetland Inventory Map	69
Е	Soils Information	71
E-1	2007 aerial photo with soil types and hydric status – Waukesha Co. website	73
E-2	Typical soil series profiles mapped on site – The Soil Survey of Milwaukee and Waukesha Counties, USDA, SCS, July, 1971	74
E-3	Summary list of applicable hydric soil field indicators (v. 6.0) – USDA, NRCS	75
F	National Oceanic & Atmospheric Administration Precipitation Records	77
F-1	December 2007 through August 2008 total precipitation and departure from normal records (see Hartford and Oconomowoc stations) in tabular format	79
F-2	September 2008 through November 2008 precipitation records (see Hartford and Oconomowoc stations) shown graphically	88
G	Current SEWRPC Wetland Delineation Report	91
G-1	2007 aerial map exhibit showing project area, plant community numbers/locations, sample site numbers/locations, and wetland and primary environmental corridor boundaries	93
G-2	Preliminary Vegetation Survey	94

G-3	SEWRPC Field Data Forms	101
G-4	Site Photographs	115

LIST OF TABLES

Table		Page
1	Monthly Precipitation at Hartford and Oconomowoc Stations: December 2007 Through November 2008	7

LIST OF MAPS

Map		Page
1	Location of Project Area	2
2	Location of Project Area	3

(This page intentionally left blank)

Proposed North Lake Boat Launch Site Wetland Delineation

INTRODUCTION

On June 4, 2008, an electronic mail message was received from Ms. Joanne Kline, Environmental Analysis and Review Specialist of the Wisconsin Department of Natural Resources, Southeast Region staff, requesting the Commission staff to conduct an interagency field inspection of the proposed North Lake Boat Launch Site (see Map 1) on the former Kraus property (SEWRPC No. CA-718-49). The subject property is currently under ownership by the Wisconsin Department of Natural Resources.

The purpose of the requested field inspection was: 1) to re-identify and re-stake in the field the boundary of the wetlands within the project area, and 2) to verify any changes to the wetland boundaries that may have occurred since the Commission's July 24, 2003, delineation on the project area (see Appendix A for delineation report).

The approximately 1.4 acre proposed North Lake Boat Launch Site project area is located in the Southeast onequarter of U. S. Public Land Survey Section 17, Township 8 North, Range 18 East, Town of Merton, Waukesha County, Wisconsin (see Maps 1 and 2). It is proposed to provide a public boat access to North Lake.

Interagency field inspections of the project area were conducted on July 8, 2008, and October 14, 2008, by Dr. Donald M. Reed, Chief Biologist; Dr. Lawrence A. Leitner, Principal Biologist; Mr. Christopher J. Jors, Biologist; and Ms. Jennifer L. Dietl, Research Analyst, of the Commission staff and Ms. Joanne Kline of the Department staff.

METHODS

The interagency staff re-identified and re-staked the wetlands within the project area. The field methods used follow the recommendations of the Routine On-site Method set forth in the Corps of Engineers, "Wetlands Delineation Manual," Wetlands Research Program Technical Report Y-87-1 by the Environmental Laboratory, U.S. Army Corps of Engineers, Waterways Experiment Station, dated January 1987 (1987 Manual); regulatory guidelines issued by the St. Paul District Corps of Engineers, in particular Public Notice 96-01078-SDE issued May 22, 1996, entitled "Guidelines for Submitting Wetland Delineations in Wisconsin to the St. Paul District Corps of Engineers," and the "Basic Guide to Wisconsin's Wetlands and their Boundaries" issued by the Wisconsin Coastal Management Program, Wisconsin Department of Administration in 1995. In addition, the wetland indicator status of plants were determined using the 1988 "National List of Plant Species That Occur in Wetlands: Wisconsin" by Porter B. Reed, Jr., Inland Freshwater Ecology Section, U.S. Fish and Wildlife Service

The following data sources have been utilized throughout the wetland determination process:

- The July 24, 2003, and July 8, 2008, wetland delineation reports prepared by the Commission staff for the Boat Launch site located on the former Thomas and Elaine Krause property (see Appendix A).
- Topographic, 100-year Floodplain, and U. S. Public Land Survey Control Station Mapping: Includes the Commission's large scale topographic mapping dated April 14, 1994, a 2007 aerial photograph base map with 100-year floodplain and topographic overlay from the Waukesha County Internet Mapping Site, and a Record of U. S. Public Land Survey Control Station located on the subject property (see Appendix B).

Map 1

LOCATION OF PROJECT AREA

Source: SEWRPC.

Map 2

LOCATION OF PROJECT AREA

- Aerial photography for the years 1941, 1950, 1963, 1970, 1980, 1985, 1990, 1995, 2000, 2005, and 2007, from Waukesha County Internet Mapping site and the Commission's large scale aerial photography (see Appendix C)
- Wetland inventory maps, including the Natural Resources Conservation Service (NRCS) draft wetland inventory map and the 1985 and 2005 Wisconsin Wetland Inventory maps from the Wisconsin Department of Natural Resources (see Appendix D)
- The Soil Survey of Milwaukee and Waukesha Counties Wisconsin issued by the U.S. Department of Agriculture, Soil Conservation Service in July, 1971. An aerial base-map with soil types and hydric status from the Waukesha County website as well as profile descriptions for soils mapped for the project area has been attached in Appendix E.
- The Wisconsin Department of Natural Resources, Bureau of Endangered Resources files for endangered, threatened, and special concern species.
- SEWRPC Community Assistance Planning Report No. 54, "A Water Quality Management Plan for North Lake, 1982."
- SEWRPC Planning Report No. 42, "A Regional Natural Areas and Critical Species Habitat Protection and Management Plan for Southeastern Wisconsin," September 1997.
- State of Wisconsin, Department of Natural Resources Development Project Request (Form 9300-197 (R7/04) dated 07-09).
- Rainfall/ Precipitation records obtained from the National Oceanic and Atmospheric Administration (NOAA) website (see Appendix F).

Seven sample sites were selected to represent the wetland plant communities within the subject project area. SEWRPC Field Data Forms were completed for each sample site (see Appendix G). Data recorded included sample site conditions, vegetation cover values (%), any primary and/or secondary hydrology indicators observed, and soils information relative to wetland soil conditions.

Three plant community areas were identified and inventoried. A list of plant species identified within each of the subject wetland plant communities was prepared (see Appendix G).

The wetland boundaries were accordingly re-identified and re-staked using 21" orange wire flags¹. Orange "wetland boundary" tape was used to mark the location of the flagging to accommodate ready location by the survey staff.

The wetland flags were scheduled to be surveyed by Wisconsin Department of Natural Resources surveyors. A list of metes and bounds were also to be prepared by the surveyors. The surveyed wetland boundaries are to be shown on design plans related to the development of the boat launch facilities within the North Lake Boat Launch Site project area.

¹This is a departure from the normal 5-year re-verification procedure for wetland boundaries on sites which have experienced no significant alterations to vegetation, soils, or hydrology. Normally, owner(s)/developer(s) of sites scheduled for a 5-year re-verification of the wetland boundary are asked to replace the original staking using the surveyors list of metes and bounds. The wetland delineation staff then can review the replaced boundary stakes. If no change is observed, the site owner(s)/ developer(s) are so notified in writing. If changes are observed, sample sites and data forms are prepared for the areas of change and the changed boundary is accordingly marked and surveyed. In this case, however, the original wetland boundary staking apparently had not been surveyed. Therefore, a list of the original metes and bounds was not available. Further, it was determined by field staff that new field data forms should be prepared due to the potential controversial nature of the subject development project.

RESULTS AND DISCUSSION

Description of the Site:

Site History (see Appendix C):

A review of historical aerial photography dating back to 1941 indicates that clearing and grading for residential development in the area had begun by 1950. The 1963 aerial photograph shows that the subject site had been cleared and that a driveway had been constructed across the wetland from the west to the southwest corner of the project area, including a circular turn-around area at the end of the driveway. Another smaller driveway spur extends from the main driveway near its end and curves along the northwest and northern edge of the property, likely to allow for vehicle access to the lake shore (a pier is evident on 1980 & 2000 aerial photos). A concrete pad/foundation appears on the 1963 aerial at the end of the smaller driveway near the lake shore. It is not clear from the aerial photos if a structure was present but it may have supported a small cottage or storage shed. The turn-around area located at the southwest corner of the property is not evident on recent aerial photos. The area is thought to have been covered with topsoil and planted to turf-grass.

Topography (see Appendix B):

Generally, the topography along this portion of the western shoreline of North Lake consists of a strip of land immediately west of the lake measuring approximately 250 to 300 feet wide. This strip of land has been developed with residences and cottages. Immediately west of this strip of developed land there exists a wetland approximately 300 to 400 feet wide with a steep wooded slope west of the wetland.

The subject parcel is fairly level with minor variations in ground surface elevations. The lowest elevations (below 898 feet NGVD 29) on the subject parcel occur on the eastern edge at the North Lake shoreline and at the northern edge in the artificial swale running parallel to the north property line. Ground surface elevations on the central portion of the site generally fall between 898 and 899 feet NGVD 29, while elevations in the northwest portion of the site exceed 899 feet NGVD 29.

Soil sample pits dug on site reveal a buried horizon (see Appendix G, Sample Site No. 2), an indication that fill had been placed on the site. The construction of the main driveway and the driveway spur, discussed above in the site history, would have involved filling and grading. Further, excavation of the swale along the north property line would have likely resulted in dredge spoil material being placed immediately adjacent to the swale near where the spur driveway was constructed.

A SEWRPC Survey Control Station monument immediately south of the drainage swale records an elevation of 898.34 feet NGVD 29. The entire site is located within the 100-year flood inundation zone. The water surface of North Lake was estimated at 896.5 feet NGVD 29 at the time of aerial photography for the topographic map preparation on April 14, 1994.

Plant Communities (see Appendix G):

Six plant community types were identified in the project area. They include southern wet to wet-mesic lowland hardwoods, shrub carr (willow thicket), fresh (wet) meadow, shallow marsh, and sandy beach in the wetlands and "retired" lawn with scattered horticultural and invasive shrubs and planted native and horticultural trees in the uplands. Some of the older native tree species have naturally recruited to the site. In addition, portions of the unconsolidated lake bed adjacent to the project area (below the ordinary high water level) form a littoral zone sparsely colonized by submerged and floating-leaved aquatic macrophytes.

Mapped Soils (see Appendix E):

Soils mapped in the project area include the well drained Fox silt loams (Typic Hapludalls) on 0 to 2% slopes and the somewhat poorly drained Matherton silt loams (Udollic Endoaqualfs) on 1 to 3% slopes. Comparison of the mapped soils to the Hydric Soil List for Milwaukee and Waukesha Counties, Wisconsin, indicates that depressional landforms of the poorly drained Sebewa silt loam (Typic Argiaquolls) occur as inclusions in the mapped Matherton soil unit and would be a hydric soil.

Hydrology Information (see Appendix F):

The subject site is located along the west shore of North Lake, a drainage (flow-through) lake, fed largely by surface waters draining lands in northern Waukesha County and southern Washington County. The major lake inlet stream, the Oconomowoc River, enters the lake in the northeast corner, while less significant flows are contributed from Mason Creek in the northwest corner and a channel draining from Cornell Lake located to the south. The Oconomowoc River drains the lake at its western shoreline, southwest of the project area. There is no water level control structure at the lake's outlet.

As noted above, the water surface elevation at North Lake on April 14, 1994, is listed at 896.5 feet NGVD 29. Other water level measurements include Ordinary High Water Mark (OHWM) determinations by DNR staff. The Commission staff was able to obtain three recent records of OHWM elevations at North Lake provided by DNR and Waukesha County staff. These include OHWM elevations at a parcel on the southwest shore of the lake (897.10 feet), a parcel on the west shore (897.20), and a parcel on the east shore (897.22). A review of historical records indicates that an OHWM determination of 897.10 feet was recorded for North Lake during a 1970 visit by DNR staff. Based upon these fairly consistent records of the OHWM at North Lake, it seems reasonable to use an average of these four elevations to determine an approximate OHWM for the Boat Launch site – 897.16 feet.

The filling, grading, and swale excavation activities described above have certainly altered the hydrology on the site. Excavation of the swale along the north property line has provided a surface water connection between the wetland west of the site with North Lake to the east. Side casting of dredge spoil material from the swale excavation as well as the filling and grading for the driveway has raised the elevation in this area, creating a "damming effect" along the western and northern parcel lines. The "damming effect" on the western and northern property lines likely acts to intercept and re-direct water flows around the parcel which may have entered the site in the past. Further, construction of the turn-around at the southwest corner of the property. This placement of fill at the southwest corner may also have created a very shallow depression just east of the old turn-around, where water may become trapped, particularly during high precipitation events. This shallow depression contains the small, isolated wetland delineated by the Commission staff.

Long term precipitation records from NOAA for stations in the vicinity of the Oconomowoc River watershed were reviewed. These included the Oconomowoc station, west of the Waukesha County part of the watershed, and the Hartford station, west of the Washington County part of the watershed. Precipitation records and departure from normal precipitation records indicate a significantly wetter than normal time period leading up to, and within, the 2008 growing season. Records from December 2007 through November 2008 for the Oconomowoc and Hartford stations are shown in Table 1.

A large departure from normal precipitation was recorded at the Oconomowoc (+7.59 in.) & Hartford (+10.27 in.) stations in the month of June. Further, the overall long-term precipitation records for the months of December 2007 through November 2008, indicate a departure from normal of +11.22 in. for the Oconomowoc station and +12.72 in. for the Hartford station. During the week of the Commission's July 8, 2008 (July 1st through July 8th, 2008), site visit, the Oconomowoc station recorded a large amount of precipitation equaling 3.62 inches. These above normal rainfall conditions not only affected water levels in North Lake, but also affected levels in the wetland complex located to the west of the subject parcel and drainage on the essentially level parcel itself. Accordingly, the Commission staff's hydrology determination reflects these above normal water levels which occurred during the 2008 growing season.

It should be noted that, given the significant above normal precipitation records leading up to our July 8, 2008, field inspection, the Commission staff determined that it would be worthwhile to re-visit the site towards the end of the growing season (October 14, 2008), to view the site after water levels had settled somewhat. If conditions remained unclear, a site visit in the spring of a normal year, with respect to an assessment of precipitation impacts on water levels, would be warranted.

Table 1

	H	artford	Oconomowoc	
Date	Precipitation in Inches	Departure from Normal in Inches	Precipitation in Inches	Departure from Normal in Inches
December 2007	3.94	+2.37	3.94	+2.23
January 2008	2.83	+1.52	2.20	+0.88
February 2008	3.49	+2.42	3.31	+2.11
March 2008	1.25	-0.68	2.24	+0.28
April 2008	5.80	+2.78	6.53	+3.28
May 2008	1.35	-1.72	1.65	-1.49
June 2008	14.09	+10.27	11.56	+7.59
July 2008	3.78	-0.35	5.41	+1.20
August 2008	1.13	-3.02	0.88	-3.64
September 2008	3.17	-0.44	3.49	-0.20
October 2008	2.80	+0.18	2.50	-0.13
November 2008	1.61	-0.61	1.41	-0.89
Total	45.24	+12.72	45.12	11.22

MONTHLY PRECIPITATION AT HARTFORD AND OCONOMOWOC STATIONS: DECEMBER 2007 THROUGH NOVEMBER 2008

Source: National Oceanic and Atmospheric Administration and SEWRPC.

A review of the historical aerial photography for the years 1985, 1990, 1995, 2000, 2005, and 2007, suggest a "wet signature" for all years along the ditched drainage way along the north property boundary. An apparent discharge plume/sediment deposit from the drainage way into the lake is clearly observed for 6 of the years - 1990, 1995, 2000, 2005, and 2007. No distinct "wet signature" can be seen in the vicinity of Plant Community Area No.2.

Existing Wetland Mapping: (see Appendix C)

The original Wisconsin Wetland Inventory mapping (prepared using 1 inch = 2000 feet scale aerial photos in 1985) shows no wetland on the subject property. However, the updated 2005 Wisconsin Wetland Inventory map (prepared at scale of 1"=400' scale) shows a wetland symbol (wetlands less than $\frac{1}{4}$ acre) on the subject property. Further, the lake bed area immediately to the east of the subject property is classified as Submergent Aquatic Bed (A1L). The NRCS wetland inventory map for Section 17 in the Town of Merton (T.8N., R.18E.), Waukesha County shows the project area as NI – non-inventoried.

Previous Wetland Delineations (see Appendix A):

The Commission staff conducted field inspections of the project area on July 24, 2003, at the request of the Town of Merton and again July 8, 2008, at the request of the DNR. During both field inspections, two wetland areas were observed. These wetlands consisted of a second growth, southern wet to wet-mesic lowland hardwoods, and fresh (wet) meadow along the drainage way and lake shoreline (Plant Community Area No. 1) and an ephemeral fresh (wet) meadow (Plant Community Area No. 2). These wetland types may be classified as follows: Plant Community Area No. 1- Forested, broad-leaved deciduous, wet soil, palustrine (T3K) and Emergent/wet meadow, broad-leaved persistent, wet soil and standing water, palustrine (E2K and E2H); and Pant Community Area No. 2-Emergent/ wet meadow, broad-leaved persistent, wet soil, palustrine (E2K).

Natural Areas and Critical Species Habitat:

Two special concern fish species, Lake chubsucker (*Erimyzon sucetta*) and Least darter (*Etheostoma microperca*) have been recorded in North Lake. Further, populations of the State of Wisconsin threatened Pale green orchid (*Platanthera flava*), Forked aster (*Aster furcatus*), Blanding's turtle (*Emydoidea blandingii*) and Butler's

gartersnake (*Thamnophis butleri*) have been recorded at sites within 5 miles of the project area. In addition, Hooker orchis (*Platanthera hookeri*), a special concern orchid species, has been recorded within 5 miles of the project area. However, no Federal or State designated endangered, threatened, or special concern species were observed in or immediately adjacent to the project area during the field inspections.

Findings (see Appendix G): VEGETATION

Plant Community Area No. 1:

Second growth, southern wet to wet-mesic lowland hardwoods and fresh (wet) meadow/shallow marsh communities were observed in Plant Community Area No. 1 (Map 2). A total of 50 plant species were observed and recorded. Of this total, 12 species (24 percent) were non-native species. Sample Site Nos. 1, 3, and 7 were sampled within this Plant Community Area.

Seven species were determined to be major dominant species at Sample Site No. 1 (which sampled the subdominant "shrub carr" near the southeast edge of the lowland hardwood community). The major dominant plant species include: Lake sedge (*Carex lacustris*) [OBL], White snakeroot (*Eupatorium rugosum*) [FACU], and Riverbank grape (*Vitis riparia*) [FACW-] in the herbaceous layer; Silky dogwood (*Cornus amomum*) [FACW+] and Common buckthorn (*Rhamnus cathartica*) [FAC-] in the shrub layer; and Green ash (*Fraxinus pennsylvanica*) [FACW] and Boxelder (*Acer negundo*) [FACW-] in the tree layer. In total, 71% of the major dominant plant species are hydrophytes [OBL, FACW, or FAC plant species]. It should be noted that the Lake sedge, Riverbank grape, Silky dogwood, Green ash, and Boxelder were also found to be major dominants during the 2003 field inspection.

Major dominant plant species along the lake shoreline sandy beach portion of the fresh (wet) meadow/shallow marsh and shrub carr (willow thicket) include: Eastern cottonwood (*Populus deltoides*) [FAC+] in both the tree and herbaceous (as seedlings) strata and Silver maple (*Acer saccharinum*) [FACW] seedlings, also in the herbaceous stratum of Sample Site No. 3 and Sandbar willow (*Salix exigua*) [OBL] in both the shrub and herbaceous strata of Sample Site No. 7. In total, 100% of the major dominant plant species are hydrophytes at Sample Site Nos. 3 and 7. The shallow marsh portion of this wetland plant community extends from the shore to a 6" standing water depth. This is consistent with the shallow marsh definitions used in Eggers and Reed (1997) and Shaw and Fredine (1971). No emergent vegetation stratum was observed on the lake bed during the field inspections. Vegetation present on the lake bed was limited to scattered stands of floating-leaved and submergent macrophytes composed primarily of Yellow water lily (*Nuphar advena*), Water milfoil (*Myriophyllum exalbescens*), Curly-leaf pondweed (*Potamogeton crispus*), and Sago pondweed (*Potamogeton pectinatus*). The aquatic bed community observed was a permanently inundated, Lacustrine, littoral system on an unconsolidated sand bottom (Cowardin, et.al, 1979).

Therefore, no deep marsh community was present in or adjacent to the project area.

Plant Community Area No. 2:

An ephemeral fresh (wet) meadow was observed in Plant Community Area No. 2 (Map 2). A total of nine plant species were observed and recorded. Of this total, five (56 percent) were non-native species. Sample Site No. 4 was sampled within this Plant Community Area. This area has been maintained as a lawn over the years. However, it had not been recently mowed prior to the July 8, 2008, field inspection.

The dominant plant species observed in the ephemeral fresh (wet) meadow included Kentucky blue grass (*Poa pratensis*) [FAC-], Needle spike-rush (*Eleocharis acicularis*) [OBL], Redtop grass (*Agrostis stolonifera*) [FACW] and patches of Silver maple seedlings (*Acer saccharinum*) [FACW]. Three of these dominants - Kentucky blue grass, Needle spike rush, and the Silver maple seedlings - were determined to be major dominant plant species at Sample Site No. 4. The Redtop grass did not occur as a major dominant in the quadrat. In total, 67% of the major dominant plant species are hydrophytes.

Plant Community Area No. 3:

A "retired" lawn with planted ornamentals and upland woodland were observed in Plant Community Area No. 3 (Map 2). A total of 62 plant species were observed and recorded. Of this total, 27 (44 percent) were non-native species. Sample Site Nos. 2, 5, and 6 were sampled within this Plant Community Area.

Dominant plant species at Sample Site No. 2 include Kentucky bluegrass (*Poa pratensis*) [FAC-], Bur oak (*Quercus macrocarpa*) [FAC-], Eastern cottonwood (*Populus deltoides*) [FAC+], and Green ash (*Fraxinus pennsylvanica*) [FACW]. A comparison of dominant hydric versus non-hydric species indicates that each category constitutes 50 percent. A further comparison of the non-dominant hydric versus non-hydric plant species indicates that only 25 percent of non-dominant species are hydric. Accordingly, the vegetation at Sample Site No. 2 was determined to be non-hydrophytic.

Dominant plant species at Sample Site No. 5 include Kentucky bluegrass (*Poa pratensis*) [FAC-] and planted White cedar (*Thuja occidentalis*) [FACW]. A comparison of dominant hydric versus non-hydric species indicates that each category constitutes 50 percent. A further comparison of non-dominant hydric versus non-hydric plant species indicates that each category also represents 50 percent. Accordingly, the total number of hydrophytes did not exceed 50% when looking at both dominant and non-dominant plant species. Further, when considering percent cover of all species recorded, the non-hydrophytic species have a larger cover value. Therefore, sample Site No. 5 did not meet the criteria for being dominated by wetland vegetation.

Dominant plant species at Sample Site No. 6 include Kentucky bluegrass (*Poa pratensis*) [FAC-], Basswood (*Tilia americana*) [FACU] in the tree and shrub layers, Common buckthorn (*Rhamnus cathartica*) [FAC-], Bur oak (*Quercus macrocarpa*) [FAC-], and Green ash (*Fraxinus pennsylvanica*) [FACW]. The percent of hydrophytes among dominant species at this sample is only 17 percent, making this a sample site which does not meet the wetland vegetation criteria.

SOILS (See Appendix G):

Soil profiles prepared from data collected within the subject project area do not conform to the mapped units (see page 5 and Appendix E). No silt loams were observed on the site. All soils sampled were essentially low chroma loams, silty clay loams, sands, and sand and gravel. Much of the soil material present appeared to be old fill.

Sample Site No. 1, a wetland sample in the northern drainage swale, exhibited low chroma soils throughout the profile: 10YR2/1 at the surface and 10YR3/1 beginning at 6 inches. Soils, hydrology, and vegetation were all determined to meet the wetland criteria at this sample site.

Sample Site No.2, an upland sample adjacent to Sample Site Nos. 1 and 3, exhibited a surface layer of 7.5YR2.5/1 with mottles at a depth of 6 to 8 inches. However, the remainder of the profile did not contain redox features. A double matrix consisting of 10YR4/2 & 10YR3/1 were recorded at a depth between 8 and 15 inches. A buried horizon beginning at 15 inches consisted of 7 inches of 10YR3/1 loam over a 10YR7/2 sandy marl. Soils, hydrology, and vegetation were all determined to be non-wetland at this sample site.

Sample Site No.3, a wetland sample at the lake shore, consisted of 22 inches of low chroma (7.5YR4/1) saturated sand (hydric) with no observed surface horizon. Accordingly, soils, hydrology, and vegetation were determined to meet the wetland criteria at this sample site.

Sample Site No.4, a wetland sample in the southwestern portion of the property, exhibited low chroma soils (7.5YR2.5/1 muck from 0-1.5 inches deep and a 10YR4/1 loam with mottles between 1.5-4 inches deep). This site could not be sampled below 4" (four attempts) with a sharp shooter shovel, soil auger, or soil probe because of a gravel layer (fill). However, the 1.5 inch muck layer at the surface met the A10. 2-cm Muck test indicator for this USDA Land Resource Region (see Field Indicators of Hydric Soils in the United States, Version 6.0). Accordingly, for wetland delineation purposes, this soil was determined to be a wetland soil. Wetland vegetation and hydrology were also observed at this sample site.

Sample Site No. 5 was an upland sample site adjacent to Sample Site No. 4. Evidence of past disturbance was evident at this site, including construction of a driveway turn-around. This sample exhibited a 10YR2/2 loam at a depth of 0-1.5 inches and a 10YR5/2 sand and gravel layer between 1.5-9 inches deep. The Commission staff was unable to dig any deeper than 9 inches due to refusal at that depth, likely due to the gravel fill and compaction of these soils. Vegetation, hydrology, and soils were determined to be non-wetland at this sample site.

Sample Site No. 6, an upland sample from the southeastern portion of the property, consisted of a 10YR2/2 loam from 0-8.5 inches deep. The Commission staff was unable to dig any deeper than the 8.5 inches due to refusal at that depth where large cobbles/glacial till were encountered. Vegetation, hydrology, and soils were determined to be non-wetland at this location.

Sample Site no. 7, a wetland sample at the lake shore adjacent to Sample Site No. 6, consisted of a 10YR3/1 sand and gravel from 0-3 inches in depth, a 10YR4/2 sand and gravel with redox mottles from 3-8 inches, and a 10YR3/2 coarse sand with redox mottles from 8-17 inches. All three wetland criteria were determined to be met at this sample.

Comparison of the soil profiles prepared from the original wetland delineation (July 24, 2003) to those prepared for the present effort (2008) indicate considerable variation due largely to past filling and grading. The resulting findings, however, are the same: Sample Site No. 1 from 2003 and Sample Site No. 1 from 2008, located very close to one another, were both found to have wetland profiles. Further, Sample Site No. 2 from 2003 and Sample Site No. 2 from 2008, located very in close proximity to each other, were both found to have upland profiles. The hydric soil finding at Sample Site No. 4 from 2008 is consistent with the conclusion made at nearby Sample Site No. 3 in 2003. That earlier soil profile revealed a buried horizon at 15" consisting of a 1" muck layer overlaying a sand and gravel. Fill materials overlaying that original horizon consisted of a low chroma matrix with common and prominent (7.5YR4/6) redox mottles (which began at 2"). The fill materials at that location were found to meet the F3. Depleted matrix; A11. (formerly F4) Depleted Below Dark Surface; and F6. Redox Dark Surface USDA hydric soil field indicators (See appendix E).

HYDROLOGY:

During the July 8, 2008, field inspection, primary wetland hydrology indicators were observed at Sample Site Nos. 1, 3, and 4. The primary indicators included saturation in the upper 12" of the root zone (Sample Site Nos.1 and 3 – water saturation 6" below the surface and at the surface (0"), respectively), drift lines (Sample Site No. 3), and inundation (Sample Site No. 4 – surface water 7.5" deep). Positive FAC – neutral tests (a secondary indicator of wetland hydrology) were recorded at all four sample sites. Other secondary indicators of wetland hydrology observed include the observation of several water-stained leaves at Sample Site No. 1, morphological plant adaptations (shallow roots) at Sample Station No. 3, and landscape position – a slight depressional area at Sample Site No. 4. The latter two secondary indicators are based upon professional judgment. While water levels in the project area were abnormally high during the July 8, 2008, field inspection, as documented above, it was the consensus of the field staff that the results presented herein are reflective of the long-term hydrology conditions on the site.

This finding was further confirmed during the return visit on October 14, 2008. On that date, wetland hydrology indicators were observed at Sample Site No. 7, including soil saturation at a depth of 4.5 inches, a primary indicator of wetland hydrology, and oxidized root channels in the root zone and a positive FAC-neutral test, both secondary indicators of wetland hydrology. Only a single secondary hydrology indicator (a positive FAC-neutral test) was observed at Sample Site No. 5. No wetland hydrology indicators were observed at Sample Site No. 6 during this field visit.

<u>Types of other waters identified</u>: Two other surface water systems are present at the project site: 1) North Lake is a 437 acre surface water lake with a maximum depth of 78 feet (SEWRPC, 1982). It is a flow through lake of glacial origin on the Oconomowoc River system, and 2) Intermittent ditched drainage way constructed along the north property line. The drainage way is about 300 feet long, about 22.5 to 25.5 feet wide and about 1.8 to 2.2 feet

deep. The drainage way flows to North Lake from a large wetland complex located just to the west of the project area.

Conclusions:

Based on these findings, Sample Site Nos. 1, 3, 4, and 7, support a predominance of hydrophytes (Major dominances of 71%, 100%, 67% and 100% respectively are hydrophytes). Hydrophytes accounted for only 50% of the total major dominant species for Sample Site No. 2, only 50 % of the major dominant and non-dominant plant species at Sample Site No. 5, and only 17% of major dominant plant species for Sample Site No. 6. Therefore, these sample sites do not support a predominance (> 50%) of hydrophytes.

Sample Site Nos. 1, 3, 4, and 7 consist of hydric soils, while Sample Site Nos. 2, 5, and 6 were determined to consist of upland soils.

To meet the criteria for wetland hydrology one primary indicator or two secondary indicators are required. Wetland hydrology was observed at Sample Site Nos. 1 (one primary and two secondary indicators), 3 (two primary and two secondary), 4 (one primary and two secondary), and 7 (one primary and two secondary). Wetland hydrology was not observed at Sample Site Nos. 2 (only one secondary indicator), 5 (only one secondary indicator), and 6 (no indicators).

Therefore, Sample Site Nos. 1, 3, 4, and 7 represent wetland sample points while Sample Site Nos. 2, 5, and 6 are determined to be upland sample points. The approximant areal extent of the wetlands as well as the location of sample sites and plant community areas is shown on Map 2 and the aerial map exhibit in Appendix G.

Literature Cited:

Cowardin, Lewis M., Virginia Carter, Francis C. Golet, and Edward T. LaRoe, 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C., 103 pp.

Eggers, Steve D. and Donald M. Reed, 1997. *Wetland Plants and Plant Communities of Minnesota & Wisconsin*, Second Edition. U.S. Army Corps of Engineers, St. Paul District, 263 pp.

Environmental Laboratory, 1987. *Corps of Engineers Wetlands Delineation Manual*. Technical Report Y-87-1 (on-line edition), U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS., 101 pp. plus appendices.

Reed, Jr., Porter B. 1988. *National List of Plant Species That Occur in Wetlands: 1988 Wisconsin.* NERC - 88/18.49, United States Department of the Interior, Fish and Wildlife Service, 41 pp.

Shaw, Samuel and C. Gordon Fredine, 1971. *Wetlands of the United States*. Circular 39, U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C., 67 pp.

Southeastern Wisconsin Regional Planning Commission, 1982. A Water Quality Management Plan for North Lake. Community Assistance Report No. 54, 139 pp.

Southeastern Wisconsin Regional Planning Commission, 1997. A Regional Natural Areas and Critical Species Habitat Protection and Management Plan for Southeastern Wisconsin. Planning Report No. 42, 531 pp.

Steingraeber, J.A. and Charles A. Reynolds 1971. *Soil Survey of Milwaukee and Waukesha Counties, Wisconsin.* U.S. Department of Agriculture, Soil Conservation Service, U.S. Government Printing Office, Washington, D.C., 266 pp including maps.

United States Department of Agriculture, Natural Resources Conservation Service, 2006. *Field Indicators of Hydric Soils in the United States*. Version 6.0 G.W. Hurt and L.M. Vasilas (eds.). USDA,NRCS, in cooperation with the National Technical Committee for Hydric Soils, 39 pp.

Wisconsin Department of Administration, Wisconsin Coastal Management Program, 1995. *Basic Guide to Wisconsin's Wetlands and Their Boundaries*, PUBL-WZ-029-94. Madison, Wisconsin, 87 pp.

APPENDICES

(This page intentionally left blank)

Appendix A

PAST WETLAND DELINEATION REPORTS

- Appendix A-1: July 24, 2003, SEWRPC wetland delineation report
- Appendix A-2: July 8, 2008, SEWRPC wetland delineation report

(This page intentionally left blank)

Appendix A-1

JULY 24, 2003, SEWRPC WETLAND DELINEATION REPORT

SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION W239 N1812 ROCKWOOD DRIVE • PO BOX 1607 • WAUKESHA, WI 53187-1607• TELEPHONE (262) 547-6721

October 6, 2003

Ms. Susan Oman Clerk Town of Merton P.O. Box 128 North Lake, WI 53064

Serving	the	Counties o	of:

DZALIKEE RACINE WALWORTH WASHINGTON WAUKESHA

KENOSHA MILWAUKEE

FAX

(262) 547-1103

Re: SEWRPC No. 718-49

Dear Ms. Oman:

This will respond to a letter dated March 11, 2003, by Ms. Jeanne Ann Frederickson, former Deputy Clerk with the Town of Merton, requesting the Commission staff to conduct a field inspection of the eastern portion of the Thomas and Elaine Kraus property along North Lake for the purpose of identifying in the field the boundary of any wetland on the subject portion of the property. The property is located in parts of the Southeast one-quarter of U. S. Public Land Survey Section 17, Township 8 North, Range 18 East, Town of Merton, Waukesha County, Wisconsin.

The wetland boundary was identified and staked in the field by Dr. Donald M. Reed, Commission Chief Biologist, on July 24, 2003. Staff from the Wisconsin Department of Natural Resources, including Ms. Patricia A. Trochlell, Wetland Ecologist, Mr. Thomas W. Bernthal, Water Resources Management Specialist, and Ms. Geri M. Radermacher, Water Regulation and Zoning Specialist, were also present to assist in the wetland delineation. It is the Commission staff's expectation that the wetland boundary will be surveyed and identified on a forthcoming plat of survey attendant to the development of the subject property. A list of plant species identified within the subject wetlands is attached hereto as Exhibit A.

Should you have any questions regarding this information, please do not hesitate to call.

Sincerely,

Philip C. Evenson Executive Director

PCE/DMR/mlh #87044 v1 - ca708-49

Enclosures

cc: Mr. Thomas Kraus
 Mr. Mark Powers, Lake Country Engineering, Inc.
 Mr. Richard Mace, Waukesha County Department of Parks and Land Use
 Ms. Geri M. Radermacher, DNR-Waukesha Service Center
 Ms. Patricia A. Trochlell, DNR-Madison
 Mr. Dale J. Pfeiffle, COE-Waukesha

SVY2800 CA718-49 EXHIBIT A PRELIMINARY VEGETATION SURVEY THOMAS AND ELAINE KRAUS PROPERTY WETLANDS July 24, 2003 Date: Observer: Donald M. Reed, Ph.D., Chief Biologist Lawrence A. Leitner, Ph.D., Principal Biologist Christopher J. Jors, Biologist Southeastern Wisconsin Regional Planning Commission Town of Merton in parts of the Southeast one-quarter of U.S. Public Location: Land Survey Section 17, Township 8 North, Range 18 East, Waukesha County, Wisconsin. Species List: Plant Community Area No. 1 GRAMINEAE Phalaris arundinacea¹--Reed canary grass CYPERACEAE Scirpus atrovirens--Green bulrush Carexstipata--SedgeCarexbebbii--SedgeCarexlacustris--Lake sedge ARACEAE Symplocarpus foetidus--Skunk cabbage LILIACEAE Hemerocallis fulva¹--Day-lily IRIDACEAE Iris virginica--Virginia blueflag SALICACEAE Populus deltoides--Cottonwood Salix babylonica¹-Weeping willow Salix nigra--Black willow Salix exigua--Sand-bar willow BETULACEAE Alnus rugosa--Tag alder ULMACEAE Ulmus americana--American elm URTICACEAE Pilea pumila--Clearweed POLYGONACEAE Polygonum persicaria¹--Lady's thumb SAXIFRAGACEAE Ribes americanum--Wild black currant

2

```
ROSACEAE
          Geum canadense--White avens
          Rubus occidentalis--Black raspberry
ACERACEAE
          Acer saccharinum--Silver maple
          Acer negundo--Boxelder
BALSAMINACEAE
          Impatiens biflora--Jewelweed
RHAMNACEAE
          <u>Rhamnus</u> <u>cathartica</u><sup>1</sup>--Common buckthorn
          Rhamnus frangula<sup>1</sup>--Glossy buckthorn
VITACEAE
          Vitis riparia--River-bank grape
          Parthenocissus quinquefolia--Virginia creeper
LYTHRACEAE
          Lythrum salicaria<sup>1</sup>--Purple loosestrife
ONAGRACEAE
          Circaea quadrisulcata--Enchanter's nightshade
UMBELLIFERAE
          Cicuta bulbifera--Water-hemlock
          Cicuta
                  maculata--Spotted water-hemlock
CORNACEAE
          Cornus amomum--Silky dogwood
          Cornus stolonifera--Red-osier dogwood
PRIMULACEAE
          Lysimachia thyrsiflora--Tufted loosestrife
OLEACEAE
          Fraxinus pennsylvanica--Green ash
CONVOLVULACEAE
          Convolvulus sepium--Hedge bindweed
VERBENACEAE
          Verbena urticifolia--White vervain
LABIATAE
          <u>Glechoma</u> <u>hederacea</u><sup>1</sup>--Creeping Charlie
          Stachys palustris--Hedge-nettle
SOLANACEAE
          Solanum dulcamara<sup>1</sup>--Deadly nightshade
CAPRIFOLIACEAE
          Sambucus canadensis--Elderberry
COMPOSITAE
          Ambrosia artemisiifolia--Common ragweed
          Xanthium strumarium<sup>1</sup>--Cocklebur
```

3

Total number of plant species: 42 Number of alien, or non-native, plant species: 10 (24 percent)

This approximately 0.2-acre plant community area is part of a larger wetland complex adjacent to North Lake and consists of second growth, Southern wet to wet-mesic lowland hardwoods and fresh (wet) meadow/shallow mash along the shoreline. Disturbances to the plant community area include dumping, past filling, mowing, siltation and sedimentation due to stormwater runoff from adjacent lands, and water level changes due to past ditching. No Federal- or State-designated Special Concern, Threatened, or Endangered species were observed during the field inspection.

¹ Alien or non-native plant species

4

Plant Community Area No. 2

CYPERACEAE <u>Eleocharis acicularis</u>¹--Needle spike-rush <u>Carex stipata</u>--Sedge POLYGONACEAE <u>Polygonum persicaria</u>²--Lady's thumb PORTULACACEAE <u>Portulaca oleracea</u>²--Purslane LABIATAE <u>Glechoma hederacea</u>²--Creeping Charlie <u>Prunella vulgaris</u>--Selfheal

Total number of plant species: 6 Number of alien, or non-native, plant species: 3 (50 percent)

This approximately 0.05-acre plant community area consists of an ephemeral fresh (wet) meadow. Disturbances to the plant community area include past filling and frequent mowing. No Federal- or State-designated Special Concern, Threatened, or Endangered species were observed during the field inspection.

¹ Dominant plant species

² Alien or non-native plant species

PLANT COMMUNITY AREAS

Appendix A-1 (continued) SEWRPC FIELD DATA FORM ROUTINE WETLAND DETERMINATION

PROJECT NAME: Thomas and Elaine Kraus Property

FILE NO.: CA 718-49

LOCATION: Town of Merton, Waukesha COUNTY, SE 1/4 SECTION 17, T 8 N, R 18 E

DATE: July 24, 2003

OBSERVERS: Donald M. Reed, Ph.D., SEWRPC; Pat Trochell, Tom Bernthal, and Geri Radermacher, DNR

PLANT COMMUNITY AREA NO.: 1 TRANSECT NO.: 1 SAMPLE SITE NO.: 1

VEGETATION

			Other <u>NON-Dominant</u>		
Dominant Plant Species	Stratum	Indicator	Plant Species	Stratum	Indicator
Acer negundo	Tree	FACW-	Alnus rugosa	Shrub	OBL
Fraxinus pennsylvanica	Tree	FACW	Rhamnus cathartica	Shrub	FAC-
Ulmus americana	Tree	FACW-	Ribes americanum	Shrub	FACW
Acer negundo	Shrub	FACW-	Salix exigua	Shrub	OBL
Cornus amomum	Shrub	FACW+	Carex bebbi	Herb	OBL
Cornus stolonifera	Shrub	FACW	Carex stipata	Herb	OBL
Vitis riparia	Vine	FACW-	Cornus stolonifera	Herb	FACW
Carex lacustris	Herb	OBL	Impatiens biflora	Herb	FACW
Phalaris arundinacea	Herb	FACW+	Iris virginica	Herb	OBL
			Scirpus atrovirens	Herb	OBL
			Vitis riparia	Herb	FACW-
Percent of Dominant Species that an	e OBL, FAG	CW, OR FAC:	100%	·	
Remarks:					

HYDROLOGY

WETLAND HYDROLOGY INDICATORS

Recorded Data (Describe in Remarks):	Primary Indicators:
☐Stream, Lake or Tide Gauge ☐Aerial Photographs ☐Other	☐Inundated ☐Saturated in Root Zone ☐Water Marks ☐Drift Lines ☐Sediment Deposits
🖾 No Recorded Data Available	⊠Drainage Patterns in Wetlands □Floodway
Field Observations:	Secondary Indicators (2 or more required):
Depth of Surface Water:(in.)	Water-Stained Leaves
Depth of Soil Pit: <u>19+(in.)</u>	Local Soil Survey Data
Depth to Free Water in Pit:(in.)	⊠FAC-Neutral Test
Depth to Saturated Soil: <u>(in.)</u>	Adventitious and/or shallow root growth Other (Explain in Remarks)
Remarks:	· · · · · · · · · · · · · · · · · · ·

Appendix A-1 (continued)

SOILS							
Map Unit Name (Series and Phase): Fox silt loamDrainage Class: Well-drained							
Taxonomy (Su	ubgroup): T	ypic Hapludalfs					
Field Observa	tions Confir	rm Mapped Type? [Yes No				
Profile Descri	ption						
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.		
0-6		10YR 2/1			Sandy muck		
6-11		10YR 2/1			Mucky sand		
11-14		N 1/0			Muck		
14-19		10YR 2/1			Peat		
19+		10YR 3/1			Peat		
Wetland Soil	Indicators:						
⊠H	istosol		Bright Mottling				
H	istic Epiped	on	Concentrations				
⊠Sւ	ulfidic Odor		High Organic Co	ontent in Surface Layer			
	quic Moistu	re Regime	UOrganic Streaki	ng in Sandy Soils			
	educing Cor	nditions	Listed on Local	Hydric Soils List			
☐Gleyed ☐Listed on National Hydric Soils List							
NBCS Manned Type: NL - Not Inventoried							
USDA Hydric Soils Field Indicator: A1. Histosol: A4. Hydrogen Sulfide							
Remarks:							

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes⊠ No□(If no, explain)	Is the site a problem area? Yes □ No⊠(if yes, explain)			
Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes□ No⊠(If yes, explain)				
Remarks: Sample site taken at northern project area boundary approximately 15 feet from lake shoreline.				

WETLAND DETERMINATION

Based on the foregoing, are:	This Sampling Point is within a Wetland?	Yes No
Hydrophytic Plants Dominant? XYes No	This Sampling Point Meets:	
Wetland Hydrology Present? Yes No	The Federal Jurisdictional Wetland Criteria?	⊠Yes □No
Wetland Soils Present? Xes No	The State of Wisconsin Wetland Criteria?	Yes No
Remarks:		

PLANT COMMUNITY AREA NO.: -- TRANSECT NO.: 1 SAMPLE SITE NO.: 2

VEGETATION

			Other <u>NON-Dominant</u>		
Dominant Plant Species	Stratum	Indicator	Plant Species	Stratum	Indicator
Medicago lupulina	Herb	FAC-	Ambrosia artemisiifolia	Herb	FACU
Poa pratensis	Herb	FAC-	Erigeron sp.	Herb	NI
			Plantago lanceolata	Herb	FAC
			Taraxacum officinale	Herb	FACU
			Viola sp.	Herb	NI
Percent of Dominant Species that an	e OBL, FAC	CW, OR FAC:	: 0%		
Remarks:					

HYDROLOGY

WETLAND HYDROLOGY INDICATORS

Recorded Data (Describe in Remarks):	Primary Indicators:
☐Stream, Lake or Tide Gauge ☐Aerial Photographs ☐Other	☐ Inundated ☐ Saturated in Root Zone ☐ Water Marks ☐ Drift Lines ☐ Sediment Deposits
🛛 No Recorded Data Available	Drainage Patterns in Wetlands
Field Observations:	Secondary Indicators (2 or more required):
Depth of Surface Water:(in.)Depth of Soil Pit:18(in.)Depth to Free Water in Pit:(in.)Depth to Saturated Soil:(in.)	Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Adventitious and/or shallow root growth Other (Explain in Remarks)
Remarks: No hydrology indicators observed	

Т

٦

Appendix A-1 (continued)

SOILS

Map Unit Name						
(Series and Phase): Fox silt loam			Drainage Class: Well-drained			
Taxonomy (Subgroup): Typic Hapludalfs Field Observations Confirm Mapped Type? □Yes ⊠No						
Profile Descri	ption					
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.	
0-9		10YR 2/1			Loam	
9-15		10YR 4/3			Sand and Gravel	
15-18		10YR 2/1 75%			Sand	
		10YR 5/3 25%				
Wetland Soil I	Wetland Soil Indicators:					
	istosol istic Epiped	on	□Bright Mottling □Concentrations			
	Ifidic Odor		High Organic Content in Surface Layer			
	quic Moistu	re Regime	Organic Streaking in Sandy Soils			
	educing Cor	nditions	Listed on Local Hydric Soils List			
Gleyed		Listed on National Hydric Soils List				
	ow-Chroma	Colors	∐Other (Explain i	n Remarks)		
NRCS Mapped Type: NI - Not Inventoried						
USDA Hydric Solis Field Indicator: NA						
Kemarks: Old fill material						

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes No[](If no, explain)	Is the site a problem area? Yes ☐ No⊠(if yes, explain)
Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes⊠ No□(If yes, explain)	
Remarks: Site has been filled in the past	

WETLAND DETERMINATION

Based on the foregoing, are:	This Sampling Point is within a Wetland?
Hydrophytic Plants Dominant? ☐Yes ⊠No Wetland Hydrology Present? ☐Yes ⊠No Wetland Soils Present? ☐Yes ⊠No	This Sampling Point Meets: The Federal Jurisdictional Wetland Criteria? □Yes No The State of Wisconsin Wetland Criteria? □Yes □No
Remarks:	

Appendix A-1 (continued)

PLANT COMMUNITY AREA NO.: 2 TRANSECT NO.: -- SAMPLE SITE NO.: 3

VEGETATION

			Other NON-Dominant		
Dominant Plant Species	Stratum	Indicator	Plant Species	Stratum	Indicator
Carex stipata	Herb	OBL	Portulaca oleracea	Herb	FAC-
Eleocharis acicularis	Herb	OBL			
Percent of Dominant Species that	are OBL, FA	CW, OR FAC	: 100%		
Remarks: Manicured lawn					

HYDROLOGY	WETLAND HYDROLOGY INDICATORS
Recorded Data (Describe in Remarks):	Primary Indicators:
Stream, Lake or Tide Gauge	⊠Saturated in Root Zone ☐Water Marks ☐Drift Lines
☑ No Recorded Data Available	Sediment Deposits Drainage Patterns in Wetlands Floodway
Field Observations:	Secondary Indicators (2 or more required):
Depth of Surface Water:(in.)Depth of Soil Pit: $16+(in.)$ Depth to Free Water in Pit:(in.)Depth to Saturated Soil: $\underline{0}(in.)$	☐Oxidized Root Channels in Root Zone ☐Water-Stained Leaves ☐Local Soil Survey Data ☑FAC-Neutral Test ☐Adventitious and/or shallow root growth ☐Other (Explain in Remarks)
Remarks: Saturated to the surface	1
SOILS

Map Unit Name (Series and Phase): Fox silt loam

Drainage Class: Well-drained

Taxonomy (Subgroup): Typic Hapludalfs

Field Observations Confirm Mapped Type?
Yes No

Profile Descri	ption				
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.
0-2		10YR 3/1			Loam
2-11		5Y 3/1	7.5YR 4/6	Common/Prominent	Clay loam
			2.5Y 5/3	Inclusions	
11-15		10YR 4/4 50%	7.5YR 4/6	Common/Prominent	Clay loam
		10YR 3/2 50%			
15-16		N 2/0			Muck
16+					Sand and Gravel
Wetland Soil) H H Su A R G L NRCS Mappe	Indicators: istosol istic Epiped ulfidic Odor quic Moistu educing Cor leyed ow-Chroma d Type: NI	on re Regime nditions Colors - Not Indicated	Bright Mottling Concentrations High Organic C Organic Streaki Listed on Local Listed on Nation Other (Explain	ontent in Surface Layer ing in Sandy Soils Hydric Soils List nal Hydric Soils List in Remarks)	
USDA Hydric	Soils Field	Indicator: F3. Deple	eted Matrix; F4. Dep	leted Below Dark Surface;	F6. Redox Dark Surface
Remarks: Bur	ried horizon a	at 15 inches			

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes⊠ No□(If no, explain)	Is the site a problem area? Yes ⊠ No□(if yes, explain)
Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes⊠ No□(If yes, explain)	
Remarks: Problem area - seasonal wetland; Disturbance - site has been filled	l in the past and is currently mowed

Based on the foregoing, are:	This Sampling Point is within a Wetland?	Yes No
Hydrophytic Plants Dominant?YesNoWetland Hydrology Present?YesNoWetland Soils Present?YesNo	This Sampling Point Meets: The Federal Jurisdictional Wetland Criteria? The State of Wisconsin Wetland Criteria?	⊠Yes □No ⊠Yes □No
Remarks:		

SAMPLE SITE LOCATIONS

Appendix A-2

JULY 8, 2008, SEWRPC WETLAND DELINEATION REPORT

COPY

SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION W239 N1812 ROCKWOOD DRIVE • PO BOX 1607 • WAUKESHA, WI 53187-1607 • TELEPHONE (262) 547-6721 (262) 547-1103

August 27, 2008

Ms. Joanne Kline Regional Wetland Biologist Wisconsin Department of Natural Resources 2300 N. Dr. Martin Luther King, Jr. Drive Milwaukee, WI 53212

Re: SEWRPC No. CA-718-49

KENOSHA MILWAUKEE OZAUKEE

RACINE WALWORTH WASHINGTON WAUKESHA

Serving the Counties of:

Dear Ms. Kline:

This will respond to your electronic mail message of June 4, 2008, requesting the Commission staff to conduct an interagency field inspection of the proposed North Lake Boat Launch site on the former Kraus property (current ownership by the Wisconsin Department of Natural Resources). The purpose of the field inspection would be to re-identify and re-stake in the field the boundary of the wetlands within the project area. The project area is located in parts of the Southeast one-quarter of U. S. Public Land Survey Section 17, Township 8 North, Range 18 East, Town of Merton, Waukesha County, Wisconsin. As you know, the wetland boundaries were originally identified and staked on the Kraus property on July 24, 2003.

Pursuant to your request, an interagency field inspection was conducted on July 8, 2008, including yourself and the Commission staff: Dr. Donald M. Reed, Chief Biologist; Dr. Lawrence A. Leitner, Principal Biologist; Mr. Christopher J. Jors, Biologist; and Ms. Jennifer L. Dietl, Research Analyst. With your assistance, the Commission staff re-identified the re-staked the wetlands within the project area. A list of plant species identified within the subject wetlands is attached hereto as Exhibit A.

Should you have any questions regarding this information, please do not hesitate to call.

Sincerely,

Philip C. Evenson Executive Director

PCE/DMR/CJJ/mlh #138778 v1 - ca718-49 restake

Enclosures

cc: Ms. Susan Oman, Town of Merton Mr. Richard L. Mace, Waukesha County Ms. Gloria McCutcheon, DNR-Milwaukee Mr. James P. Morrissey, DNR-Milwaukee Mr. Dale J. Pfeiffle, COE-Waukesha SVY2800a CA718-49

EXHIBIT A

PRELIMINARY VEGETATION SURVEY PROPOSED NORTH LAKE ACCESS - WDNR PROPERTY (FORMER THOMAS AND ELAINE KRAUS PROPERTY) WETLANDS

Dates:	July	8,	2008
	July	24.	2003

Observers: Donald M. Reed, Ph.D., Chief Biologist Lawrence A. Leitner, Ph.D., Principal Biologist Christopher J. Jors, Biologist Southeastern Wisconsin Regional Planning Commission

> Joanne Kline, Regional Wetland Biologist Wisconsin Department of Natural Resources

Location: Town of Merton in parts of the Southeast one-quarter of U.S. Public Land Survey Section 17, Township 8 North, Range 18 East, Waukesha County, Wisconsin.

Species List: Plant Community Area No. 1

GRAMINEAE

Phalaris arundinacea¹--Reed canary grass Miscanthus sp.^{1,2}--Japanese plume grass

CYPERACEAE

<u>Scirpus</u> <u>atrovirens</u>--Green bulrush <u>Carex</u> <u>stipata</u>--Sedge <u>Carex</u> <u>bebbii</u>--Sedge <u>Carex</u> <u>lacustris</u>--Lake sedge

ARACEAE

Symplocarpus foetidus--Skunk cabbage

LILIACEAE

Hemerocallis fulva¹--Day-lily

IRIDACEAE

Iris virginica--Virginia blueflag

SALICACEAE

Populusdeltoides--CottonwoodSalixbabylonica^T--Weeping willowSalixnigra--Black willowSalixexigua--Sand-bar willow

BETULACEAE

Alnus rugosa--Tag alder

ULMACEAE

Ulmus americana--American elm

URTICACEAE

Pilea pumila--Clearweed

POLYGONACEAE

Polygonum persicaria¹--Lady's thumb

```
SAXIFRAGACEAE
         Ribes americanum--Wild black currant
ROSACEAE
          Geum canadense--White avens
          Rubus occidentalis--Black raspberry
ACERACEAE
          Acer saccharinum--Silver maple
               negundo--Boxelder
          Acer
BALSAMINACEAE
          Impatiens capensis--Jewelweed
RHAMNACEAE
          Rhamnus cathartica1--Common buckthorn
                   frangula1--Glossy buckthorn
          Rhamnus
VITACEAE
          Vitis riparia -- River-bank grape
          Parthenocissus quinquefolia--Virginia creeper
LYTHRACEAE
          Lythrum salicaria<sup>1</sup>--Purple loosestrife
ONAGRACEAE
          Circaea lutetiana--Enchanter's nightshade
UMBELLIFERAE
          Cicuta bulbifera--Water-hemlock
                  maculata -- Spotted water-hemlock
          Cicuta
CORNACEAE
          Cornus amomum--Silky dogwood
          Cornus stolonifera--Red-osier dogwood
PRIMULACEAE
          Lysimachia thyrsiflora--Tufted loosestrife
 OLEACEAE
          Fraxinus pennsylvanica--Green ash
 CONVOLVULACEAE
          Convolvulus sepium--Hedge bindweed
 VERBENACEAE
          Verbena urticifolia--White vervain
 LABIATAE
           Glechoma hederacea<sup>1</sup>--Creeping Charlie
          Stachys palustris--Hedge-nettle
 SOLANACEAE
           Solanum dulcamara<sup>1</sup>--Deadly nightshade
 CAPRIFOLIACEAE
           Sambucus canadensis--Elderberry
 COMPOSITAE
           Ambrosia artemisiifolia--Common ragweed
           Xanthium strumarium--Cocklebur
           Eupatorium rugosum--White snakeroot
```

3

Total number of plant species: 44 Number of alien, or non-native, plant species: 10 (23 percent)

This approximately 0.2-acre plant community area is part of a larger wetland complex adjacent to North Lake and consists of second growth, Southern wet to wet-mesic lowland hardwoods and fresh (wet) meadow/shallow marsh along the shoreline. Disturbances to the plant community area include dumping, past filling, mowing, siltation and sedimentation due to stormwater runoff from adjacent lands, and water level changes due to past ditching. No Federal- or State-designated Special Concern, Threatened, or Endangered species were observed during the field inspection.

¹ Alien or non-native plant species

² Planted species

4

Plant Community Area No. 2

GRAMINEAE <u>Agrostis</u> <u>stolonifera</u>^{1,2}--Redtop grass CYPERACEAE <u>Eleocharis</u> <u>acicularis</u>¹--Needle spike-rush <u>Carex</u> <u>stipata</u>--Sedge POLYGONACEAE <u>Polygonum</u> <u>persicaria</u>²--Lady's thumb PORTULACACEAE <u>Portulaca</u> <u>oleracea</u>²--Purslane LABIATAE <u>Glechoma</u> <u>hederacea</u>²--Creeping Charlie <u>Prunella</u> <u>vulgaris</u>--Selfheal

Total number of plant species: 7 Number of alien, or non-native, plant species: 4 (57 percent)

This approximately 0.05-acre plant community area consists of an ephemeral fresh (wet) meadow. Disturbances to the plant community area include past filling and frequent mowing. No Federal- or State-designated Special Concern, Threatened, or Endangered species were observed during the field inspection.

¹ Co-dominant plant species

² Alien or non-native plant species

PLANT COMMUNITY AREAS AND SAMPLE SITE LOCATIONS

EXHIBIT B

SEWRPC FIELD DATA FORM ROUTINE WETLAND DETERMINATION

PROJECT NAME: Proposed North Lake Boat Launch Site

FILE NO.: CA 718-49

LOCATION: Town of Merton, Waukesha COUNTY, SE 1/4 SECTION 17, T 8 N, R 18 E

DATE: July 8, 2008

OBSERVERS: Donald M. Reed, Ph.D. - SEWRPC Joanne Kline - DNR

PLANT COMMUNITY AREA NO.: 1 TRANSECT NO.: 1 SAMPLE SITE NO.; 1

VEGETATION

Dominant Plant Species (%)	Stratum	Indicator	Other <u>NON-Dominant</u> Plant Species (%)	Stratum	Indicator
Carex lacustris (50)	Herb	OBL	Tragopogon dubious (8)	Herb	NI
Eupatorium rugosum (20)	Herb	FACU	Poa pratensis (5)	Herb	FAC-
Vitis riparia (20)	Herb	FACW-	Aster lateriflorus (2)	Herb	FACW-
Cornus amomum (8)	Shrub	FACW+	Stachys palustris (2)	Herb	OBL
Rhamnus cathartica (8)	Shrub	FAC-	Impatiens capensis (3)	Herb	FACW
Fraxinus pennsylvanica (10)	Tree	FACW	Salix exigua (5)	Shrub	OBL
Acer negundo (10)	Tree	FACW-	Fraxinus pennsylvanica (2)	Shrub	FACW
	1	14 P. 1 19 19 19 19 19	Juglans nigra (2)	Shrub	NI
	1		Vitis riparia (2)	Shrub	FACW-
Percent of Dominant Species that : Plant Community Type: Shub-ca	are OBL, FAG	CW, OR FAC	: 71% dwoods		
Remarks	in whith scattere	a lowialid hai	uwoous		

HYDROLOGY	WETLAND HYDROLOGY INDICATORS	
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Floodway	
Field Observations: Depth of Surface Water: (in.) Depth of Soil Pit: 18(in.) Depth to Free Water in Pit: (in.) Depth to Saturated Soil: 6(in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Plant morphological adaptations Other (Explain in Remarks)	

Map Unit Na (Series and P	me hase): Mathe	erton silt loam (MmA)	Drain	age Class: Somewhat po	oorly drained
Taxonomy (S Field Observ	Subgroup): U ations Confi	Idollic Endoaqualfs rm Mapped Type? []Yes 🛛 No 🛛 []Other hydric soil with	in County*
Profile Descr	iption				
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.
0-6	1	10YR 2/1			Loam
6-14		10YR 3/1			Clay loam
14-18		10YR 3/1			Gravelly loam
Wetland Soil H S W H S H S M NDCS M	Indicators: Histosol Histic Epiped Sulfidic Odor Aquic Moistu Reducing Con Gleyed Low-Chroma	on re Regime nditions Colors	Bright Mottling Concentrations High Organic Co Organic Streakin Listed on Local F Listed on Nationa Other (Explain in	ntent in Surface Layer g in Sandy Soils lydric Soils List al Hydric Soils List 1 Remarks)	
NKCS Mapp	ed Type: NI	- Not Inventoried			
USDA Hydri	c Soils Field	Indicator:			
WWI Classif	ication:				

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes No [(If no, explain)

Is the si	te a problem area?	
Yes 🗌	No 🖾 (if yes, explain)

Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes No 🛛 (If yes, explain) Remarks:

Based on the foregoing, are:	
Hydrophytic Plants Dominant? XYes No Wetland Hydrology Present? Yes No Wetland Soils Present? Yes No	This Sampling Point is within a Wetland? 🛛 Yes 🔲 No
Remarks: S3k wetland	

PLANT COMMUNITY AREA NO.: -- TRANSECT NO.: 1 and 2 SAMPLE SITE NO.: 2

Dominant Plant Species (%)	Stratum	Indicator	Other <u>NON-Dominant</u> Plant Species (%)	Stratum	Indicator
Poa pratensis (80)	Herb	FAC-	Viola sororia (15)	Herb	FACU
Quercus macrocarpa (33)	Tree	FAC-	Plantago lanceolata (10)	Herb	FAC
Populus deltoides (25)	Tree	FAC+	Glechoma hederacea (10)	Herb	FACU
Fraxinus pennsylvanica (25)	Tree	FACW	Larix laricina (15)	Tree	FACW
				1112	·
Percent of Dominant Species that	are OBL, FAG	CW. OR FAC	: 50%		a
Plant Community Type: Former la	awn, currently	not maintaine	d.		
Remarks:	-0.10				

VEGETATION

HYDROLOGY	WETLAND HYDROLOGY INDICATORS	
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Floodway	
Field Observations:Depth of Surface Water:(in.)Depth of Soil Pit:23(in.)Depth to Free Water in Pit:21.5(in.)Depth to Saturated Soil:21.5(in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data ØFAC-Neutral Test Plant morphological adaptations Other (Explain in Remarks)	
Remarks:		

SOILS					
Map Unit N (Series and	lame Phase): Mati	herton silt loam (MmA)		Drainage Class: Somewha	t poorly drained
Taxonomy	(Subgroup):	Udollic Endoaqualfs			
Field Obser	vations Con	firm Mapped Type? [Yes No	Other hydric soil with	in County*
Profile Des	cription				
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions Structure, etc.
0-6	-	7.5YR 2.5/1	1		Silty clay loam
6-8		7.5YR 2.5/1	7.5YR 5/4	Common/Distinct	Silty clay loam
8-15	1	10YR 4/2 (67%)			Clay loam
	11	10YR 3/1 (33%)			
15-22	L	10YR 3/1	/		Loam
22-23		10YR 7/2			Sandy marl
	Aquic Mois Reducing C Gleyed Low-Chron	conditions na Colors	Listed on Local Listed on Nation	ng in Sandy Solis Hydric Soils List al Hydric Soils List in Remarks)	
NRCS Maj	pped Type: N	II - Not Inventoried	and the second second		
USDA Hyd	ric Soils Fie	ld Indicator:			
WWI Class Remarks (* check "oth 0 to 15" of	surcation: *If field obse er hydric soi old fill mater	rvations do not confir l" and describe here): ial associated with past	m mapped type but i land use activities; Bi	epresent another hydric iried horizon at 15"	soil found in the county,
SITE CON	DITIONS				
Do normal Yes⊠ N	environmen lo □(If no, e	tal conditions exist at xplain)	the plant community	? Is the site a pro Yes □ No ⊠	blem area? (if yes, explain)
Has the ver Yes⊠ N	getation, soil lo [](If yes,	s, and/or hydrology be explain)	een significantly distu	urbed?	

Based on the foregoing, are:				
Hydrophytic Plants Dominant? Wetland Hydrology Present? Wetland Soils Present?	□Yes ⊠No □Yes ⊠No □Yes ⊠No	This Sampling Point is within a Wetland?	🗌 Yes	⊠No
Remarks: Upland, formerly maint	ained yard.			_

PLANT COMMUNITY AREA NO.: -- TRANSECT NO.: 2 SAMPLE SITE NO.: 3

VEGETATION

Dominant Plant Species (%)	Stratum	Indicator	Other <u>NON-Dominant</u> Plant Species (%)	Stratum	Indicator
Populus deltoides (8)	Herb	FAC+			
Acer saccharinum (5)	Herb	FACW			
Populus deltoides (45)	Tree	FAC+			
				-	
Percent of Dominant Species that :	are OBL, FAC	CW, OR FAC: 1	00%		
Plant Community Type: Exposed	sandy beach w	ith scattered low	and hardwoods		
Remarks:					

HYDROLOGY	WETLAND HYDROLOGY INDICATORS		
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Floodway		
Field Observations: Depth of Surface Water: (in.) Depth of Soil Pit: 22(in.) Depth to Free Water in Pit: 2(in.) Depth to Saturated Soil: 0(in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data SFAC-Neutral Test Plant morphological adaptations Other (Explain in Remarks)		

Map Unit Name (Series and Phase): Fox silt loam (FsA)				Drainage Class: Well-drained		
Taxonomy (S Field Observa	ubgroup): T ations Confin	ypic Hapludalfs •m Mapped Type? []Yes 🛛 No 🛛 [Other hydric soil with	in County*	
Profile Descri	iption					
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.	
0-22	1	7.5YR 4/1			Sand	
Wetland Soil F S A B U U U U U U U U U U U U	Indicators: listosol listic Epiped Sulfidic Odor Aquic Moistu Reducing Con Gleyed Low-Chroma	on re Regime nditions Colors	Bright Mottling Concentrations High Organic Co Organic Streakin Listed on Local F Listed on Nationa Other (Explain in	ntent in Surface Layer g in Sandy Soils lydric Soils List al Hydric Soils List 1 Remarks)		
NRCS Mapp	ed Type: NI	- Not Inventoried		C 111		
USDA Hydri	c Soils Field	Indicator:				
WWI Classif	ication:			and the book of	will found in the sounds:	
check "other Sample site is	hydric soil"	and describe here):	sandy Lake Beaches (Sfb) soils unit.	son round in the county,	

SITE CONDITIONS

Do normal environmental conditions exist at the plant community?Is the siteYes⊠No □(If no, explain)Yes ⊠

Is the site a problem area? Yes ⊠ No □(if yes, explain)

Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes No 🖾 (If yes, explain) Remarks: Problem Soils: Sandy soil

Based on the foregoing, are:		
Hydrophytic Plants Dominant? XYes No Wetland Hydrology Present? Yes No Wetland Soils Present? Yes No	This Sampling Point is within a Wetland?	⊠ Yes □No
Remarks: Wetland on sandy soils		

PLANT COMMUNITY AREA NO.: 2 TRANSECT NO.: -- SAMPLE SITE NO.: 4

Dominant Plant Species (%)	Stratum	Indicator	Other <u>NON-Dominant</u> Plant Species (%)	Stratum	Indicator
Poa pratensis (33)	Herb	FAC-	Polygonum persicaria (8)	Herb	FACW
Eleocharis acicularis (20)	Herb	OBL	Agrostis stolonifera (3)	Herb	FACW
Acer saccharinum (20)	Herb	FACW			
					11
	1				
				A 1 11	
Percent of Dominant Species that	are OBL, FAG	CW, OR FAC	: 67%		
Plant Community Type: Mowed 1	awn when dry	1			
Remarks:					

HYDROLOGY	WETLAND HYDROLOGY INDICATORS		
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Floodway		
Field Observations: Depth of Surface Water: 7.5(in.) Depth of Soil Pit: 4(in.) Depth to Free Water in Pit: (in.) Depth to Saturated Soil: (in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data SFAC-Neutral Test Plant morphological adaptations Other (Explain in Remarks)		

Map Unit Name (Series and Phase): Fox silt loam (FsA)				Drainage Class: Well-drained			
Faxonomy (S Field Observ	Subgroup): T ations Confi	ypic Hapludalfs rm Mapped Type? []Yes 🛛 No	Other hydric soil withi	n County*		
Profile Descr	iption						
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.		
0-1.5		7.5YR 2.5/1	1. P		Muck		
1.5-4		10YR 4/1	7.5YR 4/6	Common/Distinct	Loam		
4					Refusal - Gravel		
1.001							
Wetland Soil I S V V V V V V V V V V V V V	Indicators: Histosol Histic Epiped Sulfidic Odor Aquic Moistu Reducing Con Gleyed Low-Chroma	on ire Regime nditions Colors	Bright Mottling Concentrations High Organic C Organic Streaki Listed on Local Listed on Natior Other (Explain	ontent in Surface Layer ng in Sandy Soils Hydric Soils List al Hydric Soils List in Remarks)			
NRCS Mapp	ed Type: NI	- Not Inventoried					
TOD I TT. I.	ic Soils Field	Indicator: A10, 2cm	Muck (Test indicator	in this region)			
USDA Hyari							

SITE CONDITIONS

Do normal environmental conditions exist at the plant community?Is the site a problem area?Yes⊠No □(If no, explain)Yes ⊠No □(if yes, explain)

Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes No (If yes, explain)

Remarks: Problem area - Seasonal wetland. Past filling and regular mowing when dry.

Based on the foregoing, are:	
Hydrophytic Plants Dominant? Xes No Wetland Hydrology Present? Xes No Wetland Soils Present? Xes No	This Sampling Point is within a Wetland? 🛛 Yes 🔲 No
Remarks: Seasonal/Atypical wetland	

(This page intentionally left blank)

Appendix B

TOPOGRAPHIC/SURVEY INFORMATION

- Appendix B-1: SEWRPC large scale topographic map with 100-year floodplain
- Appendix B-2: 2007 aerial photo with topography & 100-year floodplain Waukesha Co. website
- Appendix B-3: SEWRPC Record of U. S. Public Land Survey Section Control Station

(This page intentionally left blank)

Appendix B-1

Source: Waukesha County and SEWRPC.

Source: Waukesha County.

Appendix B-3

RECORD OF U. S. PUBLIC LAND SURVEY CONTROL STATION	I
U. S. PUBLIC LAND SURVEY CORNER 1716 T 8 N, R 18 E, WAUKESHA	COUNTY, WIS.
GEODETIC SURVEY BY: ALSTER & ASSOCIATES, INC.	YEAR:
STATE PLANE COORDINATES OF: WITNESS CORNER NORTH 425,763.66 EAST 2,431,284.88 ELEVATION OF STATION: 898.34	
HORIZONTAL DATUM: WISCONSIN STATE PLANE COORDINATE SYSTEM, SOUTH ZONE	
VERTICAL DATUM: NATIONAL GEODETIC VERTICAL DATUM OF 1929	
CONTROL ACCURACY: THETA ANGLE: HORIZONTAL: THIRD ORDER, CLASS I VERTICAL: SECOND ORDER,	+ 1-06-38 CLASS II
LOCATION SKETCH: 1 STY. A. FRAME HSE Ne W321N 7631 SILVEZ SPRING CM SET SM. EL. 39K. NW FRCE OF MOOT SUSTEM OF TRITE IC WILLOW, 0.2 HDE REMNANT FENCE	SN ANT
0.1' DELOW GEO, ELEV.: 839.130 4 0 5 7 0	// ۲
SURVEYOR'S AFFIDAVIT:	Assessment of the second secon
STATE OF WISCONSIN	IN GCONS

WAUKESHA COUNTY) SS

I hereby certify that I found a concrete monument with SEWRPC brass cap as set to define the location and direction of the south line of the northeast one-quarter of Section 17, Township 8 North, Range 18 East, in May 1976 by John H. Mielke, S-55; using monumentation for and information shown on the plat of Silver Spring Park Subdivision; that I referenced the same as shown hereon; and that this record is correct and complete to the best of my knowledge and belief.

DATE OF SURVEY: 26 April 1997

TONED REGISTERED LAND SURVEYOR

FORM PREPARED BY SOUTHEASTERN WISCONSIN REGIONAL PLANNING COMMISSION

70-4

(This page intentionally left blank)

APPENDIX C

AERIAL PHOTOGRAPHY

- Appendix C-1: 1941 Waukesha Co. website
- Appendix C-2: 1950 Waukesha Co. website
- Appendix C-3: March, 1963 Waukesha Co. website
- Appendix C-4: April, 1970 Waukesha Co. website
- Appendix C-5: April, 1980 Waukesha Co. website
- Appendix C-6: March, 1985 SEWRPC files
- Appendix C-7: March, 1990 Waukesha Co. website
- Appendix C-8: March, 1995 Waukesha Co. website
- Appendix C-9: March, 2000 Waukesha Co. website
- Appendix C-10: April, 2005 Waukesha Co. website
- Appendix C-11: April, 2007 Waukesha Co. website

(This page intentionally left blank)

Source: Waukesha County.

Source: Waukesha County.

Source: Waukesha County.

Appendix C-4

Source: Waukesha County.

Source: Waukesha County.

Source: Waukesha County.

Source: Waukesha County.

Source: Waukesha County.

Source: Waukesha County.

Source: Waukesha County.
(This page intentionally left blank)

Appendix D

WETLAND INVENTORY MAPS

- Appendix D-1: Natural Resources Conservation Service Draft Wetland Map
- Appendix D-2: 1985 Wisconsin Wetland Inventory Map
- Appendix D-3: 2005 Wisconsin Wetland Inventory Map

(This page intentionally left blank)

Appendix D-1

NATURAL RESOURCES CONSERVATION SERVICE DRAFT WETLAND MAP

Source: Natural Resources Conservation Service.

Appendix D-2

1985 WISCONSIN WETLAND INVENTORY MAP

Source: Wisconsin Department of Natural Resources.

Appendix D-3

2005 WISCONSIN WETLAND INVENTORY MAP

Source: Wisconsin Department of Natural Resources and SEWRPC.

(This page intentionally left blank)

Appendix E

SOILS INFORMATION

- Appendix E-1: 2007 aerial photo with soil types and hydric status Waukesha Co. website
- Appendix E-2: Typical soil series profiles mapped on site The Soil Survey of Milwaukee and Waukesha Counties, USDA, SCS, July, 1971.
- Appendix E-3: Summary list of applicable hydric soil field indicators (v. 6.0) USDA, NRCS

(This page intentionally left blank)

Source: Waukesha County.

Appendix E-2

Soil Types Mapped and Their Associated Published Profile Descriptions Within the Project Area

FsA – Fox silt loam, 0 to 2 percent slopes
Fox Series – Well drained
0-8" 10YR 4/2 to 3/2 loam, 10YR 6/2 when dry
8-14" 10YR 4/4 clay loam
14-28" 10YR 4/4 gritty clay loam

MmA – Matherton silt loam, 1 to 3 percent slopes
Matherton Series – Somewhat poorly drained soil; hydric inclusion – Sebewa (see below)
0-6" 10YR 3/2 silt loam
6-11" 10YR 4/2 silt loam
11-14" 10YR 4/2 loam w/ 10YR 5/2 & 5/8 mottles
14-17" 10YR 4/2 loam w/ 10YR 5/2 & 5/8 mottles
17-29" 10YR 4/3 clay loam w/ 10YR 5/2 & 5/8 mottles

Sm – Sebewa silt loam, 0-2 percent slopes Sebewa Series – Poorly drained 0-7" 10YR 2/2 silt loam 7-12" 10YR 2/2 to 3/2 silt loam 12-14" 2.5Y 3/1 to 4/1 silt loam w/ 10YR 4/3 mottles 14-18" 2.5Y 4/2 heavy silt loam w/ 10YR 4/4 mottles 18-26" 5Y 5/1 clay loam w/ 7.5YR 4/4 mottles

Source: Adapted from 1971 Soil Survey of Milwaukee and Waukesha Counties U. S. Department of Agriculture, Soil Conservation Service.

FIELD INDICATORS OF HYDRIC SOIL FOR WISCONSIN LRRs K AND M - Version 6.0

Hydric Soil Indicators for ALL Soils: use for all soil textures.

A1. Histosol. Classifies as a Histisol (>16" organic material in the upper 32").

A2. Histic Epipedon.

8-24" of organic material over mineral soil of chroma <2. Saturation or artificial drainage is required.

A3. Black Histic. 8-24" of organic material starting within 6" of soil surface with hue 10YR or yellower, value ≤ 3 , and chroma <1. Saturation or artificial drainage is not required.

A4. Hydrogen Sulfide.

Hydrogen sulfide odor within 12" of the surface.

A5. Stratified Layers.

Several stratified layers starting within 6" of the soil surface. One or more of the layers has value <3 with chroma ≤ 1 and/or it is muck, mucky peat, peat or mucky modified mineral texture. The remaining layers have a chroma ≤ 2 .

A10. 2 cm Muck. Use in LRR M: test in LRR K. A layer of muck 2 cm (0.75") or more thick with value ≤ 3 and chroma <1 starting within 6" of the soil surface.

A11. Depleted Below

Dark Surface. A layer with a depleted or gleyed matrix that has >60% chroma <2 starting within 12" of the surface that has a minimum thickness of either:

a. 6" or

b. 2" if the 2" consists of fragmental soil material. Loamy layer(s) above have value <3 and chroma <2. Sandy layers have value <3, chroma <1, and >70% organic coatings on the soil particles.

A12. Thick Dark

Surface. A layer >6" thick with a depleted matrix that has >60% chroma ≤ 2 (or gleyed) below 12". The layers above has value <2.5 and chroma <1to 12" and value <3 and chroma <1 in the remainer of the epipedon. If sandy, $\geq 70\%$ of particles are covered with organic material.

Hydric Soil Indicators for LOAMY and **CLAYEY Soils:**

F1. Loamy Mucky Mineral. A mucky modified mineral layer >4" thick, within 6" of the soil surface.

F2. Loamy Gleyed

Matrix. A gleyed matrix that occupies 60% or more of a layer starting within 12" of the soil surface.

F3. Depleted Matrix. A

layer with a depleted matrix that has $\geq 60\%$ chroma ≤ 2 that has a minimum thickness of either:

- a. 2" if the 2" is entirely within the upper 6" of the soil. or
- b. 6" and starts within 10" of the soil surface.

F6. Redox Dark Surface.

A layer at least 4" thick entirely within the upper 12" of the mineral soil that has:

a. matrix value <3 and chroma <1 and 2% or more distinct or prominent redox

concentrations as soft masses or pore linings, or b. matrix value ≤ 3 and chroma <2 and 5% or more distinct or prominent redox concentrations as soft masses or pore linings.

F7. Depleted Dark

Surface. Redox depletions, with value >5 and chroma <2, in a layer at least 4" thick entirely within the upper 12" of the mineral soil that has:

- a. matrix value <3 and chroma <1 and 10% or more redox depletions, or
- b. matrix value <3 and chroma <2 and 20% or more redox depletions.

F8. Redox Depressions.

In closed depressions subject to ponding, 5% or more distinct or prominent redox concentrations as soft masses or pore linings in a layer >2"thick entirely within the upper 5" of the soil surface.

FIELD INDICATORS OF HYDRIC SOIL FOR WISCONSIN LRRs K AND M - Version 6.0

Hydric Soil Indicators for SANDY Soils:

S1. Sandy Mucky Mineral. A mucky modified mineral layer $\geq 2^{"}$ starting within 6" of the soil surface.

S3. 2 in Mucky Peat or

Peat. Use in LRR M. A layer of mucky peat or peat $\geq 2^{"}$ thick with value ≤ 3 and chroma $\leq 2^{"}$ starting within 6" of the soil surface.

S4. Sandy Gleyed Matrix. A gleyed matrix which occupies $\geq 60\%$ of a layer starting within 6" of the soil surface.

S5. Sandy Redox. A layer starting within 6" of the soil surface that is \geq 4" thick and has a matrix with \geq 60% chroma \leq 2 with \geq 2% distinct or prominent redox concentrations.

S6. Stripped Matrix. A layer starting within 6" of the surface in which Fe/Mn oxides and/or organic matter have been stripped from the matrix exposing the primary base color of soil materials. The stripped areas and translocated oxides and/or organic matter form a diffuse splotchy pattern of two or more colors. The stripped zones are $\geq 10\%$ of the volume; they are rounded and about 0.5 to 1" in diameter.

TEST Indicators of Hydric Soils

A16. Coast Prairie Redox (old TS5 Chroma 3 Sandy Redox) Testing in LRR K and M. A layer starting within 6" of the soil surface that is \geq 4" thick and has a matrix chroma \leq 3 with 2% or more distinct or prominent redox concentrations as soft masses and/or pore linings.

NOTE: TEST INDICATORS ARE NOT TO BE USED!

F12. Iron/Manganese

Masses. For testing in LRR M. On flood plains, a layer \geq 4" thick with 40% or more chroma \leq 2, and 2% or more distinct or prominent redox concentrations as soft Fe/Mn masses with diffuse boundaries. The layer occurs entirely within 12" of the soil surface. Fe/Mn masses have value \leq 3 and chroma \leq 3; most commonly they are black. The thickness requirement is waived if the layer is the mineral surface layer.

S8. Polyvalue Below Surface. For testing in LRR

K. A layer with value ≤ 3 and chroma ≤ 1 starting within 6" of the soil surface underlain by a layer(s) where translocated organic matter unevenly covers the soil material forming a diffuse splotchy pattern. At least 70% of the visible soil particles in the upper layer must be covered, coated or masked with organic material. Immediately below this layer, the organic coating occupies 5% or more of the soil volume and has value ≤ 3 and chroma ≤ 1 . The remainder of the soil volume has value ≥ 4 and chroma ≤ 1 .

S9. Thin Dark Surface.

For testing in LRR K. At layer 2" or more thick entirely within the upper 6" of the surface, with value ≤ 3 and chroma ≤ 1 . At least 70% of the visible soil particles in this layer must be covered, coated, or masked with organic material. This layer is underlain by a layer(s) with value ≤ 4 and chroma ≤ 1 to a depth of 12" or to the spodie horizon, whichever is less.

TF2. Red Parent

Material. For testing in LRR K. In parent material with a hue of 7.5YR or redder, a layer at least 4" thick with a matrix value ≤ 4 and chroma ≤ 4 and 2% or more redox depletions and/or redox concentrations as soft masses and/or pore linings. The layer is entirely within 12" of the soil surface. The minimum thickness requirement is 2" if the layer is the mineral surface layer.

Appendix F

NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION PRECIPITATION RECORDS

- Appendix F-1: December 2007 through August 2008 total precipitation and departure from normal records (see Hartford and Oconomowoc stations) in tabular format
- Appendix F-2: September 2008 through November 2008 precipitation records (see Hartford and Oconomowoc stations) shown graphically

(This page intentionally left blank)

TOTAL PRECIPITATION AND DEPARTURE FROM NORMAL (INCHES)

WISCONSIN 2007

STATION	J	UL	A	UG	SE	Р	00	СТ	N	ov	DI	EC	ANNU	JAL
	PRECIP.	DEPART.	PRECIP.	DEPART.	PRECIP.	DEPART.	PRECIP.	DEPART.	PRECIP.	DEPART.	PRECIP.	DEPART.	PRECIP.	DEPART
BRODHEAD	2.20	-1.74	15.57	11.38	1.71	-1.87	3.05	.35	.09	-2.30	4.73	2.89	42.46	6.92
CHARMANY FARM	1.87	-2.16	14.62	10.57	2.28	97	3.56	1.14	.33	-2.04	4.35	3.03	M 42.67	ince.
CLINTON	M 3.29	10000	16.24	11.65	1.47	-2.06	1.54	-1.06	.20	-2.34	M 4.47	1000	M	
CLYMAN	a second						2.44	1 mileral	.28	1220	7.17			1
COTTAGE GROVE	2.49		14.22		1.64		M 3.12		.38		M 4.16		M 40.83	1
FT ATKINSON	2.21	-1.71	10.64	6.48	2.04	-1.37	2.37	19	.24	-2.25	4.46	2.81	35.86	2.40
HORICON	4.90	.57	11.50	7.45	1.78	-1.98	2.28	36	.29	-1.82	3.80	2.33	M 39.29	
HUSTISFORD WWTP	3.84		9.50		1.68		2.31	Neger I	.27		3.03	and a	M 33.72	
JEFFERSON WWTP	5.82		12.68		2.23		2.60		.33		4.20		46.39	
LAKE MILLS	3.03	-1.09	17.75	13.14	1.90	-1.70	2.41	03	M .33		4.82	3.14	M 44.84	1
LODI	2.91	100	15.18	A LOCATION	2.52		3.96		.59		4.20	2000	44.50	
MADISON DANE CO AP R	2.69	-1.24	15.18	10.85	2.45	- 63	3 35	1.17	39	-1.97	3.63	1.97	44.41	11.46
MAZOMANIE	1.47	10161	14.92		2.75	105	4.87		.22		M 3 28	1.27	M	11.40
MILTON WWTP	21.94						1 88		14	-	5.03			
MONROE I W	1.52	-2.72	15.43	10.90	7 44	-1 34	3.00	50	25	.2.23	4 70	202	42.75	5.07
MT HOREB	1.62		18 48	10.50	2.22	-1.54	3.06		21	-4.4.5	M 4 49	2.92	42.13	5.92
PORTAGE	2.11	-2 34	11.30	6.97	313	-41	4 33	1 03	32	2.12	2 52	211	20.02	1.50
POYNETTE 7 WNW	1.68	- Maria I	14 70	0.27	2.82		4.53	1.95	22	-2.15	M 2 02	2.11	39.03	4.50
STOUGHTON	2.03	-1 70	16.40	12 34	2.02	1 25	9.55	61	.2.5	1.02	NI 5.02	2.15	M 41.50	
SULLIVAN 3SE	348	-1.73	12 78	14.54	2.03	-1.35	2.95	10.	.44	-1.70	4.75	3.15	M 43.57	
TOWN OF WESTFORD	3.45		12.70		2.57		3.02		.33		4.28		43.09	
WATERLOO	3.03		12.52		1.81		2.37		.52		4.09		40.73	
WATERTOWN	4.07	26	14.39	0.00	1.01	2.00	2.49	- 40	.40	2.07	4.14	2.00	12.00	0.00
WISCONSIN DELLS	2.65	1.45	14.39	7.21	2.12	-2.09	2.10	-,42	.30	-2.07	5.65	3.98	42.59	8.10
DIVISIONAL DATA	2.05	1.45	11,00	7.51	3.13	34	3.12	.82	.35	-1.76	3.62	2.36	M 39.30	1 200
SOUTHEAST 09	2.07	-1.10	13.74	9.50	2.15	-1.38	2.90	.42	.32	-2.09	4.25	2.64	41.68	7.57
ALLENTON	2 48		0.99		163		2 70		20		2.41			
BROOKFIELD	4 28		8.37		1.05		2.70		,39		3.41			
BURLINGTON	3.97	15	11.47	7.71	1.50	1 77	2.70	71	.1/	2 20	M 3.95	1.71	11.20.00	1
GENOA CITY	5.14		12.92	1.51	1.30	-1.77	3.02	./1	.30	-2.20	3.05	1./1	M 39.05	
GERMANTOWN	6.28	2.22	10.77	6.40	1.20	1.01	2.11	17	.4/	2.20	5.05	1.00		
HALES CORNERS-WHITNALL	1.57	4.3.3	10.16	0.49	1.92	-1.01	2.30	-11	.21	-2.38	3.00	1.27	31.18	4.35
HARTEORD 2 W	3.27	96	0.10	5.76	1.40	104	3.10		.3/	1.05	M 4.48		M	1.00
HOLV HILL 2 E	3.61	00	9.41	5.20	1.11	-1.84	1.70	92	.21	-1.95	3.94	2.37	31.26	4.74
KEN/OSUA	2.01	12	11.50	7.74	11 04		2.02	22	.45	1.00	4.11		10.00	
MUWALIVEE MEMABY COL	3.81	.13	11.50	1.51	M .84		2.82	.33	.69	-1.99	M 3.77	- 22	M	
MILWAUKEE MI MARY COL	1.97	-1.49	7.44	3.46	M .45		2.68	.40	M .16	240	2.65	.84	M 29.75	-0.57
MILWAUKEE MITCHELL AP K	1.40	-2.18	1.92	3.89	1.93	-1.37	2.96	.47	.36	-2.34	3.41	1.19	33.06	-1.75
JCONOMOWOC	2.84	-1.37	10.72	6.20	1.82	-1.87	2.29	34	.34	-1.96	3.94	2.23	37.49	3,59
ADDOCK LAKE	4.51		9.96	1	1.50		2.57		.69		3.90	-	39.95	
PELL LAKE	3.95	1.00	13.16	1.00	1.74	1.0	2.98	92	.40	0.60	3.40	9.02	0.000000	
OKTWASHINGTON	5.28	1.47	8.85	4.64	1.72	-1.76	2.41	.11	.62	-1.63	3.69	1.87	M 37.07	
CACINE	2.77	80	11.58	7.50	2.16	-1.54	3.05	.57	.32	-2.56	M 4.26		M 41.69	
SOUTH MILWAUKEE WWTP	1.67		9.16	and the	2.09	200	3.43		.51		M 3.75		M 36.58	
JNION GROVE	3.97	.33	12.44	7.95	1.27	-2.19	2.77	.34	.46	-2.08	M 3.10		M 38.13	
WAUKESHA	2.95	88	9.62	4.85	1.51	-2.01	2.41	21	.21	-2.42	M 3.11		M	100
WEST ALLIS	2.30	-1.28	8.68	4.75	1.67	-1.85	2.92	.31	.48	-2.30	4.98	2.96	38.93	5.07
WEST BEND FIRE STN	5.10		10.49		1.27		2.44		M .59	a state	3.55	- 72	M	1000

11

Appendix F-1

Appendix F-1 (continued)

WISCONSI	N
JANUARY	200

MONTHLY STATION AND DIVISION SUMMARY

JANUARY 2008			1.1.1	_				-		-		-		1				am		T (IND				
		TEMPERATURE (°F)															PRE	CIPI	TATION	N (IN)		1.667	101	
												NO. OF	DAYS	-		AL			ICE PEL	LETS, SI	WOW	NO.	OF D/	YS
				CE					S	Ks.	M	AX	MI	N		JRE	tan			HQ	-	ORE	ORE	ORE
STATION	AVERAGE MAXIMUM	AVERAGE MINIMUM	AVERAGE	DEPARTUR FROM NOF	HIGHEST	DATE	LOWEST	DATE	HEATING DEG. DAY	COOLINC DEG. DA	>=90	<=32	<=32	0=>	TOTAL	DEPARTU FROM NC	GREATES 24 HOURS	DATE	TOTAL	MAX DEP ON GROU	DATE	.10 OR M	.50 OR M	1.00 OR M
HUSTISFORD WWTP JEFFERSON WWTP LAKE MILLS LODI MADISON DANE COUNTY AP R MAZOMANIE MONROE 1 W PORTAGE POYNETTE 7 WNW STOUGHTON SULLIVAN 3SE TOWN OF WESTFORD WATERLOO WATERLOO WATERTOWN WISCONSIN DELLS	25.6 27.2 26.3 26.0 25.5 27.6M 26.6 25.9 25.3M 25.9 27.1 24.7 26.5 26.4 24.8	8.6 10.1 9.8M 7.2 9.2 7.8M 4.0M 9.3M 8.3M 9.0M 9.2 5.7M 9.0M 9.2 5.9	17.1 18.7 18.1M 16.6 17.4 17.7M 15.3M 17.6M 16.8M 17.5M 18.2 15.2M 17.8M 17.8 15.4	1.0 .1 2.4 .9 1.6 1.1	50 56 53 46 50 48 52 47 45 51 58 44 51 55 47	8 8 29+ 7 8 7 29 9+ 8 8 29+ 8 8 29+	-19 -12 -12 -23 -12 -21 -16 -13 -15 -14 -15 -14 -15 -18 -12 -13 -26	24 25+ 20 20+ 21+ 25+ 25+ 25+ 21 20 20 21+ 20	1477 1429 1449 1496 1468 1456 1576 1473 1500 1462 1444 1549 1465 1458 1536	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 17 18 19 18 15 18 19 19 19 18 17 18 17 18 20	27 27 26 27 23 24 27 27 26 27 26 26 26 27 28	13 11 11 15 12 11 13 11 12 12 12 12 12 15 13 11 15	2.95 2.10 1.48 2.19 2.17 M 1.45 1.81 1.97 1.72 1.79 2.20 2.55 2.47 1.96 M 2.29	.05 .92 .50 .71 .45 .65	1.12 .56 .43 .47 .59 .50 .45 .52 .52 .52 .52 .52 .52 .52 .52 .52 .5	8 9 9 7 11 11 9 9 9 9 9 8 8 9 10	M15.5 13.0 14.1 18.0 23.2 M12.5 17.0 20.3 M17.0 M18.9 17.5 25.5 17.2 12.3 21.6 17.6	13 10 9 15 12 12 16 14 19 12 9 15 9 7 7 16	27 23 2 27 22 27 27 26 26 27 22 27 26 22 27 26 22 26 22 26	7 8 5 9 7 5 5 8 6 7 9 8 6 5 8 6 5 8	2 1 0 1 1 1 1 1 1 1 2 2 2	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-DIVISIONAL DATA> SOUTHEAST 09 BROOKFIELD BURLINGTON GENOA CITY GERMANTOWN	28.0 28.3 M 27.0 20.3	11.6 10.3 M 10.5	17.4 19.8 19.3 M 18.8	.6 1.7 2.3	58 60 56 60	8 8 8	-12 -10 -10	21 25+ 20 21	1394 1411 1428 1395	0 0 0	0 0 0 0	17 18 16 16	27 27 28 28	9 11 10 12	2.14 1.65 M 2.44 1.82 2.61	.86 ,47	.41 1.25 .58 .82	9 8 8 8	17.6 M10.9 M 9.0 M 19.9 M 8.1	7 7 M 15 7	22 1 27 24	6 5 4 5	0 1 1 2	0 1 0 0
HALES CORNERS-WHITNALL HARTFORD 2 W HOLY HILL 2 E KENOSHA MILWAUKEE MT MARY COL MILWAUKEE MTTCHELL AP R	25.6 24.9 32.5 30.9 30.0	8.8 7.2 14.4 13.1 14.7	17.2 16.1 23.5 22.0 22.4	1.7 2.7 2.0 1.7	53 53 65 59 63	8 8 7 8 7	-13 -14 -6 -8 -6	24+ 21+ 24+ 24+ 24+ 20	1475 1512 1280 1327 1313	0 0 0 0	0 0 0 0	19 21 16 15 17	27 30 26 27 26	13 14 6 9 5	2,83 2,41 1,70 M 1.07 2.07	.03	1.16 .68 .41 .37 .50	8 9 8 22 7	M12.2 20.8 M 9.8 11.9 18.4	10 11 5 8 7	22 22 31 22 22 22 22	6 6 4 2 6 7	1 0 0 1	000000000000000000000000000000000000000
OCONOMOWOC PADDOCK LAKE PORT WASHINGTON RACINE SOUTH MILWAUKEE WWTP UNION GROVE WAUKESHA WEST ALLIS WHITEWATER -DIVISIONAL DATA>	28.0 30.7 29.5 30.7 30.6 30.1 27.7 30.1 27.5	10.6 12.3 13.9 13.5 13.2 12.0 10.3 13.0 10.5	19.3 21.5 21.7 22.1 21.9 21.1 19.0 21.6 19.0 20.3	2.1 1.4 1.4 5 1.7 2.5 1.4	57 62 50 64 62 63 58 56 58	8 8 8 8 8 8 8 8 8 8	-11 -8 -8 -7 -7 -9 -1 -8 -11	24+ 25+ 21 21 21+ 24 1 21 20 2 20	1413 1340 1338 1323 1327 1353 1418 1339 1422	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	16 17 17 16 16 16 16 18 16 17	27 27 26 27 27 27 27 27 27 27 27 27 27	11 10 8 8 10 11 11 8 12	2.20 1.74 2.48 1.75 2.31 2.48 .96 1.96 M 2.76 2.06	.88 1.01 .03 1.11 52 .66 .50	.65 .42 .70 .47 .73 1.10 .40 .55 1.00	11 8 8 8 8 22 11 26	13.8 11.0 12.3 14.0 9.2 M13.5 M10.5 17.2 M16.0 14.9	9 7 9 7 6 10 8 8 10	1 23 28 28 27 25 22 22 22	5 6 7 6 6 5 5 5	0 1 0 1 1 0 1 -2	0 0 0 1 0 0 1

ч.

MONTHLY STATION AND DIVISION SUMMARY

WISCONSIN FEBRUARY 2008

				TEM	PERA	TUR	E (°F	C C							-		PRE	CIPI	TATIO	N (IN)				
												NO. OI	DAYS	3		F			ICE PEL	LETS, S	NOW	NO	. OF D	AYS
		mal		RE					s l	s.	М	AX	M	IN		RE	H			EQ		RE	RE	RE
STATION	AVERAGE MAXIMUN	AVERAGE MINIMUM	AVERAGE	DEPARTUI FROM NOI	HIGHEST	DATE	LOWEST	DATE	HEATING DEG. DAY	COOLING DEG. DAY	06=<	<=32	<=32	0->	TOTAL	DEPARTU FROM NO	GREATES 24 HOURS	DATE	TOTAL	MAX DEPT ON GROUN	DATE	.10 OR MO	50 OR MO	1.00 OR MC
HUSTISFORD WWTP JEFFERSON WWTP LAKE MILLS LODI MADISON DANE COUNTY AP R MAZOMANIE MONROE 1 W PORTAGE POYNETTE 7 WNW STOUGHTON SULLIVAN 3SE TOWN OF WESTFORD WATERLOO WATERLOO WATERLOO WATERLOO WATERTOWN WISCONSIN DELLS -DIVISIONAL DATA> SOUTHEAST 09 BROOKFIELD BURLINGTON EAST TROY GENOA CITY GERMANTOWN HALES CORNERS-WHITNALL HARTFORD 2 W HOLLY HILL 2 E	23.8 25.1 24.5 24.7 24.9 24.7 25.2 25.1 25.8 23.7 24.6 23.6 24.5 24.0 25.0 25.4 25.0 25.4 25.6 M 25.4 25.6 M 24.9 27.5 23.9 22.9 22.9	7.6M 6.9 7.3 2.9 8.7 6.3 4.6 3.9 3.1 4.2 7.6 4.9 7.3 6.3 -1.6 9.4 7.2 M 7.2 M 7.2 M 7.2 M 7.9 6.0 3.0 9.5 7	15.7M 16.0 15.9 13.8 16.8 15.5 14.9 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 16.1 14.3 15.9 15.2 11.7 15.2 17.4 16.4 M 16.5 17.7 15.0 13.0 13.0 13.0 15.9 15.2 17.4 16.5 17.7 15.0 13.0 13.0 13.0 15.9 15.2 17.4 16.5 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.2 17.7 15.0 13.0 13.0 15.9 15.2 17.7 15.2 17.7 15.0 13.0 13.0 14.5 14.5 14.5 14.5 15.2 17.7 15.2 17.7 15.0 13.0 13.0 13.0 15.0 15.0 15.0 17.7 15.0 13.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 17.7 15.0	-6.0 -5.8 -6.1 -7.7 -5.9 -8.3 -7.1 -6.2 -4.9 -5.4	36 35 35 38 39 36 38 38 38 38 38 38 38 38 38 38 34 40 42 45 36 44 45 35 36 46	26 25+ 26+ 25 29 26+ 9 25 26+ 18 26 26+ 18+ 25 18 18 18 18 18 18 18 23 18 18 18 18 18	-13 -11 -12 -18 -15 -19 -19 -12 -18 -15 -12 -11 -18 -11 -14 -22 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -12 -12 -18 -15 -15 -15 -12 -18 -15 -15 -15 -15 -12 -18 -15 -15 -15 -12 -18 -15 -15 -15 -12 -18 -15 -15 -12 -18 -15 -12 -12 -18 -15 -12 -12 -18 -15 -12 -12 -18 -15 -12 -12 -12 -18 -15 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12	21 21 21 21 21 21 21 21 21 21 21 21 21 2	1417 1413 1419 1479 1392 1429 1448 1458 1458 1458 1458 1458 1458 1458			23 23 25 22 21 22 21 24 23 24 23 25 25 25 23 23 23 20 26 28 20 26 28 20	27 29 29 29 29 29 29 29 29 29 29 29 29 29	9 13 11 17 10 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 5 10 10 13 20 8 10 10 13 12 11 11 17 10 10 13 16 16 13 16 16 13 16 16 13 16 17 10 10 13 16 16 13 16 16 13 16 16 17 10 16 13 16 16 17 10 16 13 16 16 17 10 16 13 16 16 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 10 17 17 17 17 17 17 17 17 17 17 17 17 17	M 3.12 3.45 3.14 3.65 3.30 2.58 3.71 2.66 M 2.78 3.34 4.00 3.76 3.11 2.82 3.05 3.53 3.19 4.92 3.02 3.21 4.15 3.49 3.94 4.03	1.92 2.02 2.34 1.44 2.07 1.59 2.04 2.28 3.63 2.01 2.42 2.74	.82 .69 .68 1.25 1.36 1.00 .75 .56 .73 .99 .93 .81 .92 .72 1.02 .69 1.15 .64 .73 .83 .83	18 18 18 17 17 17 17 17 18 18 18 18 18 18 18 18 18 17 7 17 17 17 17 17 17 17 17	27.7 30.9 32.3 27.2 31.6 21.5 30.4 39.3 27.9 M36.3 33.5 39.8 29.9 27.6 30.5 31.1 M26.4 30.5 M 34.7 51.6 39.1 M21.1 M30.6 35.6	14 13 14 22 14 15 19 30 33 29 12 23 16 12 24 12 24 12 23 16 12 24 24 12 13 M 20 33 17 13 16 19	10 15 13 23 29 21 16 21 21 25 16 21 21 21 16 21 25 16 11 11 21 25 16 11 11 25 16 11 11 25 13 13 13 13 13 13 13 29 29 21 11 16 21 21 21 21 25 26 20 21 21 21 21 21 25 26 20 21 21 21 21 21 25 26 20 21 21 21 21 21 21 21 21 21 21 21 21 21	8 9 7 8 9 7 8 9 7 8 9 7 6 8 11 7 6 7 8 7 9 8 8 9 8 10 10	2 3 2 2 2 1 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 2 3	0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
MILWAUKEE MT MARY COL MILWAUKEE MITCHELL AP R	29.8 28.2	11.6 15.8	20.7 22.0	-3.8	43 43	18+ 17	-7 -5	11+ 10	1278 1240	0	0	19 19	28 28	52	2.64 3.32	1.33 1.67	.56 1.18	17 17	30.1 31.0	14 13	13 12	6 7	2 2	0 1
OCONOMOWOC	25.7	7.7	16.7	-5.5	38	18	-13	21	1394	0	0	22	29	11	3.31	2.11	.73	17	29.5	9	16	8	2	0
PADDOCK LAKE PORT WASHINGTON RACINE SOUTH MILWAUKEE WWTP UNION GROVE WAUKESHA. WEST ALLIS WHITEWATER -DIVISIONAL DATA>	27.0 28.0 27.4 27.3 27.2 25.5 28.3 24.7	9.4 10.8 13.6 12.7 9.7 8.8 12.1 7.7	18.2 19.4 20.5 20.0 18.5 17.2 20.2 16.2 18.2	-5.1 -4.7 -7.5 -4.5 -5.3 -5.8	44 40 45 44 45 40 39 37	18 25 18 18 18 18 18 18 18	-8 -10 -7 -6 -8 -9 -6 -9	11 12 12+ 11+ 11+ 11+ 11+ 11+ 21+	1352 1316 1285 1300 1345 1380 1292 1410	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	21 18 20 20 21 24 20 23	29 28 28 28 29 29 29 29 29	8 5 3 4 10 6 5 10	4.54 3.08 5.82 M 4.08 M 2.94 M 2.08 5.21 3.92 3.86	1.90 4.37 3.86 2.79 2.54	.87 .71 1.17 .80 .63 .65 1.05 1.01	7 18 6 7 17 17 7 7 7	37.0 30.3 M48.5 31.6 M42.0 M25.9 45.8 25.2 34.8	15 11 21 14 22 13 19 12	13 15 8 7 8 13 7	10 9 11 10 9 6 9 8	4 2 4 3 1 1 4 3	0 0 2 0 0 0 1 1

6

Appendix F-1 (continued)

WISCONSIN MARCH 2008

MONTHLY STATION AND DIVISION SUMMARY

				TEM	PERA	TUR	E (°F)							1		PRE	CIPI	TATIO	N (IN)				
			-	L								NO. OI	DAYS	D		T			ICE PEI	LLETS, S	NOW	NO.	OF D	AYS
	M E E DRMA		-				s	KS.	М	AX	M	IN		RM	t m			H		ORE	ORE	ORE		
STATION	AVERAGE MAXIMUN	AVERAGE MINIMUM	AVERAGE	DEPARTUI FROM NOI	HIGHEST	DATE	LOWEST	DATE	HEATING DEG. DA	COOLINC DEG. DA'	-=90	<=32	<=32	0=>	TOTAL	DEPARTU FROM NO	GREATES 24 HOURS	DATE	TOTAL	MAX DEP ON GROU	DATE	.10 OR MC	.50 OR MC	1.00 OR M
LAKE MILLS LODI MADISON DANE COUNTY AP R MAZOMANIE MONROE I W PORTAGE POYNETTE 7 WNW STOUGHTON SULLIVAN 3SE TOWN OF WESTFORD WATERLOO WATERLOO WATERTOWN WISCONSIN DELLS -DIVISIONAL DATA>	37.7 38.9 38.0 38.4 39.6 37.7 40.0M 37.9 37.2 36.0 38.1 37.0 38.0	21.2 17.6 21.3 20.3 20.0 18.8 18.1M 21.4 20.0 19.0 20.3 19.7 12.0	29.5 28.3 29.7 29.4 29.8 28.3 29.1M 29.7 28.6 27.5 29.2 28.4 25.0 29.0	-3.9 -4.0 -3.7 -3.5 -4.3 -6.4 -4.5	51 53 51 52 53 52 53 51 55 50 51 52 49	27+ 14 2 26 26 14 14 27+ 3 26 27+ 3 26+	3 -9 0 -9 0 -3 -2 2 4 -2 -1 2 -15	9+ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1095 1127 1089 1099 1086 1129 1107 1090 1120 1156 1101 1128 1232	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9 8 7 7 6 8 7 8 11 12 8 10 9	28 29 26 27 30 29 22 29 29 29 30 29 30 30 30	0 3 2 2 1 2 1 2 1 0 0 1 1 1 0 4	1.57 1.70 2.47 M 1.22 2.24 1.82 M 1.43 1.90 2.95 2.42 1.68 .96 3.29 1.97	71 .19 03 43 12 -1.18 1.20 23	.46 .75 .75 .65 .75 .70 .80 .55 1.33 .74 .65 .47 1.61	22 22 31 3 22 21 4 22 22 22 22 3 2	10.2 8.8 10.9 M 6.0 6.3 9.8 M13.0 8.8 19.5 19.5 8.5 12.1 9.0 10.7	12 17 13 13 16 22 21 11 10 21 12 9 19	2 1 1 2 2 1 1 22 22 22 22 1	4 4 1 7 4 2 6 7 6 5 3 3	0 2 2 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 3	
SOUTHEAST 09 BROOKFIELD BURLINGTON EAST TROY GENOA CITY GERMANTOWN HALES CORNERS-WHITNALL	37.3 37.4 M 41.6 36.8 39.4	21.6 20.7 M 25.0 21.1 19.5	29.5 29.1 M 33.3 29.0 29.5	-3.9 -2.8	53 53 55 54 53	3 3 15 3 14+	8 8 10 7 7	8 8 8 8+ 9+	1095 1107 976 1109 1093	0 0 0 0 0	0 0 0 0	7 10 1 10 6	29 29 25 29 30	0 0 0 0 0	2.41 3.01 2.52 1.29 3.40	.71 75	.67 1.10 .81 .42 1.79	22 22 31 21 22	12.0 14.1 M 12.4 14.4 20.6	10 11 M 10 14 16	22 22 2 21 22	5 7 6 5 6	3 2 3 0 2	
HARTFORD 2 W HOLY HILL 2 E KENOSHA MILWAUKEE MT MARY COL MILWAUKEE MITCHELL AP R	35.7 35.4 38.6 40.5 38.9	19.6 15.0 26.1 22.3 26.1	27.7 25.2 32.4 31.4 32.5 29.8	-4.3 -2.0 -3.5 -2.4	50 50 57 56 58 55	14 3 3 14 31 3	4 -1 13 10 13	9+ 8 9+ 7 8+	1152 1225 1004 1034 1000 1083	0 0 0 0 0	0 0 0 0 0	11 11 7 5 7 8	29 31 24 27 24 29	0 1 0 0 0	1.25 2.04 M 4.30 M 1.81 3.11 2.24	68 .52 28	.33 1.07 1.54 1.16 1.19 .82	3 22 22 22 22 31 22	M11.3 16.7 17.3 16.1 18.7 11.4	9 12 12 15 13 10	21 22 22 22 22 22 22 22	4 6 3 6 5	0 1 3 1 2 1	
PADDOCK LAKE PORT WASHINGTON RACINE SOUTH MILWAUKEE WWTP UNION GROVE WAUKESHA WEST ALLIS WHITEWATER -DIVISIONAL DATA>	38.3 38.7 39.2 37.7 38.5 38.2 37.8 40.1 37.4	22.1 22.4 26.1 24.6 22.4 21.3 23.6 20.9	30.4 30.8 31.9 31.6 30.3 29.6 31.9 29.2 30.3	-3.1 -2.6 -5.7 -2.6 -3.9 -3.7	55 55 53 54 55 52 54 54 54	3 14 26+ 26 3 27+ 3	10 8 13 12 9 8 10 6	9+ 8+ 8 9+ 8 8+ 8	1064 1052 1020 1029 1066 1091 1020 1106	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	8 5 8 6 6 8 7 10	29 26 25 27 27 29 28 30	0 0 0 0 0 0 0 0	3.05 1.39 2.89 3.06 M 1.87 2.38 3.07 2.20 2.46	51 .47 .10 .85 .18 .27	1.35 .38 .99 1.00 .85 1.01 1.02 .65	22 31 31 22 31 22 22 22	16.9 10.6 13.2 17.0 15.8 15.0 22.5 9.8 15.3	12 9 12 12 12 12 12 12 18 7	22 22 22 22 22 23 22 23 22 22 22	5 5 7 5 6 6	2 0 2 1 3 3 2	- Vauara

WISCONSIN APRIL 2008

MONTHLY STATION AND DIVISION SUMMARY

				TEM	PERA	TUR	E (°F)									PRE	CIPI	TATIO	N (IN)	1			
				E								NO. OI	DAYS	1.		T			ICE PEI	LLETS, S	NOW	NO	. OF D	AYS
				RE					S.	No.	М	AX	M	IN		RE	÷			E Q		RE	RE	RE
STATION	AVERAGE MAXIMUN	AVERAGE MINIMUM	AVERAGE	DEPARTU FROM NO	HIGHEST	DATE	LOWEST	DATE	HEATING DEG. DA'	COOLINC DEG. DA	>=90	<=32	<=32	0≕>	TOTAL	DEPARTU FROM NO	GREATES 24 HOURS	DATE	TOTAL	MAX DEPT ON GROUP	DATE	JI OR MO	.50 OR MO	1.00 OR MO
LODI MADISON DANE COUNTY AP R MAZOMANIE MONROE I W PORTAGE POYNETTE 7 WNW STOUGHTON SULLIVAN 3SE TOWN OF WESTFORD WATERLOO WATERLOO WATERTOWN WISCONSIN DELLS -DIVISIONAL DATA> SOUTHEAST 09 BROOKFIELD BURLINGTON EAST TROY GERMANTOWN HALES CORNERS-WHITNALL	57.4 57.3 56.9 59.1 56.3 56.6 57.2 57.2 57.2 57.2 57.3 56.3 55.7 55.9 56.9 M 59.6 55.3 57.6	36.0 37.9 39.8 38.3 37.5 35.5 37.3 36.8 37.6 37.1 36.9 33.7 38.2 36.2 M 40.2 38.2 34.5	46.7 47.6 48.4 48.7 46.9 46.1 47.3 47.0 46.5 47.2 46.6 44.7 47.1 47.1 47.1 46.6 M 49.9 46.8 46.1	1.7 1.7 1.7 1.2 .3 1.3 1.3 1.7 3.3	78 76 77 77 76 77 77 75 77 75 77 76 78 77 76 78 78 76 78	22 21 22 26 22 22 24 22 22 22 22 22 22 22 22 22 22	222 224 24 23 23 22 22 23 19 22 22 22 22 23 19 22 22 22 22 23 19 22 22 22 23 19	3+ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	541 514 496 484 535 561 525 532 547 527 544 603 532 547 446 541 562	0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 6 4 5 8 10 6 7 7 7 7 7 7 7 12 5 8 3 8 9		6.91 6.43 M 6.84 7.65 8.32 7.37 7.00 6.24 4.24 5.89 5.44 M 4.62 6.34 5.71 3.93 4.41 7.79 5.43	3.08 4.06 4.82 3.60 2.31 2.87 .24 4.49	2.00 1.78 2.29 2.36 1.95 1.47 2.05 1.47 1.75 1.26 1.30 1.40 1.15 1.15 2.63 1.70	11 25 11 11 11 11 26 26 9 25 26 11 11 11 11 11 11 26 11	T 77 M .0 .5 T T T .0 .2 .6 .0 .3 .0 .1 .2 .0 M .5 .3 .2	T T T 3 0 T 2 0 0 0 0 0 0 M T 0 0	2	10 10 7 9 11 10 9 9 7 8 6 9 9 7 8 8 6 9 9 8 8	4 4 4 4 5 6 5 4 3 4 4 4 4 2 4 5 4	3 3 2 3 3 3 3 3 3 4 4 3 1 1 3 4 4 1 2 2 2 2 2 4 2 2 4 2
IARTFORD 2 W IOLY HILL 2 E CENOSHA MILWAUKEE MT MARY COL MIWAIKEE MITCHELL AB	56.4 54.3 52.1 57.5 54.3	37.6 31.8 38.4 38.7 38.2	47.0 43.1 45.3 48.1 46.3	3.0 1.2 1.4	75 74 73 79 78	26 26+ 26+ 26	21 16 25 22	2 3+ 2 2	534 653 586 497 554	2 0 0 0	0 0 0	0 0 0	6 17 5 8	0 0 0	5.80 6.40 M 4.18 4.94	2.78 1.53	1.40 1.64 1.78 1.55	26 26 11 11	.0 .1 .0 T	0 T 0 T		7 8 6 7	4 3 4 3	4
OCONOMOWOC PADDOCK LAKE PORT WASHINGTON RACINE SOUTH MILWAUKEE WWTP UNION GROVE WAUKESHA WEST ALLIS WHITEWATER -DIVISIONAL DATA>	57.4 57.4 51.8 51.4 53.0 57.0 56.2 57.6 57.6	38.0 36.9 37.4 39.0 38.0 36.9 36.8 38.8 36.8 38.8 36.8	40.3 47.7 47.2 44.6 45.2 45.5 47.0 46.5 48.2 47.2 46.6	8 2.1 2.0 1.6	76 76 73 73 80 78 75 78 76	25 26+ 26 26 26 26 26+ 26 26+ 26+	23 22 24 26 26 24 23 21 25 23	2 2 4+ 2 2 2 2 3+ 3+ 3+	534 511 527 603 586 575 535 535 549 500 525	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	5 8 6 1 4 8 7 7 7	0 0 0 0 0 0 0 0	4.42 6.53 4.89 6.31 3.54 4.66 3.37 5.58 5.62 5.51 5.27	.04 3.28 3.16 49 26 2.05 1.76 2.11 1.79	1.60 1.52 1.60 1.57 1.95 2.00 1.00 1.47 1.63 1.41	26 11 25 11 11 11 11 11 26	.2 .0 .0 .0 .0 T .0 .1 .5 T .1	T 0 0 T 0 T T T		5 7 8 7 6 7 7 8 8 8 8	4 4 1 2 4 5 3	2 4 2 4 1 1 3 2 3

6

MONTHLY STATION AND DIVISION SUMMARY

				TEM	PERA	TUR	E (°F)									PRE	CIPIT	TATION	N (IN)				
				-								NO. OF	DAYS			F			ICE PEL	LETS, SI	NOW	NO.	OF D.	AYS
		-		RE					S	L'S	М	AX	MI	N		RE	Ē.,			HQ	-	RE	RE	DRE
STATION	AVERAGE MAXIMUN	AVERAGE MINIMUM	AVERAGE	DEPARTUI FROM NOI	HIGHEST	DATE	LOWEST	DATE	HEATING DEG. DA	COOLING DEG. DA	>=90	<=32	<=32	0=>	TOTAL	DEPARTU FROM NO	GREATES 24 HOURS	DATE	TOTAL	MAX DEP ON GROU	DATE	.10 OR MO	50 OR MO	1.00 OR MC
LODI MADISON DANE COUNTY AP R MAZOMANIE MONROE 1 W PORTAGE POYNETTE 7 WNW STOUGHTON SULLIVAN 3SE TOWN OF WESTFORD WATERLOO WATERLOO WATERTOWN WISCONSIN DELLS -DIVISIONAL DATA> SOUTHEAST 09 BROOKFIELD BURLINGTON EAST TROY GENOA CITY	67.5 66.7 M 69.2 66.4 67.4 67.4 67.4 65.6 65.8 67.0 65.9 67.5 64.2 64.2 64.2 M 68.0	42.4 42.4 M 44.5 43.7 41.5 41.5 41.9 41.2 43.3 43.0 41.7 40.4 42.0 37.8 M 43.5 M 43.5	55.0 54.6 M 56.9 55.1 54.5 54.5 54.5 53.4 54.6 55.0 53.8 54.0 54.6 53.1 51.0 M 55.8 52.2	-3.1 -2.0 -3.4 -3.8 -2.6 -3.2 -5.4	83 82 77 83 83 83 83 83 84 80 84 80 79 81	27+ 26 26 27+ 27 27 27 27 27 27 27 27 27 27 27 27 27	30 32 31 32 35 33 30 31 32 34 33 29 32 27 36 31	4 4 4 4 4 4 1 1 4 19 4 4 19 + 28 + 4 19 + 1 19 + 1 19 + 28	317 317 254 310 323 325 357 325 311 341 340 368 426 279 392	12 2 8 10 3 5 4 8 9 3 3 3 3 6 0			2 1 1 1 0 0 1 1 1 0 0 3 3 2 1 0 2		2.87 2.55 2.48 3.56 2.67 2.65 2.81 2.62 1.36 1.56 1.29 3.05 2.42 1.65 2.42 3.82 2.49	70 35 88 63 -1.88 45 98 65	.86 1.00 .91 .61 .80 1.00 .73 .65 .78 .51 .75 .50 .86 1.31 .56	30 30 7 30 26 30 30 30 30 30 30 30 30 26 26 30	.0 T .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 6 3 10 7 5 7 7 4 4 4 7 5 5 5 5 4	1 2 0 3 2 2 2 2 2 2 2 2 2 1 1 1 3 3 1	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HALES CORNERS-WHITNALL	65.5	38.7	52.1	-2.0	82	27	29	11	393	0	0	0	4	0	2.76	1.72	1.25	30	.0	0	-	6	2	1
HARTFORD 2 W HOLY HILL 2 E KENOSHA MILWAUKEE MT MARY COL MILWAUKEE MTCHELL AP R	64.1 62.7 61.0 65.5 63.3 65.9	40.9 33.7 43.5 43.1 42.9 43.7	52.5 48.2 52.3 54.3 53.1 54.8	-3.5 -2.6 -4.5 -3.0	82 79 82 83 81 82	27 27 27 27 27 26 27	30 24 37 35 38 32	19 1 28 4 19+ 4	380 513 389 329 359 313	1 0 5 0 8	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	2 15 0 0 0	0 0 0 0 0 0	1.55 1.51 2.62 1.58 2.92 1.65	76 -1.27 14 -1,49	.52 .59 .67 1.39 .49	30 26 30 30 30	0. 0. 0. 0.	0 0 0 0		4 6 4 6	1 3 1 2 0	0000
PADDOCK LAKE PORT WASHINGTON RACINE SOUTH MILWAUKEE WWTP UNION GROVE WAUKESHA WEST ALLIS WHITEWATER -DIVISIONAL DATA>	64.9 60.6 59.5 61.3M 64.6 64.3 66.5 65.6	40.4 42.3 44.8 43.5M 41.8 41.5 43.2 41.9	52.7 51.5 52.2 52.4M 53.2 52.9 54.9 53.8 52.8	-2.9 -2.4 -6.4 -3.7 -3.1 -3.5	81 85 81 81 81 79 83 81	27 27 27 27 27 27 27 27+ 27 7	34 32 39 38 32 28 35 32	19 1 19+ 4 19 1 4 19	375 415 389 384 362 373 312 352	0 2 0 5 4 6 . 10	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 1 0 1 1 1 0 1	0 0 0 0 0 0 0	3.23 1.11 2.63 2.57 3.18 2.23 2.66 2.47 2.30	-1.82 65 06 79 42 71 83	1.33 .49 1.23 1.82 .66 .85 .84	26 30 26 30 26 30 30	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0		5 2 5 2 5 6 6	3 0 2 2 2 2 2 2 3 2	1 0 1 1 0 0 0 0 0 0 0

WISCONSIN MAY 2008

84

WISCONSIN JUNE 2008

MONTHLY STATION AND DIVISION SUMMARY

				TEM	PER/	ATUR	RE (°F	(7									PRE	CIPI	TATIO	N (IN)				
				IAL		1			1000			NO. 0	F DAYS	5		AL		-	ICE PEI	LETS, S	NOW	NC	OF D	DAYS
	NE	HN	н	ORE	-				AS	SX	М	AX	M	IN		RM	H			EŞ		RE	E	RE
STATION	AVERAC	AVERAG	AVERAG	DEPARTI FROM NG	HIGHEST	DATE	LOWEST	DATE	HEATIN DEG. DA	COOLIN DEG. DA	>=90	<=32	<=32	0=>	TOTAL	DEPARTU FROM NO	GREATES 24 HOURS	DATE	TOTAL	MAX DEPT ON GROUP	DATE	.10 OR MO	50 OR MO	1.00 OR MO
JEFFERSON WWTP	79.6	60.1	69.9	1	88	9+	51	1	11	165	0	0	0	0	9.95		2.84	0	0	0		7	4	
LAKE MILLS	78.1	59.0	68.6	2	88	8	50	1	16	130	0	0	0	0	11 38	7 47	2.04	13	MO	0		0	4	
LODI	78.1	56.9	67.5		87	8	46	19	28	109	0	0	0	0	11.24	1.41	4.02	10	NI .0			10	4	1 7
MADISON DANE COUNTY AP R	77.5	58.6	68.1	1.1	86	7	50	19+	16	111	0	0	0	0	10.03	6.99	4.02	0	.0 T	T		10	4	-
MAZOMANIE	77.2M	57.3M	67.3M		87	8	51	30+	23	00	0	0	0	0	10.95	0.00	4.11	0	1	1		1	4	1 9
MONROE I W	80.5	59.2	69.9		90	8	51	10	10	162	1	0	0	0	0.90				.0	0		4	3	3
PORTAGE	77 3	50.5	69 1	10	05	o o	50	19	10	102	1	0	0	0	10.25	5.27	3.12	9	.0	0		9	5	3
OVNETTE 7 WNW	77.4	57.0	67.6	1.0	00	0	50	10	19	131	0	0	0	0	18.27	14.10	6.21	8	.0	0		8	4	4
TOUCUTON	79.0	57.0	07.0	-	85	8	4/	19	18	104	0	0	0	0	M16.69				.0	0		6	4	3
STOUGHTON	/8.0	58.4	68.2	.7	87	8	51	2	13	115	0	0	0	0	9.57	5.73	3.14	9	.0	0		8	5	1
SULLIVAN 3SE	77.1	56.7	66.9		86	8	48	1	34	97	0	0	0	0	12.08	1000	3.80	8	.0	0		7	5	1
TOWN OF WESTFORD	76.5	57.8	67.2		84	27+	48	1	25	97	0	0	0	0	13.97	1	4.11	9	.0	0		8	4	4
WATERLOO	77.7	58.5	68.1		85	21	49	1	15	114	0	0	0	0	12.13		4.45	9	.0	0		8	4	1
WATERTOWN	76.7	58.2	67.5	.0	84	27+	49	1	20	100	0	0	0	0	14.82	10.51	3.98	8	.0	0		9	5	
WISCONSIN DELLS	76.8	54.4	65.6	2	85	21	44	17	47	71	0	0	0	0	M11.34	1100	4.08	8	0	0		7	4	
-DIVISIONAL DATA> SOUTHEAST 09		1	67.9	.7											11.20	7.01	1.00	, i	.0	v				-
BROOKFIELD	76.3	56.6	66.5		88	8	47	2	44	95	0	0	0	0	13.00		5.66	0	0	a		0		1 9
BURLINGTON	77.2	55.9	66.6	3	85	27+	45	ĩ	36	07	0	0	0	0	6.55	2.50	3.00	0	.0	0		0	4	4
EAST TROY	M	M	M				15		20	20			Ŷ	v	0.55	2.39	4.55	9	.0			4	.5	1 4
GENOA CITY	77.7	500	68.8		87	0	50	1	15	124	0				6.00				M	м		2	1	
GERMANTOWN	76.1	55.0	66.0	15	07	0	47	104	15	154	0	0	0	0	6.22	2.00	2.31	9	.0	0		9	4	1
HALES CORNERS WHITNALL	77.5	54.4	66.0	1.5	00	0	4/	191	40	00	0	0	0	0	9.87	6.05	2.85	13	.0	0		8	5	5
ARTFORD 2 W	75.0	561	66.0	7	0/	0	44	19+	22	91	0	0	0	0	13.75		5.00	8	.0	0		10	6	4
	72.6	50.1	60.0	.1	84	28+	4/	1	44	81	0	0	0	0	14.09	10.27	4.95	8	.0	0		9	4	4
ENORIA	75.5	50.4	62.0		85	8	42	19	108	22	0	0	0	0	9.64	1.00	2.78	8	.0	0		9	4	4
CINOSHA	75.1	57.4	66.5	1.3	88	25+	49	1	41	84	0	0	0	0	5.29	1.70	2.25	8	.0	0		8	3	1
AILWAUKEE MT MARY COL	78.0	57.8	67.9	8	88	27+	49	1	32	125	0	0	0	0	8.53	4.82	2.05	9	.0	0		8	6	3
AILWAUKEE MITCHELL AP R	75.5	58.2	66.9	.6	86	26+	50	4+	49	109	0	0	0	0	12.27	8.71	4.93	7	.0	0		10	4	3
DCONOMOWOC	77.4	57.4	67.4	.2	86	8	48	1	22	102	0	0	0	0	11.56	7.59	3.56	8	.0	0	-	9	4	4
ADDOCK LAKE	78.1	57.4	67.8		87	27+	46	1	29	120	0	0	0	0	6.88		2.90	9	.0	0		10	3	2
ORT WASHINGTON	74.7	53.9	64.3	.1	89	27	48	2	63	49	0	0	0	0	11.02	7.44	3.10	13	.0	0		11	4	4
ACINE	74.4	57.4	65.9	.9	88	27	49	4	40	76	0	0	0	0	6.42	2.74	2.05	8	.0	0		9	4	2
OUTH MILWAUKEE WWTP	76.2	57.0	66.6		88	27	48	4	48	103	0	0	0	0	11.95	=: 0-0	5.06	8	.0	0		9	5	1
NION GROVE	77.8	56.9	67.4		87	27+	46	1	34	112	0	0	0	0	735	3 34	2.54	0	0	0		10	5	2
AUKESHA	76.8	57.3	67.1	-2.0	85	8+	47	1	33	105	0	0	0	0	10.27	649	2.04	8	.0	0		12	5	4
VEST ALLIS	78.4	57.2	67.8	5	88	8	49	1	31	121	0	0	0	0	11.33	7.72	1.55	0	.0	0		14	3	4
VHITEWATER	77.8	57.4	67.6	1.0	86	8	46	1	24	108	0	0	0	0	10.96	7.00	4.33	0	.0	0		11	4	4
DIVISIONAL DATA		1.00	66.6	6	00	0	10	2	24	100	0	U	U	0	10.80	7.08	3.37	9	.0	0		7	5	4

6

WISCONSIN JULY 2008

MONTHLY STATION AND DIVISION SUMMARY

				TEM	PERA	TUR	E (°F)									PRE	CIPI	TATIO	N (IN)			C.L.	
	VT											NO. 0	FDAYS	i		AL			ICE PEI	LETS, S	NOW	NO	OF D	AYS
		1.2		RE			21		Ks.	Xs	М	A NIM XAM XAM XAM				EQ		RE	RE	ORE				
STATION	AVERAGE MAXIMUN	AVERAGE MINIMUM	AVERAGE	DEPARTU FROM NO	HIGHEST	DATE	LOWEST	DATE	HEATING DEG. DA	COOLING DEG, DA'	06<	<=32	<=32	0=>	TOTAL	DEPARTU FROM NO	GREATES 24 HOURS	DATE	TOTAL	MAX DEP ON GROU	DATE	10 OR MO	.50 OR MO	1.00 OR MC
JEFFERSON WWTP LAKE MILLS LODI MADISON DANE COUNTY AP R MAZOMANIE MONROE I W PORTAGE POYNETTE 7 WNW STOUGHTON SULLIVAN 3SE TOWN OF WESTFORD WATERLOO WATERLOO WATERTOWN WISCONSIN DELLS -DIVISIONAL DATA> SOUTHEAST 49	83.6 82.7 83.3 82.0 82.7 84.3 82.2 82.5 82.6 81.2 81.0 82.2 81.1 82.8	63.1 62.2 59.0 61.6 59.6 61.4 61.5 61.1 60.6 59.7 60.1 61.4 60.6 58.0	73.4 72.5 71.2 71.8 71.2 72.9 71.9 71.9 71.8 71.6 70.5 70.6 71.8 70.9 70.4 71.3	-1.0 .2 1.3 .1 9 .4 .0	91 89 91 88 88 90 90 90 90 90 90 89 88 87 89 87 89	17 31+ 18+ 16 31+ 30+ 17 17 29 31+ 17+ 17 31+ 16	53 51 49 49 47 52 52 52 52 51 46 50 49 51 46	4 4 1 4 5+ 1 4 6+ 4 4 4 4 4 4 4	1 2 2 2 5 0 2 1 2 9 5 3 4 4 4	270 241 198 220 204 249 223 216 214 187 186 223 191 178	2 0 2 0 0 5 1 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.44 6.14 4.85 5.62 6.69 3.78 3.84 M 3.30 4.42 5.40 3.86 3.89 7.11 6.43 5.21	2.02 1.69 46 61 .60 2.68 2.33 1.14	2.02 2.63 1.67 2.74 4.45 .80 1.25 1.54 2.28 2.64 1.33 1.27 2.48 2.90	11 12 12 11 11 11 11 11 11 11 8 8 12 10	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 5 9 6 5 7 6 5 4 5 4 5 4 5 4 5 4 4 4	3333432334334	3 3 2 2 2 2 0 2 2 1 2 2 3 3 2
SOUTHEAST 09 BROOKFIELD BURLINGTON EAST TROY GENOA CITY GERMANTOWN HALES CORNERS-WHITNALL	M 80.0 M 81.5 80.6 81.5	M 58.8 M 62.5 60.2 57.8	M 69.4 M 72.0 70.4 69.7	-1.6 1.1	87 89 89 91	18+ 17 17 17	46 54 46 46	6 5 4 5+	14 0 12 13	158 223 187 165	0 0 0 2	0 0 0 0	0 0 0 0	0 0 0 0	5.05 6.62 3.37 3.94	1.28 68	1.40 1.70 1.34 1.23	11 8 8 8	M .0 .0 .0 .0	M 0 M 0 0		6 6 5 6	4 5 2 4	3 4 1 1
HARTFORD 2 W HOLY HILL 2 E KENOSHA MILWAUKEE MT MARY COL MILWAUKEE MITCHELL AP R	80.1 78.0 79.5 82.0 80.2 81.2	59.4 52.1 62.3 62.2 62.4 60.5	69.8 65.1 70.9 72.1 71.3 70.9	.1 4 -2.2 7	88 86 90 91 88 89	17 18 17 18+ 30+	48 41 52 50 50 49	5+ 4 4 4 4	12 55 7 8 11	168 65 198 235 214 193	0 0 1 3 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	3.78 3.20 5.16 3.77 3.20 5.41	35 1.48 .31 38 1.20	1.12 1.46 1.41 1.48 1.29 3.38	8 8 11 8 7 8	0. 0. 0. 0. 0.	0 0 0 0 0 0 0		6 7 7 6 5	2 4 3 2 2	1 3 1 1 2
PADDOCK LAKE PORT WASHINGTON RACINE SOUTH MILWAUKEE WWTP UNION GROVE WAUKESHA WEST ALLIS WHITEWATER -DIVISIONAL DATA>	81.2 77.8 78.9 79.5 81.2 80.2 82.9 81.3	59.5 58.8 62.5 62.4 59.9 59.2 61.4 59.9	70.4 68.3 70.7 71.0 70.6 69.7 72.2 70.6 70.3	-2.5 6 -4.1 -1.6 3 9	89 90 90 89 89 87 91 88	18+ 16 18 31+ 18+ 17+ 17 8	47 51 50 52 46 47 50 46	5 4 5 5 5 4 4 4	10 19 10 10 14 10 3 9	184 127 195 203 193 163 234 189	0 1 1 0 0 0 3 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	5.82 4.86 2.44 3.12 4.07 4.08 3.04 3.83 4.15	1.05 -1.13 .43 .25 54 11 .33	2.20 1.41 .64 1.13 1.26 1.70 1.17 1.59	12 8 8 11 8 8 11	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0		6 6 6 7 5 6 4	4 4 1 2 3 3 2 3	2 2 0 1 1 2 1 2

MONTHLY STATION AND DIVISION SUMMARY

WISCONSIN AUGUST 2008			MC	DNT	HLY	YS	TA	TIC	ON A	AND	DI	VIS	ION	SU	MMA	RY					-	-		-
	-			TEM	PERA	TUR	E (°F)							1		PRE	CIPIT	FATIOI	N (IN)	1	_		_
	-										NO. OF	DAYS		-	H			ICE PEL	LETS, S	NOW	NO.	OF DA	YS	
			-	AAI							M	AX	MI	N		CE				HQ		RE	RE	RE
	NE	NE	8	OR	Ē		-		NG	NG					3	IN	TEST	픤	-1	DEPT	E	MO	MO	K MC
STATION	AVERAC MAXIMI	AVERAC	AVERAG	DEPART FROM N	HIGHES	DATE	LOWES	DATE	HEATI DEG. D	COOLI DEG. I	>=90	<=32.	<=32	0=>	TOTA	DEPAR	GREAT 24 HOU	DAT	TOTA	MAX I ON GP	DA	.10 OR	50 OR	10001
HUSTISFORD WWTP JEFFERSON WWTP LAKE MILLS LODI MADISON DANE COUNTY AP R MAZOMANIE MONROE 1 W PORTAGE POYNETTE 7 WNW STOUGHTON SULLIVAN 3SE TOWN OF WESTFORD WATERLOO WATERLOO WATERTOWN WISCONSIN DELLS	80.2 82.2 81.8 81.4 81.1 82.4 81.0 80.7 81.4 80.9 79.5 81.2 M 81.5	55.3 59.5 58.5 55.3 57.2 55.3 57.2 55.3 57.1 57.0 57.8 56.7 57.0 57.9 M 54.3	67.8 70.9 70.2 68.4 69.2 68.2 69.3 69.3 69.4 69.6 68.8 68.3 69.6 M 67.9 67.9	4 .1 1.1 .5	87 90 89 87 88 88 87 88 88 88 88 88 88 88 88 88	2 2 31+ 31 31+ 5+ 2 2 31+ 2 31+ 2 31+	47 53 50 46 48 43 50 46 50 51 49 50 49 50 49	26 30+ 27+ 26 27+ 25+ 26 26+ 27 10 16+ 27+ 26	16 1 3 12 8 15 2 10 3 2 8 5 4 13	108 189 171 123 144 121 156 149 148 152 132 115 153 107	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.87 1.16 1.12 2.97 1.41 M 1.36 1.74 1.42 2.57 1.86 .98 1.52 1.88 M 1.64 1.76	-3.49 -2.92 -2.79 -2.91 -2.20	.28 .46 .56 .88 .95 .75 .67 .67 .80 .82 .61 .45 .68 .53	4 14 4 4 4 4 4 4 4 4 29 4 5	.0 .0 M .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 2 9 2 3 6 3 5 5 2 4 3 4 3 4	0 1 2 1 1 1 2 3 1 1 0 2 2	
-DIVISIONAL DATA> SOUTHEAST 09 BROOKFIELD BURLINGTON EAST TROY GENOA CITY GERMANTOWN	79.6 79.5 M 80.0 80.5	58.0 56.0 M 61.0 55.5	69.0 68.8 67.8 M 70.5 68.0	.1 -1.1 .7	87 87 87 88 88	2 2 2 31+	48 49 48 46 48	26 27 274 26 26	13 12 6 14 14	137 103 183 116 121	000000000000000000000000000000000000000	0 0 0 0 0	0 0 0 0	0 0 0 0 0	1.04 1.18 1.74 1.48 2.22	-2.98 -2.80	.51 .64 .65 .85 .95	4 5 14 5 14	.0 .0 M .0 .0	0 0 M 0 0		5 2 4 4 4	1 1 2 1 2	0 0 0 0 0
HALES CORNERS-WHITNALL HARTFORD 2 W HOLY HILL 2 E KENOSHA MILWAUKEE MT MARY COL MILWAUKEE MITCHELL AP R	80.8 78.9 76.5 78.3M 81.5 79.0 81.1	55.7 54.9 49.2 63.7 59.6 62.9 58.6	68.3 66.9 62.9 71.0M 70.6 71.0 69.9	6 .2 .1.4 .4	85 83 87 89 88 87	31+ 31+ 18 2+ 5 2	46 41 55 53 54 51	26 11- 10 26- 10 26- 10 25	+ 91 + 91 + 3 2 3	92 35 191 184 195 158	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	1.13 1.35 1.09 1.11 .88 .88	-3.02 -3.10 -2.87 -3.15 -3.64	.45 .50 .92 .80 .68 .43	4 4 4 4 4 4	0. 0. 0. 0. 0.	0 0 0 0 0		4 4 1 3 2 3	0 1 1 1 1 0	0 0 0 0 0 0
PADDOCK LAKE PORT WASHINGTON RACINE SOUTH MILWAUKEE WWTP UNION GROVE WAUKESHA WEST ALLIS WHITEWATER -DIVISIONAL DATA	80.4 78.7 76.9 78.5 79.5 79.5 82.0 80.6	57.0 59.9 64.7 63.1 56.8 57.2 60.8 55.7	68.7 69.3 70.8 70.8 68.2 68.4 71.4 68.2 69.0	9 .0 -3.3 6 1 4	89 89 86 88 87 86 89 87	2 18 18 31+ 2+ 2 2 2	49 52 55 55 55 55 55 51 51 51 51 51 51 51 51	2 10 5 10 5 10 5 10 5 10 3 30 0 30 2 10 5 26	+ 11 5 0 0 + 17 7 0 15	131 149 187 190 125 7 118 205 5 121	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1.12 2.42 1.49 1.07 1.23 1.04 1.59 1.11 1.32	-1.79 -2.59 -3.26 -3.73 -2.34 -3.53 -2.90	.50 .98 .60 .78 .71 .56 1.00 .55	4 2 4 4 4 4 4 4	0. 0. 0. 0. 0. 0. 0.			4 5 4 2 2 3 3 2	1 2 1 1 1 1 1 1 1 1	0 0 0 0 0 1 0

Appendix F-2

Source: National Oceanic and Atmospheric Administration.

Appendix G

CURRENT SEWRPC WETLAND DELINEATION REPORT

- Appendix G-1: 2007 aerial map exhibit showing project area, plant community numbers/locations, sample site numbers/locations, and wetland and primary environmental corridor boundaries
- Appendix G-2: Preliminary Vegetation Survey
- Appendix G-3: SEWRPC Field Data Forms
- Appendix G-4: Site Photographs

(This page intentionally left blank)

Appendix G-1

PLANT COMMUNITY AREAS AND SAMPLE SITE LOCATIONS

Appendix G-2

EXHIBIT A

PRELIMINARY VEGETATION SURVEY PROPOSED NORTH LAKE ACCESS - WDNR PROPERTY (FORMER THOMAS AND ELAINE KRAUS PROPERTY) WETLANDS

Dates:	October 14, 2008 July 8, 2008 July 24, 2003
Observers:	Donald M. Reed, Ph.D., Chief Biologist Lawrence A. Leitner, Ph.D., Principal Biologist Christopher J. Jors, Biologist Southeastern Wisconsin Regional Planning Commission
	Joanne Kline, Regional Wetland Biologist Wisconsin Department of Natural Resources
Location:	Town of Merton in parts of the Southeast one-quarter of U.S. Public Land Survey Section 17, Township 8 North, Range 18 East, Waukesha County, Wisconsin.
Species List:	Plant Community Area No. 1
	GRAMINEAE <u>Poa pratensis</u> ¹ —-Kentucky bluegrass <u>Phalaris arundinacea</u> ¹ Reed canary grass <u>Miscanthus sp.^{1,2}Japanese plume grass</u>
	CYPERACEAE <u>Scirpus</u> <u>atrovirens</u> Green bulrush <u>Carex</u> <u>stipata</u> Sedge <u>Carex</u> <u>bebbii</u> Sedge <u>Carex</u> <u>lacustris</u> Lake sedge
	ARACEAE <u>Symplocarpus</u> <u>foetidus</u> Skunk cabbage
	LILIACEAE <u>Hemerocallis</u> <u>fulva</u> ¹ Day-lily
	IRIDACEAE <u>Iris</u> <u>virginica</u> Virginia blueflag
	SALICACEAE Populus deltoidesCottonwood Salix babylonica ^T Weeping willow Salix nigraBlack willow Salix exiguaSand-bar willow
	JUGLANDACEAE Juglans <u>nigra</u> Black walnut
	BETULACEAE <u>Alnus</u> <u>rugosa</u> Tag alder
	ULMACEAE

<u>Ulmus</u> <u>americana</u>--American elm

```
URTICACEAE
          Boehmeria cylindrical--False nettle
          Pilea pumila--Clearweed
POLYGONACEAE
          Polygonum persicaria<sup>1</sup>--Lady's thumb
SAXIFRAGACEAE
          Ribes americanum--Wild black currant
ROSACEAE
          Geum canadense--White avens
          Rubus occidentalis--Black raspberry
ACERACEAE
          <u>Acer</u> <u>saccharinum</u>--Silver maple
<u>Acer</u> <u>negundo</u>--Boxelder
BALSAMINACEAE
          Impatiens capensis--Jewelweed
RHAMNACEAE
          Rhamnus cathartica<sup>1</sup>--Common buckthorn
          Rhamnus frangula<sup>1</sup>--Glossy buckthorn
VITACEAE
          Vitis riparia--River-bank grape
          Parthenocissus quinquefolia--Virginia creeper
LYTHRACEAE
          Lythrum salicaria<sup>1</sup>--Purple loosestrife
ONAGRACEAE
          Circaea lutetiana--Enchanter's nightshade
UMBELLIFERAE
          Cicuta bulbifera--Water-hemlock
          Cicuta maculata--Spotted water-hemlock
CORNACEAE
          Cornus amomum--Silky dogwood
          Cornus stolonifera--Red-osier dogwood
PRIMULACEAE
          Lysimachia thyrsiflora--Tufted loosestrife
OLEACEAE
          Fraxinus pennsylvanica--Green ash
CONVOLVULACEAE
          Convolvulus sepium--Hedge bindweed
VERBENACEAE
          Verbena urticifolia--White vervain
LABIATAE
          Glechoma hederacea<sup>1</sup>--Creeping Charlie
          Stachys palustris--Hedge-nettle
SOLANACEAE
          Solanum dulcamara<sup>1</sup>--Deadly nightshade
```

Appendix G-2 (continued)

CAPRIFOLIACEAE

Sambucus canadensis--Elderberry

COMPOSITAE

Ambrosiaartemisiifolia--Common ragweedXanthiumstrumarium-CockleburAsterlateriflorus--Calico asterEupatoriumrugosum--White snakerootCirsiumarvense¹--Canada thistleTragopogondubius¹--Sand goat's beard

Total number of plant species: 50 Number of alien, or non-native, plant species: 12 (24 percent)

This approximately 0.2-acre plant community area is part of the North Lake floodplainwetland complex and consists of second growth, Southern wet to wet-mesic lowland hardwoods and fresh (wet) meadow/shallow marsh along the shoreline. Disturbances to the plant community area include dumping, past filling, mowing, siltation and sedimentation due to stormwater runoff from adjacent lands, and water level changes due to past ditching. No Federal- or State-designated Special Concern, Threatened, or Endangered species were observed during the field inspection.

- ¹ Alien or non-native plant species
- ² Planted species

Plant Community Area No. 2

GRAMINEAE <u>Poa</u> pratensis^{1,2}--Kentucky bluegrass Agrostis stolonifera^{1,2}--Redtop grass CYPERACEAE Eleocharis acicularis¹--Needle spike-rush Carex stipata--Sedge POLYGONACEAE Polygonum persicaria²--Lady's thumb PORTULACACEAE Portulaca oleracea²-Purslane ACERACEAE Acer saccharinum^{1,3}--Silver maple LABIATAE Glechoma hederacea²--Creeping Charlie Prunella vulgaris--Selfheal Total number of plant species: 9 Number of alien, or non-native, plant species: 5 (56 percent)

This approximately 0.05-acre plant community area consists of an ephemeral fresh (wet) meadow. Disturbances to the plant community area include past filling, establishment of a lawn, and frequent mowing. No Federal- or State-designated Special Concern, Threatened, or Endangered species were observed during the field inspection.

¹ Co-dominant plant species

³ Seedlings

² Alien or non-native plant species

Plant Community Area No. 3

PINACEAE	
	Piceaglauca ¹ White sprucePiceaabies ^{1,2,3} Norway spruceLarixdecidua ^{1,2} European larchPinusstrobus ¹ White pine
CUPRESSAC	EAE <u>Thuja</u> <u>occidentalis</u> ¹ White cedar
GRAMINEAE	PoapratensisAgropyronrepensAgrostisstoloniferaAgrostisstoloniferaMuhlenbergiaschreberiPhalarisarundinaceaMiscanthussacchariflorus
CYPERACEA	E <u>Carex</u> <u>blanda</u> Wood sedge
LILIACEAE	Hemerocallis <u>fulva</u> ² Day-lily <u>Smilacina</u> <u>stellata</u> Starry Solomons plume <u>Convallaria</u> <u>majalis</u> ² Lily-of-the-valley
SALICACEA	E <u>Populus</u> <u>deltoides</u> Cottonwood
JUGLANDAC	EAE Juglans <u>nigra</u> Black walnut
FAGACEAE	<u>Quercus</u> <u>macrocarpa</u> Bur oak <u>Quercus</u> <u>rubra</u> Northern red oak
ULMACEAE	<u>Ulmus</u> <u>americana</u> American elm
MORACEAE	Morus alba ² White mulberry
URTICACEA	E <u>Parietaria</u> <u>pensylvanica</u> Pellitory
POLYGONAC	EAE <u>Polygonum</u> <u>persicaria</u> ² Lady's thumb
ROSACEAE	Geum Rubuscanadense occidentalis Black raspberryRubus Prunusoccidentalis strigosus Red raspberryPrunusserotina Black cherry
FABACEAE	Melilotus <u>alba</u> ² White sweet clover
OXALIDACE	AE <u>Oxalis</u> <u>stricta</u> Common wood sorrel
ANACARDIA	CEAE <u>Rhus</u> <u>glabra</u> Smooth sumac
	PINACEAE CUPRESSAC GRAMINEAE CYPERACEA LILIACEAE SALICACEA JUGLANDAC FAGACEAE ULMACEAE MORACEAE URTICACEA POLYGONAC ROSACEAE FABACEAE OXALIDACE ANACARDIA

ACERACEAE Acer <u>saccharinum</u>--Silver maple <u>negundo</u>--Boxelder RHAMNACEAE <u>Rhamnus</u> <u>cathartica</u>^{2,3}--Common buckthorn <u>Rhamnus</u> <u>frangula</u>^{2,3}--Glossy buckthorn VITACEAE Vitis riparia--Riverbank grape Parthenocissus sp.--Virginia creeper TILIACEAE Tilia americana--Basswood VIOLACEAE Viola sororia--Woolly blue violet ELAEAGNACEAE Elaeagnus angustifolia²--Russian-olive UMBELLIFERAE Daucus carota²--Queen Anne's lace OLEACEAE Fraxinus americana--White ash Fraxinus pennsylvanica--Green ash VERBENACEAE Verbena urticifolia--White vervain LABIATAE Glechoma hederacea^{2,3}--Creeping Charlie Prunellavulgaris-SelfhealLeonuruscardiaca2-Motherwort SOLANACEAE Solanum dulcamara²--Deadly nightshade BIGNONIACEAE Catalpa speciosa²--Catalpa PLANTAGINACEAE <u>Plantago</u> major²--Common plantain Plantago lanceolata²--English plantain CAPRIFOLIACEAE Viburnum opulus²--European highbush-cranberry Viburnum rafinesquianum--Downy arrowwood Lonicera X bella²--Hybrid honeysuckle COMPOSITAE Ambrosia artemisiifolia--Common ragweed Xanthium strumarium--Cocklebur Solidago gigantea--Giant goldenrod Solidago altissima--Tall goldenrod Aster lateriflorus--Calico aster Eupatorium rugosum--White snakeroot <u>Cirsium</u> arvense²--Canada thistle <u>Taraxacum</u> officinale²--Common dandelion Sonchus arvensis²--Sow thistle
Total number of plant species: 62 Number of alien, or non-native, plant species: 27 (44 percent)

This approximately 1.2-acre upland plant community area is part of a larger primary environmental corridor complex and consists of lawn, planted ornamentals, and upland woodland. Disturbances to the plant community area include mowing and selective cutting of trees. No Federal- or State-designated Special Concern, Threatened, or Endangered species were observed during the field inspection.

- ¹ Planted tree species ² Alien or non-native plant species
- $^{\rm 3}$ Co-dominant plant species

SEWRPC FIELD DATA FORM **ROUTINE WETLAND DETERMINATION**

PROJECT NAME: Proposed North Lake Boat Launch Site

FILE NO.: CA 718-49

LOCATION: Town of Merton, Waukesha COUNTY, SE ¼ SECTION 17, T 8 N, R 18 E

OBSERVERS: Donald M. Reed, Ph.D. - SEWRPC Joanne Kline - DNR

PLANT COMMUNITY AREA NO.: 1 TRANSECT NO.: 1 SAMPLE SITE NO.: 1

DATE: July 8, 2008

VEGETATION

			Other <u>NON-Dominant</u>		
Dominant Plant Species (%)	Stratum	Indicator	Plant Species (%)	Stratum	Indicator
Carex lacustris (50)	Herb	OBL	Tragopogon dubius (8)	Herb	NI
Eupatorium rugosum (20)	Herb	FACU	Poa pratensis (5)	Herb	FAC-
Vitis riparia (20)	Herb	FACW-	Aster lateriflorus (2)	Herb	FACW-
Cornus amomum (8)	Shrub	FACW+	Stachys palustris (2)	Herb	OBL
Rhamnus cathartica (8)	Shrub	FAC-	Impatiens capensis (3)	Herb	FACW
Fraxinus pennsylvanica (10)	Tree	FACW	Salix exigua (5)	Shrub	OBL
Acer negundo (10)	Tree	FACW-	Fraxinus pennsylvanica (2)	Shrub	FACW
			Juglans nigra (2)	Shrub	NI
			Vitis riparia (2)	Shrub	FACW-
Percent of Dominant Species that are OBL, FACW, OR FAC: 71%					
Plant Community Type: Shrub-carr with scattered lowland hardwoods					
Remarks:					

HADBULOCA

HYDROLOGY	WETLAND HYDROLOGY INDICATORS		
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Floodway		
Field Observations: Depth of Surface Water: (in.) Depth of Soil Pit: 18(in.) Depth to Free Water in Pit: (in.) Depth to Saturated Soil: 6(in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Plant morphological adaptations Other (Explain in Remarks)		
Remarks: SEWRPC 2007 aerial photography; Sample point is lo	ocated within the 2003 SEWRPC wetland delineation area.		

SOILS					
Map Unit Na	me				
(Series and P	hase): Mathe	erton silt loam (MmA)) Drair	nage Class: Somewhat po	oorly drained
					-
Taxonomy (S	ubgroup): U	Idollic Endoaqualfs			
Field Observa	ations Confi	rm Mapped Type? L	_Yes ⊠No	_Other hydric soil with	nin County*
Profile Descr	intion				
Tronic Deser			Redox	Redox	
Depth		Matrix Color	Concentrations	Concentrations	Texture, Concretions,
(Inches)	Horizon	(Munsell Moist)	Color	(Abundance/	Structure, etc.
		, , , , , , , , , , , , , , , , , , ,	(Munsell Moist)	Contrast)	,
0-6		10YR 2/1			Loam
6-14		10YR 3/1			Clay loam
14-18		10YR 3/1			Gravelly loam
Wetland Soil	Indicators:				
	Iistosol		Bright Mottling		
	listic Epiped	lon	Concentrations		
	ulfidic Odor	•	High Organic Co	ntent in Surface Layer	
	quic Moistu	re Regime	Organic Streakir	ng in Sandy Soils	
	Reducing Co	nditions	Listed on Local I	Iydric Soils List	
	Heyed		Listed on Nation	al Hydric Soils List	
ΣL	.ow-Chroma	Colors	Other (Explain in	n Remarks)	
NRCS Mapp	ed Type: NI	- Not Inventoried			
USDA Hydri	c Soils Field	Indicator:			
WWI Classif	ication:				
Remarks (*If	field observ	ations do not confirm	n mapped type but r	epresent another hydric	soil found in the county,
check "other	hydric soil"	and describe here):	None of the gravel ma	terial was covered with o	rganic material. The soils at
this site have	been manipul	ated in the past. An a	adjacent sample site (co	ollected in 2003) was a H	listosol (A1) and had an A4.
Hydrogen sulf	fide hydric so	ils indicator.			

SITE CONDITIONS

Do normal environmental conditions exist at the plant community?	Is the site a problem area?			
Yes No [(If no, explain)	Yes 🔲 No 🖾 (if yes, explain)			
Has the vegetation, soils, and/or hydrology been significantly disturbed?				
Yes No [[(If yes, explain)				
Remarks: Soils were manipulated in the past to accommodate drainage from the west.				

Based on the foregoing, are:	
Hydrophytic Plants Dominant? 🛛 Yes 🗌 No Wetland Hydrology Present? 🖄 Yes 🗍 No	This Sampling Point is within a Wetland? 🛛 Yes 🗌 No
Wetland Soils Present?	
Remarks: S3k wetland	

PLANT COMMUNITY AREA NO.: 3 TRANSECT NO.: 1 and 2 SAMPLE SITE NO.: 2

DATE: July 8, 2008

			Other <u>NON-Dominant</u>			
Dominant Plant Species (%)	Stratum	Indicator	Plant Species (%)	Stratum	Indicator	
Poa pratensis (80)	Herb	FAC-	Viola sororia (15)	Herb	FACU	
Quercus macrocarpa (33)	Tree	FAC-	Plantago lanceolata (10)	Herb	FAC	
Populus deltoides (25)	Tree	FAC+	Glechoma hederacea (10)	Herb	FACU	
Fraxinus pennsylvanica (25)	Tree	FACW	Larix decidua (15)	Tree	NI	
Percent of Dominant Species that an	Percent of Dominant Species that are OBL, FACW, OR FAC: 50%					
Plant Community Type: Former lawn, currently not maintained.						
Remarks:						

HYDROLOGY	WETLAND HYDROLOGY INDICATORS
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Floodway
Field Observations:	Secondary Indicators (2 or more required):
Depth of Surface Water:(in.)Depth of Soil Pit:23(in.)Depth to Free Water in Pit:21.5(in.)Depth to Saturated Soil:21.5(in.)	☐ Oxidized Root Channels in Root Zone(Upper 12") ☐ Water-Stained Leaves ☐ Local Soil Survey Data ☑ FAC-Neutral Test ☐ Plant morphological adaptations ☐ Other (Explain in Remarks)
Remarks:	

SOILS	-				
Map Unit N (Series and	Map Unit Name (Series and Phase): Matherton cilt loom (MmA)				
(Series and	(Series and Phase): Matherton silt loam (MmA) Drainage Class: Somewhat poorly drained				
Taxonomy	(Subgroup):	Udollic Endoaqualfs			
-					
Field Obser	rvations Cor	firm Mapped Type?	Yes XNO	Other hydric soil with	in County*
Profile Des	cription				
			Redox	Redox	
Depth		Matrix Color	Concentrations	Concentrations	Texture, Concretions,
(Inches)	Horizon	(Munsell Moist)	Color	(Abundance/	Structure, etc.
0.6		7 5VD 2 5/1	(Munsell Moist)	Contrast)	Silty alay loom
6.9		7.5 I K 2.5/1 7.5 VD 2.5/1	7 5VD 5/4	Common/Distinct	Silty clay loam
0-8		1.5 Y K $2.3/1$	/.5 Y K 5/4	Common/Distinct	
8-15		101 K 4/2 (0/%)			Clay Ioam
15.00		10YR 3/1 (35%)			Ť
15-22		10YR 3/1			Loam
22-23		10YR 7/2			Sandy marl
Walland C		~			
wettand Sc	Histosol	8:	Bright Mottling		
	Histic Enin	edon			
	Sulfidic Od	lor	High Organic C	ontent in Surface Layer	
Ē	Aquic Mois	sture Regime	Organic Streaki	ng in Sandy Soils	
	Reducing C	Conditions	Listed on Local	Hydric Soils List	
	Gleyed	~ .	Listed on Nation	nal Hydric Soils List	
	Low-Chron	na Colors	Other (Explain i	in Remarks)	
NRCS Map	oped Type: N	NI - Not Inventoried			
USDA Hya	ric Solis Fle	la Indicator:			
Remarks (*	*If field obse	rvations do not confir	m manned type but i	renresent another hydric	soil found in the county
check "othe	er hydric soi	l" and describe here):	in improve type but i	opresent unother nyuric	son round in the county,
0 to 15" of old fill material associated with past land use activities; Buried horizon at 15"					
		•	,		

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes No [(If no, explain)	Is the site a problem area? Yes □ No ⊠(if yes, explain)
Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes No [(If yes, explain)	
Remarks: Past filling	

Based on the foregoing, are:	
Hydrophytic Plants Dominant? ☐Yes ⊠No Wetland Hydrology Present? ☐Yes ⊠No	This Sampling Point is within a Wetland? 🗌 Yes 🖾 No
Remarks: Upland, formerly maintained yard.	

PLANT COMMUNITY AREA NO.: 1 TRANSECT NO.: 2 SAMPLE SITE NO.: 3

DATE: July 8, 2008

			Other <u>NON-Dominant</u>		
Dominant Plant Species (%)	Stratum	Indicator	Plant Species (%)	Stratum	Indicator
Populus deltoides (8)	Herb	FAC+			
Acer saccharinum (5)	Herb	FACW			
Populus deltoides (45)	Tree	FAC+			
Percent of Dominant Species that are OBL, FACW, OR FAC: 100%					
Plant Community Type: Exposed sandy beach with scattered lowland hardwoods					
Remarks:					

HYDROLOGY	WETLAND HYDROLOGY INDICATORS		
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Floodway		
Field Observations: Depth of Surface Water: (in.) Depth of Soil Pit: 22(in.) Depth to Free Water in Pit: 2(in.) Depth to Saturated Soil: 0(in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Plant morphological adaptations Other (Explain in Remarks)		
Remarks: SEWRPC 2007 aerial photography; Soils saturated	to the surface; Shallow roots		

SOILS					
Map Unit Na	me bogo): Eou si	ilt loom (EcA)		Droinage Classe V	Vall drained
(Series and P.	(Series and Phase): Fox silt loam (FsA)			Dramage Class: v	ven-dramed
Taxonomy (S	ubgroup): T	ypic Hapludalfs			
Field Observa	ations Confi	rm Mapped Type? []Yes ⊠No [Other hydric soil with	in County*
Profile Descr	iption				
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.
0-22		7.5YR 4/1			Sand
Wetland Soil	Indicators: Iistosol Iistic Epiped ulfidic Odor Aquic Moistu Reducing Cor Sleyed .ow-Chroma	lon 	Bright Mottling Concentrations High Organic Co Organic Streakir Listed on Local I Listed on Nation Other (Explain in	ntent in Surface Layer 1g in Sandy Soils 1ydric Soils List 1 Hydric Soils List 1 Remarks)	
NRCS Mappe	ed Type: NI	- Not Inventoried			
USDA Hydri WWI Classifi	c Solis Field	indicator:			
Remarks (*If	field observ	vations do not confiri	m manned type but r	epresent another hydric	soil found in the county.
check "other	hydric soil"	and describe here):			
Sample site is	s better repres	sented by the mapped	Sandy Lake Beaches (Stb) soils unit.	

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes No [(If no, explain)	Is the site a problem area? Yes ⊠ No □(if yes, explain)
Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes No 🛛 (If yes, explain)	
Remarks: Problem Soils: Sandy soil	

Based on the foregoing, are:	
Hydrophytic Plants Dominant? Xes No	This Sampling Point is within a Wetland? 🛛 Yes 🗌 No
Wetland Hydrology Present? Kres INo	
Wetland Soils Present?	
Remarks: Wetland on sandy soils	

PLANT COMMUNITY AREA NO.: 2 TRANSECT NO.: 3 SAMPLE SITE NO.: 4

DATE: July 8, 2008

			Other <u>NON-Dominant</u>			
Dominant Plant Species (%)	Stratum	Indicator	Plant Species (%)	Stratum	Indicator	
Poa pratensis (33)	Herb	FAC-	Polygonum persicaria (8)	Herb	FACW	
Eleocharis acicularis (20)	Herb	OBL	Agrostis stolonifera (3)	Herb	FACW	
Acer saccharinum (20)	Herb	FACW				
Percent of Dominant Species that	t are OBL	, FACW, OR	FAC: 67%			
Plant Community Type: Mowed	Plant Community Type: Mowed lawn when dry					
Remarks:						

HYDROLOGY	WETLAND HYDROLOGY INDICATORS
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Floodway
Field Observations: Depth of Surface Water: 7.5(in.) Depth of Soil Pit: 4(in.) Depth to Free Water in Pit: (in.) Depth to Saturated Soil: (in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Plant morphological adaptations
Remarks: SEWRPC 2007 aerial photography; Sample point is lo Depressional area	Cated within the 2003 SEWRPC wetland delineation area;

SOILS						
Map Unit Nar	ne					
(Series and Pl	(Series and Phase): Fox silt loam (FsA)				Vell-drained	
Taxonomy (Su Field Observa	Taxonomy (Subgroup): Typic Hapludalfs Field Observations Confirm Mapped Type? Yes Other hydric soil within County*					
Profile Descri	ption					
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.	
0-1.5		7.5YR 2.5/1			Muck	
1.5-4		10YR 4/1	7.5YR 4/6	Common/Distinct	Loam	
4					Refusal - Gravel	
Wetland Soil	Indicators: istosol		Bright Mottling	· · · ·		
	istic Epipea ulfidic Odor	on	UConcentrations	ontant in Surface I aver		
	anic Moistu	re Regime	Organic Streaki	ng in Sandy Soils		
	educing Cor	nditions		Hydric Soils List		
	leyed		Listed on National Hydric Soils List			
\square L	ow-Chroma	Colors	Other (Explain i	n Remarks)		
NRCS Mappe	d Type: NI	- Not Inventoried				
USDA Hydric Soils Field Indicator: A2. 2cm Muck (Test indicator in this region)						
WWI Classification:						
Remarks (*If	field observ	ations do not confir	m mapped type but 1	epresent another hydric	soil found in the county,	
check "other hydric soil" and describe here): Old fill, refusal at 3 to 4" in 5 attempts. Soils are inundated; hydric by definition (criteria 3)						

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes No [(If no, explain)	Is the site a problem area? Yes ⊠ No □(if yes, explain)				
Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes No [(If yes, explain)					
Remarks: Problem area - Seasonal wetland. Past filling and regular mowing	when dry.				

Based on the foregoing, are:	
Hydrophytic Plants Dominant? 🛛 Yes 🔲 No	This Sampling Point is within a Wetland? 🛛 Yes 🗌 No
Wetland Hydrology Present? 🛛 🖄 Yes 🛄 No	
Wetland Soils Present? Xes No	
Remarks: Seasonal/Atypical wetland	

PLANT COMMUNITY AREA NO.: 3 TRANSECT NO.: 3 SAMPLE SITE NO.: 5

DATE: October 14, 2008

			Other <u>NON-Dominant</u>		
Dominant Plant Species (%)	Stratum	Indicator	Plant Species (%)	Stratum	Indicator
Poa pratensis (99)	Herb	FAC-	Glechoma hederacea (3)	Herb	FACU
Thuja occidentalis (3)	Tree	FACW	Acer saccharinum (1)	Herb	FACW
			Ulmus americana (1)	Herb	FACW-
			Taraxacum officinale (1)	Herb	FACU
Percent of Dominant Species that an	e OBL, FAC	CW, OR FAC:	: 50%		
Plant Community Type: Formerly maintained lawn area					
Remarks: Thuja occidentalis was planted					

HYDROLOGY	WETLAND HYDROLOGY INDICATORS	
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands	
Field Observations: Depth of Surface Water: (in.) Depth of Soil Pit: 9(in.) Depth to Free Water in Pit: (in.) Depth to Saturated Soil: (in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Plant morphological adaptations Floodway Other (Explain in Remarks)	
Remarks: One secondary indicator of hydrology present (howeve	er, the FACW species was planted).	

SOILS						
Map Unit Nar	ne					
(Series and Ph	(Series and Phase): Fox silt loam (FsA) Drainage Class: Well-drained					
Taxonomy (Su	ubgroup): T	ypic Hapludalfs				
Field Observa	tions Confi	rm Mapped Type? []Yes ⊠No [Other hydric soil with	in County*	
D. Cl. D.						
Profile Descri	ption					
D (1			Redox	Redox		
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Concentrations Color (Munsell Moist)	Concentrations (Abundance/ Contrast)	Structure, etc.	
0-1.5		10YR 2/2			Loam	
1.5-9		10YR 5/2			Sand and gravel	
9					Refusal	
Wetland Soil	Indicators:					
	istosol		Bright Mottling			
	istic Epiped	on	Concentrations			
	ulfidic Odor		High Organic Content in Surface Layer			
	quic Moistu	re Regime	Organic Streaking in Sandy Soils			
	educing Cor	nditions	Listed on Local Hydric Soils List			
Gleyed			Listed on National Hydric Soils List			
	Low-Chroma Colors Other (Explain in Remarks)					
NRCS Mappe	NRCS Mapped Type: NI - Not Inventoried					
USDA Hydric	Soils Field	Indicator:				
WWI Classifi	WWI Classification:					
Remarks: *If	Remarks: *If field observations do not confirm mapped type but represent another hydric soil found in the county,					
check "other hydric soil" and describe here:						

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes⊠ No □(If no, explain)	Is the site a problem area? Yes □ No ⊠(if yes, explain)
Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes⊠ No □(If yes, explain)	
Remarks: Past mowing and filling	

Based on the foregoing, are:	
Hydrophytic Plants Dominant? □Yes No Wetland Hydrology Present? □Yes No Wetland Soils Present? □Yes No	This Sampling Point is within a Wetland? 🗌 Yes 🖾 No
Remarks:	

PLANT COMMUNITY AREA NO.: 3 TRANSECT NO.: 4 SAMPLE SITE NO.: 6

DATE: October 14, 2008

			Other <u>NON-Dominant</u>		
Dominant Plant Species (%)	Stratum	Indicator	Plant Species (%)	Stratum	Indicator
Poa pratensis (98)	Herb	FAC-	Plantago lanceolata (4)	Herb	FAC
Tilia americana (3)	Shrub	FACU	Glechoma hederacea (4)	Herb	FACU
Rhamnus cathartica (2)	Shrub	FAC-	Rhamnus cathartica (2)	Herb	FAC-
Tilia americana (33)	Tree	FACU	Taraxacum officinale (1)	Herb	FACU
Quercus macrocarpa (25)	Tree	FAC-	Ulmus americana (1)	Herb	FACW-
Fraxinus pennsylvanica (25)	Tree	FACW	Vitis riparia (1)	Shrub	FACW-
			Lonicera X bella (1)	Shrub	NI
Percent of Dominant Species that are OBL, FACW, OR FAC: 17%					
Plant Community Type: Former maintained lawn area with scattered hardwoods					
Remarks:					

HYDROLOGY	WETLAND HYDROLOGY INDICATORS
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands
Field Observations: Depth of Surface Water: (in.) Depth of Soil Pit: 8.5(in.) Depth to Free Water in Pit: (in.) Depth to Saturated Soil: (in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Plant morphological adaptations Floodway Other (Explain in Remarks)
Remarks: No hydrology indicators observed.	

SOILS					
Map Unit Na	me				• •
(Series and Pl	hase): Fox si	lt Ioam (FsA)	l	Drainage Class: Well-dr	ained
Taxonomy (S	ubgroup): T	ypic Hapludalfs			
Field Observa	ations Confi	rm Mapped Type? [Yes No	Other hydric soil with	hin County*
Profile Descri	intion				
			Redox	Redox	
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Concentrations Color (Munsell Moist)	Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.
0-8.5		10YR 2/2			Loam
8.5					Refusal 1-3" cobbles and glacial till material
Wetland Soil	Wetland Soil Indicators: Bright Mottling Histosol Concentrations				
	anic Moistn	re Regime	Organic Streaki	ng in Sandy Soils	
	educing Co	nditions	Listed on Local	Hydric Soils List	
Gleyed			Listed on National Hydric Soils List		
	ow-Chroma	Not Inventoriad	Other (Explain i	n Remarks)	
USDA Hydrid	soils Field	Indicator:			
WWI Classifi	cation:				
Remarks: *If field observations do not confirm mapped type but represent another hydric soil found in the county,					
check "other	hydric soil"	and describe here:			

SITE CONDITIONS

Do normal environmental conditions exist at the plant community?	Is the site a problem area?
Yes No [[(If no, explain)	Yes 🗌 No 🖾 (if yes, explain)
Has the vegetation, soils, and/or hydrology been significantly disturbed?	
Yes No [(If yes, explain)	
Remarks: Mowing of vegetation and past filling.	

Based on the foregoing, are:	
Hydrophytic Plants Dominant? Yes No Wetland Hydrology Present? Yes No Watland Soils Present?	This Sampling Point is within a Wetland? 🗌 Yes 🖾 No
Remarks:	

PLANT COMMUNITY AREA NO.: 1 TRANSECT NO.: 4 SAMPLE SITE NO.: 7

DATE: October 14, 2008

			Other <u>NON-Dominant</u>		
Dominant Plant Species (%)	Stratum	Indicator	Plant Species (%)	Stratum	Indicator
Salix exigua (33)	Herb	OBL	Ulmus americana (2)	Herb	FACW-
Phalaris arundinacea (25)	Herb	FACW+	Polygonum persicaria (2)	Herb	FACW
Salix exigua (15)	Shrub	OBL	Acer saccharinum (1)	Herb	FACW
			Cirsium arvense (1)	Herb	FACU
			Boehmeria cylindrica (1)	Herb	OBL
			Ambrosia artemisiifolia (1)	Herb	FACU
			Vitis riparia (1)	Shrub	FACW-
Percent of Dominant Species that are OBL, FACW, OR FAC: 100%					
Plant Community Type: Fresh (wet) meadow with shrubs					
Remarks:					

HYDROLOGY	WETLAND HYDROLOGY INDICATORS
 Recorded Data (Describe in Remarks): Stream, Lake or Tide Gauge Aerial Photographs Other FSA Slide Review No Recorded Data Available 	Primary Indicators: Inundated Saturated in Root Zone (Upper 12") Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands
Field Observations: Depth of Surface Water: (in.) Depth of Soil Pit: 17(in.) Depth to Free Water in Pit: 5.5(in.) Depth to Saturated Soil: 4.5(in.)	Secondary Indicators (2 or more required): Oxidized Root Channels in Root Zone(Upper 12") Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Plant morphological adaptations Floodway Other (Explain in Remarks)
Remarks: Oxidized root channels from 0-3"	

SOILS					
Map Unit Nat	me				
(Series and Pl	hase): Fox si	lt loam (FsA)		Drainage Class: Well-drai	ned
Taxonomy (S	ubgroup): T	ypic Hapludalfs			
Field Observa	ations Confi	rm Mapped Type? [Yes No	Other hydric soil within	n County*
Profile Descri	ption				
Depth (Inches)	Horizon	Matrix Color (Munsell Moist)	Redox Concentrations Color (Munsell Moist)	Redox Concentrations (Abundance/ Contrast)	Texture, Concretions, Structure, etc.
0-3		10YR 3/1			Sand and gravel
3-8		10YR 4/2	7.5YR 5/6	Common/Prominent	Sand and gravel
8-17		10YR 3/2	7.5YR 5/6	Common/Prominent	Course sand
Wetland Soil Indicators: Bright Mottling Histosol Bright Mottling Histic Epipedon Concentrations Sulfidic Odor High Organic Content in Surface Layer Aquic Moisture Regime Organic Streaking in Sandy Soils Reducing Conditions Listed on Local Hydric Soils List Gleyed Listed on National Hydric Soils List Low-Chroma Colors Other (Explain in Remarks)					
NRCS Mappe	ed Type: NI	- Not Inventoried			
USDA Hydric	USDA Hydric Soils Field Indicator: Meets the A16. Coast Prairie Redox test indicator				
WWI Classifi	cation: AlL		14 14		
Remarks: *If field observations do not confirm mapped type but represent another hydric soil found in the county, check "other hydric soil" and describe here:					

SITE CONDITIONS

Do normal environmental conditions exist at the plant community? Yes⊠ No □(If no, explain)	Is the site a problem area? Yes ⊠ No □(if yes, explain)
Has the vegetation, soils, and/or hydrology been significantly disturbed? Yes No 🖄 (If yes, explain)	
Remarks: Problem area due to Sandy soils	

Based on the foregoing, are:	
Hydrophytic Plants Dominant? ⊠Yes □No Wetland Hydrology Present? ⊠Yes □No	This Sampling Point is within a Wetland? 🛛 Yes 🗌 No
Wetland Soils Present?	
Remarks:	

Appendix G-4

Soil Sample Site No. 1: Plot Date: 07/08/08

Soil Sample Site No. 1: 0 – 18" Date: 07/08/08

Soil Sample Site No. 2: Plot Date: 07/08/08

Soil Sample Site No. 3: Plot Date: 07/08/08

Soil Sample Site No. 3: 0 to 21" Date: 07/08/08

Soil Sample Site No. 4: Plot with 7.5" of standing water Date: 07/08/08

Soil Sample Site No. 5: Plot Date: 10/14/08

Soil Sample Site No. 5: 0 – 2" Date: 10/14/08

Soil Sample Site No. 5: 2 – 9" Date: 10/14/08

Soil Sample Site No. 5: Pit Date: 10/14/08

Soil Sample Site No. 6: Plot Date: 10/14/08

Soil Sample Site No. 6: 0 - 8.5" with glacial cobbles Date: 10/14/08

Soil Sample Site No. 7: Plot Date: 10/14/08

Soil Sample Site No. 7: 0 - 3" oxidized root channels Date: 10/14/08

Soil Sample Site No. 7: 3 - 8" rock with oxidized areas and saturation Date: 10/14/08

North View of Soil Sample Site No. 1 Date: 07/08/08

North View from Soil Sample Site No. 5 Date: 10/14/08

North View from Soil Sample Site No. 6 Date: 10/14/08

